yourusername commited on
Commit
33d5fe3
·
1 Parent(s): 20464a1
dino/LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
dino/README.md ADDED
@@ -0,0 +1,382 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Self-Supervised Vision Transformers with DINO
2
+
3
+ PyTorch implementation and pretrained models for DINO. For details, see **Emerging Properties in Self-Supervised Vision Transformers**.
4
+ [[`blogpost`](https://ai.facebook.com/blog/dino-paws-computer-vision-with-self-supervised-transformers-and-10x-more-efficient-training)] [[`arXiv`](https://arxiv.org/abs/2104.14294)] [[`Yannic Kilcher's video`](https://www.youtube.com/watch?v=h3ij3F3cPIk)]
5
+
6
+ <div align="center">
7
+ <img width="100%" alt="DINO illustration" src=".github/dino.gif">
8
+ </div>
9
+
10
+ ## Pretrained models
11
+ You can choose to download only the weights of the pretrained backbone used for downstream tasks, or the full checkpoint which contains backbone and projection head weights for both student and teacher networks. We also provide the backbone in `onnx` format, as well as detailed arguments and training/evaluation logs. Note that `DeiT-S` and `ViT-S` names refer exactly to the same architecture.
12
+
13
+ <table>
14
+ <tr>
15
+ <th>arch</th>
16
+ <th>params</th>
17
+ <th>k-nn</th>
18
+ <th>linear</th>
19
+ <th colspan="6">download</th>
20
+ </tr>
21
+ <tr>
22
+ <td>ViT-S/16</td>
23
+ <td>21M</td>
24
+ <td>74.5%</td>
25
+ <td>77.0%</td>
26
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_deitsmall16_pretrain/dino_deitsmall16_pretrain.pth">backbone only</a></td>
27
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_deitsmall16_pretrain/dino_deitsmall16_pretrain_full_checkpoint.pth">full ckpt</a></td>
28
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_deitsmall16_pretrain/dino_deits16.onnx">onnx</a></td>
29
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_deitsmall16_pretrain/args.txt">args</a></td>
30
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_deitsmall16_pretrain/dino_deitsmall16_pretrain_log.txt">logs</a></td>
31
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_deitsmall16_pretrain/dino_deitsmall16_pretrain_eval_linear_log.txt">eval logs</a></td>
32
+ </tr>
33
+ <tr>
34
+ <td>ViT-S/8</td>
35
+ <td>21M</td>
36
+ <td>78.3%</td>
37
+ <td>79.7%</td>
38
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_deitsmall8_pretrain/dino_deitsmall8_pretrain.pth">backbone only</a></td>
39
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_deitsmall8_pretrain/dino_deitsmall8_pretrain_full_checkpoint.pth">full ckpt</a></td>
40
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_deitsmall8_pretrain/dino_deits8.onnx">onnx</a></td>
41
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_deitsmall8_pretrain/args.txt">args</a></td>
42
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_deitsmall8_pretrain/dino_deitsmall8_pretrain_log.txt">logs</a></td>
43
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_deitsmall8_pretrain/dino_deitsmall8_pretrain_eval_linear_log.txt">eval logs</a></td>
44
+ </tr>
45
+ <tr>
46
+ <td>ViT-B/16</td>
47
+ <td>85M</td>
48
+ <td>76.1%</td>
49
+ <td>78.2%</td>
50
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_vitbase16_pretrain/dino_vitbase16_pretrain.pth">backbone only</a></td>
51
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_vitbase16_pretrain/dino_vitbase16_pretrain_full_checkpoint.pth">full ckpt</a></td>
52
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_vitbase16_pretrain/dino_vitb16.onnx">onnx</a></td>
53
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_vitbase16_pretrain/args.txt">args</a></td>
54
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_vitbase16_pretrain/dino_vitbase16_pretrain_log.txt">logs</a></td>
