file_client_args = dict(backend='disk') model = dict( type='DBNet', backbone=dict( type='mmdet.ResNet', depth=18, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=-1, norm_cfg=dict(type='BN', requires_grad=True), init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18'), norm_eval=False, style='caffe'), neck=dict( type='FPNC', in_channels=[64, 128, 256, 512], lateral_channels=256), det_head=dict( type='DBHead', in_channels=256, module_loss=dict(type='DBModuleLoss'), postprocessor=dict(type='DBPostprocessor', text_repr_type='quad')), data_preprocessor=dict( type='TextDetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32)) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args=dict(backend='disk'), color_type='color_ignore_orientation'), dict( type='LoadOCRAnnotations', with_polygon=True, with_bbox=True, with_label=True), dict( type='TorchVisionWrapper', op='ColorJitter', brightness=0.12549019607843137, saturation=0.5), dict( type='ImgAugWrapper', args=[['Fliplr', 0.5], { 'cls': 'Affine', 'rotate': [-10, 10] }, ['Resize', [0.5, 3.0]]]), dict(type='RandomCrop', min_side_ratio=0.1), dict(type='Resize', scale=(640, 640), keep_ratio=True), dict(type='Pad', size=(640, 640)), dict( type='PackTextDetInputs', meta_keys=('img_path', 'ori_shape', 'img_shape')) ] test_pipeline = [ dict( type='LoadImageFromFile', file_client_args=dict(backend='disk'), color_type='color_ignore_orientation'), dict(type='Resize', scale=(1333, 736), keep_ratio=True), dict( type='LoadOCRAnnotations', with_polygon=True, with_bbox=True, with_label=True), dict( type='PackTextDetInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] icdar2015_textdet_data_root = 'data/det/textdet-thvote' icdar2015_textdet_train = dict( type='OCRDataset', data_root='data/det/textdet-thvote', ann_file='textdet_train.json', data_prefix=dict(img_path='imgs/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=[ dict( type='LoadImageFromFile', file_client_args=dict(backend='disk'), color_type='color_ignore_orientation'), dict( type='LoadOCRAnnotations', with_polygon=True, with_bbox=True, with_label=True), dict( type='TorchVisionWrapper', op='ColorJitter', brightness=0.12549019607843137, saturation=0.5), dict( type='ImgAugWrapper', args=[['Fliplr', 0.5], { 'cls': 'Affine', 'rotate': [-10, 10] }, ['Resize', [0.5, 3.0]]]), dict(type='RandomCrop', min_side_ratio=0.1), dict(type='Resize', scale=(640, 640), keep_ratio=True), dict(type='Pad', size=(640, 640)), dict( type='PackTextDetInputs', meta_keys=('img_path', 'ori_shape', 'img_shape')) ]) icdar2015_textdet_test = dict( type='OCRDataset', data_root='data/det/textdet-thvote', ann_file='textdet_test.json', data_prefix=dict(img_path='imgs/'), test_mode=True, pipeline=[ dict( type='LoadImageFromFile', file_client_args=dict(backend='disk'), color_type='color_ignore_orientation'), dict(type='Resize', scale=(1333, 736), keep_ratio=True), dict( type='LoadOCRAnnotations', with_polygon=True, with_bbox=True, with_label=True), dict( type='PackTextDetInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor')) ]) default_scope = 'mmocr' env_cfg = dict( cudnn_benchmark=True, mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), dist_cfg=dict(backend='nccl')) randomness = dict(seed=None) default_hooks = dict( timer=dict(type='IterTimerHook'), logger=dict(type='LoggerHook', interval=5), param_scheduler=dict(type='ParamSchedulerHook'), checkpoint=dict(type='CheckpointHook', interval=20), sampler_seed=dict(type='DistSamplerSeedHook'), sync_buffer=dict(type='SyncBuffersHook'), visualization=dict( type='VisualizationHook', interval=1, enable=False, show=False, draw_gt=False, draw_pred=False)) log_level = 'INFO' log_processor = dict(type='LogProcessor', window_size=10, by_epoch=True) load_from = None resume = False val_evaluator = dict(type='HmeanIOUMetric') test_evaluator = dict(type='HmeanIOUMetric') vis_backends = [dict(type='LocalVisBackend')] visualizer = dict( type='TextDetLocalVisualizer', name='visualizer', vis_backends=[dict(type='LocalVisBackend')]) optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.007, momentum=0.9, weight_decay=0.0001)) train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=1200, val_interval=20) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') param_scheduler = [dict(type='PolyLR', power=0.9, eta_min=1e-07, end=1200)] train_dataloader = dict( batch_size=16, num_workers=8, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( type='OCRDataset', data_root='data/det/textdet-thvote', ann_file='textdet_train.json', data_prefix=dict(img_path='imgs/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=[ dict( type='LoadImageFromFile', file_client_args=dict(backend='disk'), color_type='color_ignore_orientation'), dict( type='LoadOCRAnnotations', with_polygon=True, with_bbox=True, with_label=True), dict( type='TorchVisionWrapper', op='ColorJitter', brightness=0.12549019607843137, saturation=0.5), dict( type='ImgAugWrapper', args=[['Fliplr', 0.5], { 'cls': 'Affine', 'rotate': [-10, 10] }, ['Resize', [0.5, 3.0]]]), dict(type='RandomCrop', min_side_ratio=0.1), dict(type='Resize', scale=(640, 640), keep_ratio=True), dict(type='Pad', size=(640, 640)), dict( type='PackTextDetInputs', meta_keys=('img_path', 'ori_shape', 'img_shape')) ])) val_dataloader = dict( batch_size=1, num_workers=4, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type='OCRDataset', data_root='data/det/textdet-thvote', ann_file='textdet_test.json', data_prefix=dict(img_path='imgs/'), test_mode=True, pipeline=[ dict( type='LoadImageFromFile', file_client_args=dict(backend='disk'), color_type='color_ignore_orientation'), dict(type='Resize', scale=(1333, 736), keep_ratio=True), dict( type='LoadOCRAnnotations', with_polygon=True, with_bbox=True, with_label=True), dict( type='PackTextDetInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor')) ])) test_dataloader = dict( batch_size=1, num_workers=4, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type='OCRDataset', data_root='data/det/textdet-thvote', ann_file='textdet_test.json', data_prefix=dict(img_path='imgs/'), test_mode=True, pipeline=[ dict( type='LoadImageFromFile', file_client_args=dict(backend='disk'), color_type='color_ignore_orientation'), dict(type='Resize', scale=(1333, 736), keep_ratio=True), dict( type='LoadOCRAnnotations', with_polygon=True, with_bbox=True, with_label=True), dict( type='PackTextDetInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor')) ])) auto_scale_lr = dict(base_batch_size=16) launcher = 'none' work_dir = './work_dirs/dbnet_resnet18_fpnc_1200e_icdar2015'