55
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_vitbase16_pretrain/dino_vitbase16_pretrain_eval_linear_log.txt">eval logs</a></td>
56
+ </tr>
57
+ <tr>
58
+ <td>ViT-B/8</td>
59
+ <td>85M</td>
60
+ <td>77.4%</td>
61
+ <td>80.1%</td>
62
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth">backbone only</a></td>
63
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_vitbase8_pretrain/dino_vitbase8_pretrain_full_checkpoint.pth">full ckpt</a></td>
64
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_vitbase8_pretrain/dino_vitb8.onnx">onnx</a></td>
65
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_vitbase8_pretrain/args.txt">args</a></td>
66
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_vitbase8_pretrain/dino_vitbase8_pretrain_log.txt">logs</a></td>
67
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_vitbase8_pretrain/dino_vitbase8_pretrain_eval_linear_log.txt">eval logs</a></td>
68
+ </tr>
69
+ <tr>
70
+ <td>ResNet-50</td>
71
+ <td>23M</td>
72
+ <td>67.5%</td>
73
+ <td>75.3%</td>
74
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_resnet50_pretrain/dino_resnet50_pretrain.pth">backbone only</a></td>
75
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_resnet50_pretrain/dino_resnet50_pretrain_full_checkpoint.pth">full ckpt</a></td>
76
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_resnet50_pretrain/dino_resnet50.onnx">onnx</a></td>
77
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_resnet50_pretrain/args.txt">args</a></td>
78
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_resnet50_pretrain/dino_resnet50_pretrain_log.txt">logs</a></td>
79
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_resnet50_pretrain/dino_resnet50_pretrain_eval_linear_log.txt">eval logs</a></td>
80
+ </tr>
81
+ </table>
82
+
83
+ We also release XCiT models ([[`arXiv`](https://arxiv.org/abs/2106.09681)] [[`code`](https://github.com/facebookresearch/xcit)]) trained with DINO:
84
+ <table>
85
+ <tr>
86
+ <th>arch</th>
87
+ <th>params</th>
88
+ <th>k-nn</th>
89
+ <th>linear</th>
90
+ <th colspan="5">download</th>
91
+ </tr>
92
+ <tr>
93
+ <td>xcit_small_12_p16</td>
94
+ <td>26M</td>
95
+ <td>76.0%</td>
96
+ <td>77.8%</td>
97
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_xcit_small_12_p16_pretrain/dino_xcit_small_12_p16_pretrain.pth">backbone only</a></td>
98
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_xcit_small_12_p16_pretrain/dino_xcit_small_12_p16_pretrain_full_checkpoint.pth">full ckpt</a></td>
99
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_xcit_small_12_p16_pretrain/args.txt">args</a></td>
100
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_xcit_small_12_p16_pretrain/dino_xcit_small_12_p16_pretrain_log.txt">logs</a></td>
101
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_xcit_small_12_p16_pretrain/dino_xcit_small_12_p16_pretrain_eval_linear_log.txt">eval</a></td>
102
+ </tr>
103
+ <tr>
104
+ <td>xcit_small_12_p8</td>
105
+ <td>26M</td>
106
+ <td>77.1%</td>
107
+ <td>79.2%</td>
108
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_xcit_small_12_p8_pretrain/dino_xcit_small_12_p8_pretrain.pth">backbone only</a></td>
109
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_xcit_small_12_p8_pretrain/dino_xcit_small_12_p8_pretrain_full_checkpoint.pth">full ckpt</a></td>
110
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_xcit_small_12_p8_pretrain/args.txt">args</a></td>
111
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_xcit_small_12_p8_pretrain/dino_xcit_small_12_p8_pretrain_log.txt">logs</a></td>
112
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_xcit_small_12_p8_pretrain/dino_xcit_small_12_p8_pretrain_eval_linear_log.txt">eval</a></td>
113
+ </tr>
114
+ <tr>
115
+ <td>xcit_medium_24_p16</td>
116
+ <td>84M</td>
117
+ <td>76.4%</td>
118
+ <td>78.8%</td>
119
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_xcit_medium_24_p16_pretrain/dino_xcit_medium_24_p16_pretrain.pth">backbone only</a></td>
120
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_xcit_medium_24_p16_pretrain/dino_xcit_medium_24_p16_pretrain_full_checkpoint.pth">full ckpt</a></td>
121
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_xcit_medium_24_p16_pretrain/args.txt">args</a></td>
122
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_xcit_medium_24_p16_pretrain/dino_xcit_medium_24_p16_pretrain_log.txt">logs</a></td>
123
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_xcit_medium_24_p16_pretrain/dino_xcit_medium_24_p16_pretrain_eval_linear_log.txt">eval</a></td>
124
+ </tr>
125
+ <tr>
126
+ <td>xcit_medium_24_p8</td>
127
+ <td>84M</td>
128
+ <td>77.9%</td>
129
+ <td>80.3%</td>
130
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_xcit_medium_24_p8_pretrain/dino_xcit_medium_24_p8_pretrain.pth">backbone only</a></td>
131
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_xcit_medium_24_p8_pretrain/dino_xcit_medium_24_p8_pretrain_full_checkpoint.pth">full ckpt</a></td>
132
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_xcit_medium_24_p8_pretrain/args.txt">args</a></td>
133
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_xcit_medium_24_p8_pretrain/dino_xcit_medium_24_p8_pretrain_log.txt">logs</a></td>
134
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_xcit_medium_24_p8_pretrain/dino_xcit_medium_24_p8_pretrain_eval_linear_log.txt">eval</a></td>
135
+ </tr>
136
+ </table>
137
+
138
+ ### Pretrained models on PyTorch Hub
139
+ ```python
140
+ import torch
141
+ vits16 = torch.hub.load('facebookresearch/dino:main', 'dino_vits16')
142
+ vits8 = torch.hub.load('facebookresearch/dino:main', 'dino_vits8')
143
+ vitb16 = torch.hub.load('facebookresearch/dino:main', 'dino_vitb16')
144
+ vitb8 = torch.hub.load('facebookresearch/dino:main', 'dino_vitb8')
145
+ xcit_small_12_p16 = torch.hub.load('facebookresearch/dino:main', 'dino_xcit_small_12_p16')
146
+ xcit_small_12_p8 = torch.hub.load('facebookresearch/dino:main', 'dino_xcit_small_12_p8')
147
+ xcit_medium_24_p16 = torch.hub.load('facebookresearch/dino:main', 'dino_xcit_medium_24_p16')
148
+ xcit_medium_24_p8 = torch.hub.load('facebookresearch/dino:main', 'dino_xcit_medium_24_p8')
149
+ resnet50 = torch.hub.load('facebookresearch/dino:main', 'dino_resnet50')
150
+ ```
151
+
152
+ ## Training
153
+
154
+ ### Documentation
155
+ Please install [PyTorch](https://pytorch.org/) and download the [ImageNet](https://imagenet.stanford.edu/) dataset. This codebase has been developed with python version 3.6, PyTorch version 1.7.1, CUDA 11.0 and torchvision 0.8.2. The exact arguments to reproduce the models presented in our paper can be found in the `args` column of the [pretrained models section](https://github.com/facebookresearch/dino#pretrained-models). For a glimpse at the full documentation of DINO training please run:
156
+ ```
157
+ python main_dino.py --help
158
+ ```
159
+
160
+ ### Vanilla DINO training :sauropod:
161
+ Run DINO with ViT-small network on a single node with 8 GPUs for 100 epochs with the following command. Training time is 1.75 day and the resulting checkpoint should reach 69.3% on k-NN eval and 74.0% on linear eval. We provide [training](https://dl.fbaipublicfiles.com/dino/example_runs_logs/dino_vanilla_deitsmall16_log.txt) and [linear evaluation](https://dl.fbaipublicfiles.com/dino/example_runs_logs/dino_vanilla_deitsmall16_eval.txt) logs (with batch size 256 at evaluation time) for this run to help reproducibility.
162
+ ```
163
+ python -m torch.distributed.launch --nproc_per_node=8 main_dino.py --arch vit_small --data_path /path/to/imagenet/train --output_dir /path/to/saving_dir
164
+ ```
165
+
166
+ ### Multi-node training
167
+ We use Slurm and [submitit](https://github.com/facebookincubator/submitit) (`pip install submitit`). To train on 2 nodes with 8 GPUs each (total 16 GPUs):
168
+ ```
169
+ python run_with_submitit.py --nodes 2 --ngpus 8 --arch vit_small --data_path /path/to/imagenet/train --output_dir /path/to/saving_dir
170
+ ```
171
+
172
+ <details>
173
+ <summary>
174
+ DINO with ViT-base network.
175
+ </summary>
176
+
177
+ ```
178
+ python run_with_submitit.py --nodes 2 --ngpus 8 --use_volta32 --arch vit_base --data_path /path/to/imagenet/train --output_dir /path/to/saving_dir
179
+ ```
180
+
181
+ </details>
182
+
183
+ ### Boosting DINO performance :t-rex:
184
+ You can improve the performance of the vanilla run by:
185
+ - training for more epochs: `--epochs 300`,
186
+ - increasing the teacher temperature: `--teacher_temp 0.07 --warmup_teacher_temp_epochs 30`.
187
+ - removing last layer normalization (only safe with `--arch vit_small`): `--norm_last_layer false`,
188
+
189
+ <details>
190
+ <summary>
191
+ Full command.
192
+ </summary>
193
+
194
+ ```
195
+ python run_with_submitit.py --arch vit_small --epochs 300 --teacher_temp 0.07 --warmup_teacher_temp_epochs 30 --norm_last_layer false --data_path /path/to/imagenet/train --output_dir /path/to/saving_dir
196
+ ```
197
+
198
+ </details>
199
+
200
+ The resulting pretrained model should reach 73.3% on k-NN eval and 76.0% on linear eval. Training time is 2.6 days with 16 GPUs. We provide [training](https://dl.fbaipublicfiles.com/dino/example_runs_logs/dino_boost_deitsmall16_log.txt) and [linear evaluation](https://dl.fbaipublicfiles.com/dino/example_runs_logs/dino_boost_deitsmall16_eval.txt) logs (with batch size 256 at evaluation time) for this run to help reproducibility.
201
+
202
+ ### ResNet-50 and other convnets trainings
203
+ This code also works for training DINO on convolutional networks, like ResNet-50 for example. We highly recommend to adapt some optimization arguments in this case. For example following is a command to train DINO on ResNet-50 on a single node with 8 GPUs for 100 epochs. We provide [training](https://dl.fbaipublicfiles.com/dino/example_runs_logs/dino_rn50_log.txt) logs for this run.
204
+ ```
205
+ python -m torch.distributed.launch --nproc_per_node=8 main_dino.py --arch resnet50 --optimizer sgd --weight_decay 1e-4 --weight_decay_end 1e-4 --global_crops_scale 0.14 1 --local_crops_scale 0.05 0.14 --data_path /path/to/imagenet/train --output_dir /path/to/saving_dir
206
+ ```
207
+
208
+ ## Self-attention visualization
209
+ You can look at the self-attention of the [CLS] token on the different heads of the last layer by running:
210
+ ```
211
+ python visualize_attention.py
212
+ ```
213
+
214
+ <div align="center">
215
+ <img width="100%" alt="Self-attention from a Vision Transformer with 8x8 patches trained with DINO" src=".github/attention_maps.png">
216
+ </div>
217
+
218
+ ## Self-attention video generation
219
+ You can generate videos like the one on the blog post with `video_generation.py`.
220
+
221
+ https://user-images.githubusercontent.com/46140458/116817761-47885e80-ab68-11eb-9975-d61d5a919e13.mp4
222
+
223
+ Extract frames from input video and generate attention video:
224
+ ```
225
+ python video_generation.py --pretrained_weights dino_deitsmall8_pretrain.pth \
226
+ --input_path input/video.mp4 \
227
+ --output_path output/ \
228
+ --fps 25
229
+ ```
230
+
231
+ Use folder of frames already extracted and generate attention video:
232
+ ```
233
+ python video_generation.py --pretrained_weights dino_deitsmall8_pretrain.pth \
234
+ --input_path output/frames/ \
235
+ --output_path output/ \
236
+ --resize 256 \
237
+ ```
238
+
239
+ Only generate video from folder of attention maps images:
240
+ ```
241
+ python video_generation.py --input_path output/attention \
242
+ --output_path output/ \
243
+ --video_only \
244
+ --video_format avi
245
+ ```
246
+
247
+
248
+ ## Evaluation: k-NN classification on ImageNet
249
+ To evaluate a simple k-NN classifier with a single GPU on a pre-trained model, run:
250
+ ```
251
+ python -m torch.distributed.launch --nproc_per_node=1 eval_knn.py --data_path /path/to/imagenet
252
+ ```
253
+ If you choose not to specify `--pretrained_weights`, then DINO reference weights are used by default. If you want instead to evaluate checkpoints from a run of your own, you can run for example:
254
+ ```
255
+ python -m torch.distributed.launch --nproc_per_node=1 eval_knn.py --pretrained_weights /path/to/checkpoint.pth --checkpoint_key teacher --data_path /path/to/imagenet
256
+ ```
257
+
258
+ ## Evaluation: Linear classification on ImageNet
259
+ To train a supervised linear classifier on frozen weights on a single node with 8 gpus, run:
260
+ ```
261
+ python -m torch.distributed.launch --nproc_per_node=8 eval_linear.py --data_path /path/to/imagenet
262
+ ```
263
+
264
+ We release the logs and weights from evaluating the different models:
265
+
266
+ <table>
267
+ <tr>
268
+ <th>arch</th>
269
+ <th>top-1 ImageNet</th>
270
+ <th colspan="2">linear evaluation</th>
271
+ </tr>
272
+ <tr>
273
+ <td>ViT-S/16</td>
274
+ <td>77.0%</td>
275
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_deitsmall16_pretrain/dino_deitsmall16_linearweights.pth">linear weights</a></td>
276
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_deitsmall16_pretrain/dino_deitsmall16_pretrain_eval_linear_log.txt">logs</a></td>
277
+ </tr>
278
+ <tr>
279
+ <td>ViT-S/8</td>
280
+ <td>79.7%</td>
281
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_deitsmall8_pretrain/dino_deitsmall8_linearweights.pth">linear weights</a></td>
282
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_deitsmall8_pretrain/dino_deitsmall8_pretrain_eval_linear_log.txt">logs</a></td>
283
+ </tr>
284
+ <tr>
285
+ <td>ViT-B/16</td>
286
+ <td>78.2%</td>
287
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_vitbase16_pretrain/dino_vitbase16_linearweights.pth">linear weights</a></td>
288
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_vitbase16_pretrain/dino_vitbase16_pretrain_eval_linear_log.txt">logs</a></td>
289
+ </tr>
290
+ <tr>
291
+ <td>xcit_small_12_p16</td>
292
+ <td>77.8%</td>
293
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_xcit_small_12_p16_pretrain/dino_xcit_small_12_p16_linearweights.pth">linear weights</a></td>
294
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_xcit_small_12_p16_pretrain/dino_xcit_small_12_p16_pretrain_eval_linear_log.txt">logs</a></td>
295
+ </tr>
296
+ <tr>
297
+ <td>xcit_small_12_p8</td>
298
+ <td>79.2%</td>
299
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_xcit_small_12_p8_pretrain/dino_xcit_small_12_p8_linearweights.pth">linear weights</a></td>
300
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_xcit_small_12_p8_pretrain/dino_xcit_small_12_p8_pretrain_eval_linear_log.txt">logs</a></td>
301
+ </tr>
302
+ <tr>
303
+ <td>xcit_medium_24_p16</td>
304
+ <td>78.8%</td>
305
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_xcit_medium_24_p16_pretrain/dino_xcit_medium_24_p16_linearweights.pth">linear weights</a></td>
306
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_xcit_medium_24_p16_pretrain/dino_xcit_medium_24_p16_pretrain_eval_linear_log.txt">logs</a></td>
307
+ </tr>
308
+ <tr>
309
+ <td>xcit_medium_24_p8</td>
310
+ <td>80.3%</td>
311
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_xcit_medium_24_p8_pretrain/dino_xcit_medium_24_p8_linearweights.pth">linear weights</a></td>
312
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_xcit_medium_24_p8_pretrain/dino_xcit_medium_24_p8_pretrain_eval_linear_log.txt">logs</a></td>
313
+ </tr>
314
+ <tr>
315
+ <td>ResNet-50</td>
316
+ <td>75.3%</td>
317
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_resnet50_pretrain/dino_resnet50_linearweights.pth">linear weights</a></td>
318
+ <td><a href="https://dl.fbaipublicfiles.com/dino/dino_resnet50_pretrain/dino_resnet50_pretrain_eval_linear_log.txt">logs</a></td>
319
+ </tr>
320
+ </table>
321
+
322
+ ## Evaluation: DAVIS 2017 Video object segmentation
323
+ Please verify that you're using pytorch version 1.7.1 since we are not able to reproduce the results with most recent pytorch 1.8.1 at the moment.
324
+
325
+ **Step 1: Prepare DAVIS 2017 data**
326
+ ```
327
+ cd $HOME
328
+ git clone https://github.com/davisvideochallenge/davis-2017 && cd davis-2017
329
+ ./data/get_davis.sh
330
+ ```
331
+
332
+ **Step 2: Video object segmentation**
333
+ ```
334
+ python eval_video_segmentation.py --data_path $HOME/davis-2017/DAVIS/ --output_dir /path/to/saving_dir
335
+ ```
336
+
337
+ **Step 3: Evaluate the obtained segmentation**
338
+ ```
339
+ git clone https://github.com/davisvideochallenge/davis2017-evaluation $HOME/davis2017-evaluation
340
+ python $HOME/davis2017-evaluation/evaluation_method.py --task semi-supervised --results_path /path/to/saving_dir --davis_path $HOME/davis-2017/DAVIS/
341
+ ```
342
+
343
+ ## Evaluation: Image Retrieval on revisited Oxford and Paris
344
+ Step 1: Prepare revisited Oxford and Paris by following [this repo](https://github.com/filipradenovic/revisitop).
345
+
346
+ Step 2: Image retrieval (if you do not specify weights with `--pretrained_weights` then by default [DINO weights pretrained on Google Landmark v2 dataset](https://dl.fbaipublicfiles.com/dino/dino_vitsmall16_googlelandmark_pretrain/dino_vitsmall16_googlelandmark_pretrain.pth) will be used).
347
+
348
+ Paris:
349
+ ```
350
+ python -m torch.distributed.launch --use_env --nproc_per_node=1 eval_image_retrieval.py --imsize 512 --multiscale 1 --data_path /path/to/revisited_paris_oxford/ --dataset rparis6k
351
+ ```
352
+
353
+ Oxford:
354
+ ```
355
+ python -m torch.distributed.launch --use_env --nproc_per_node=1 eval_image_retrieval.py --imsize 224 --multiscale 0 --data_path /path/to/revisited_paris_oxford/ --dataset roxford5k
356
+ ```
357
+
358
+ ## Evaluation: Copy detection on Copydays
359
+ Step 1: Prepare [Copydays dataset](https://lear.inrialpes.fr/~jegou/data.php#copydays).
360
+
361
+ Step 2 (opt): Prepare a set of image distractors and a set of images on which to learn the whitening operator.
362
+ In our paper, we use 10k random images from YFCC100M as distractors and 20k random images from YFCC100M (different from the distractors) for computing the whitening operation.
363
+
364
+ Step 3: Run copy detection:
365
+ ```
366
+ python -m torch.distributed.launch --use_env --nproc_per_node=1 eval_copy_detection.py --data_path /path/to/copydays/ --whitening_path /path/to/whitening_data/ --distractors_path /path/to/distractors/
367
+ ```
368
+ We report result on the strong subset. For example in the stdout from the command above we get: `eval on strong mAP=0.858`.
369
+
370
+ ## License
371
+ This repository is released under the Apache 2.0 license as found in the [LICENSE](LICENSE) file.
372
+
373
+ ## Citation
374
+ If you find this repository useful, please consider giving a star :star: and citation :t-rex::
375
+ ```
376
+ @inproceedings{caron2021emerging,
377
+ title={Emerging Properties in Self-Supervised Vision Transformers},
378
+ author={Caron, Mathilde and Touvron, Hugo and Misra, Ishan and J\'egou, Herv\'e and Mairal, Julien and Bojanowski, Piotr and Joulin, Armand},
379
+ booktitle={Proceedings of the International Conference on Computer Vision (ICCV)},
380
+ year={2021}
381
+ }
382
+ ```
dino/__pycache__/utils.cpython-38.pyc ADDED
Binary file (23.8 kB). View file
 
dino/__pycache__/video_generation.cpython-38.pyc ADDED
Binary file (9.24 kB). View file
 
dino/__pycache__/vision_transformer.cpython-38.pyc ADDED
Binary file (10.5 kB). View file
 
dino/app.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from video_generation import VideoGenerator
2
+
3
+ import gradio as gr
4
+ import shutil
5
+ import os
6
+ from argparse import Namespace
7
+ import subprocess
8
+
9
+ os.environ['KMP_DUPLICATE_LIB_OK']='True'
10
+
11
+
12
+ def func(resize, video):
13
+ # return video
14
+ if os.path.exists('./outputs'):
15
+ shutil.rmtree('./outputs')
16
+
17
+ args = Namespace(
18
+ arch="vit_small",
19
+ patch_size=8,
20
+ pretrained_weights="dino_deitsmall8_pretrain.pth",
21
+ checkpoint_key="teacher",
22
+ input_path=video,
23
+ output_path="./outputs/",
24
+ threshold=0.6,
25
+ resize=resize,
26
+ video_only=False,
27
+ fps=30.0,
28
+ video_format="mp4"
29
+ )
30
+
31
+ vid_generator = VideoGenerator(args)
32
+ vid_generator.run()
33
+
34
+ # # Make a video that puts the resized input video + the attn output video together as one
35
+ ffmpeg_cmd = """
36
+ ffmpeg
37
+ -i ./outputs/original-reshaped.mp4
38
+ -i ./outputs/video.mp4
39
+ -filter_complex hstack
40
+ ./outputs/stacked.mp4
41
+ """
42
+ subprocess.call(ffmpeg_cmd.split())
43
+ return './outputs/stacked.mp4'
44
+
45
+ title = "Interactive demo: DINO"
46
+ description = "Demo for Facebook AI's DINO, a new method for self-supervised training of Vision Transformers. Using this method, they are capable of segmenting objects within an image without having ever been trained to do so. This can be observed by displaying the self-attention of the heads from the last layer for the [CLS] token query. This demo uses a ViT-S/8 trained with DINO. To use it, simply upload an image or use the example image below. Results will show up in a few seconds."
47
+ article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2104.14294'>Emerging Properties in Self-Supervised Vision Transformers</a> | <a href='https://github.com/facebookresearch/dino'>Github Repo</a></p>"
48
+ iface = gr.Interface(fn=func,
49
+ inputs=[gr.inputs.Slider(120, 480, 20, label="resize"), gr.inputs.Video(type=None)],
50
+ outputs="video",
51
+ title=title,
52
+ description=description,
53
+ article=article)
54
+
55
+ iface.launch(debug=True)
dino/eval_copy_detection.py ADDED
@@ -0,0 +1,301 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Facebook, Inc. and its affiliates.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import os
15
+ import sys
16
+ import pickle
17
+ import argparse
18
+
19
+ import torch
20
+ from torch import nn
21
+ import torch.distributed as dist
22
+ import torch.backends.cudnn as cudnn
23
+ from torchvision import models as torchvision_models
24
+ from torchvision import transforms as pth_transforms
25
+ from PIL import Image, ImageFile
26
+ import numpy as np
27
+
28
+ import utils
29
+ import vision_transformer as vits
30
+ from eval_knn import extract_features
31
+
32
+
33
+ class CopydaysDataset():
34
+ def __init__(self, basedir):
35
+ self.basedir = basedir
36
+ self.block_names = (
37
+ ['original', 'strong'] +
38
+ ['jpegqual/%d' % i for i in
39
+ [3, 5, 8, 10, 15, 20, 30, 50, 75]] +
40
+ ['crops/%d' % i for i in
41
+ [10, 15, 20, 30, 40, 50, 60, 70, 80]])
42
+ self.nblocks = len(self.block_names)
43
+
44
+ self.query_blocks = range(self.nblocks)
45
+ self.q_block_sizes = np.ones(self.nblocks, dtype=int) * 157
46
+ self.q_block_sizes[1] = 229
47
+ # search only among originals
48
+ self.database_blocks = [0]
49
+
50
+ def get_block(self, i):
51
+ dirname = self.basedir + '/' + self.block_names[i]
52
+ fnames = [dirname + '/' + fname
53
+ for fname in sorted(os.listdir(dirname))
54
+ if fname.endswith('.jpg')]
55
+ return fnames
56
+
57
+ def get_block_filenames(self, subdir_name):
58
+ dirname = self.basedir + '/' + subdir_name
59
+ return [fname
60
+ for fname in sorted(os.listdir(dirname))
61
+ if fname.endswith('.jpg')]
62
+
63
+ def eval_result(self, ids, distances):
64
+ j0 = 0
65
+ for i in range(self.nblocks):
66
+ j1 = j0 + self.q_block_sizes[i]
67
+ block_name = self.block_names[i]
68
+ I = ids[j0:j1] # block size
69
+ sum_AP = 0
70
+ if block_name != 'strong':
71
+ # 1:1 mapping of files to names
72
+ positives_per_query = [[i] for i in range(j1 - j0)]
73
+ else:
74
+ originals = self.get_block_filenames('original')
75
+ strongs = self.get_block_filenames('strong')
76
+
77
+ # check if prefixes match
78
+ positives_per_query = [
79
+ [j for j, bname in enumerate(originals)
80
+ if bname[:4] == qname[:4]]
81
+ for qname in strongs]
82
+
83
+ for qno, Iline in enumerate(I):
84
+ positives = positives_per_query[qno]
85
+ ranks = []
86
+ for rank, bno in enumerate(Iline):
87
+ if bno in positives:
88
+ ranks.append(rank)
89
+ sum_AP += score_ap_from_ranks_1(ranks, len(positives))
90
+
91
+ print("eval on %s mAP=%.3f" % (
92
+ block_name, sum_AP / (j1 - j0)))
93
+ j0 = j1
94
+
95
+
96
+ # from the Holidays evaluation package
97
+ def score_ap_from_ranks_1(ranks, nres):
98
+ """ Compute the average precision of one search.
99
+ ranks = ordered list of ranks of true positives
100
+ nres = total number of positives in dataset
101
+ """
102
+
103
+ # accumulate trapezoids in PR-plot
104
+ ap = 0.0
105
+
106
+ # All have an x-size of:
107
+ recall_step = 1.0 / nres
108
+
109
+ for ntp, rank in enumerate(ranks):
110
+
111
+ # y-size on left side of trapezoid:
112
+ # ntp = nb of true positives so far
113
+ # rank = nb of retrieved items so far
114
+ if rank == 0:
115
+ precision_0 = 1.0
116
+ else:
117
+ precision_0 = ntp / float(rank)
118
+
119
+ # y-size on right side of trapezoid:
120
+ # ntp and rank are increased by one
121
+ precision_1 = (ntp + 1) / float(rank + 1)
122
+
123
+ ap += (precision_1 + precision_0) * recall_step / 2.0
124
+
125
+ return ap
126
+
127
+
128
+ class ImgListDataset(torch.utils.data.Dataset):
129
+ def __init__(self, img_list, transform=None):
130
+ self.samples = img_list
131
+ self.transform = transform
132
+
133
+ def __getitem__(self, i):
134
+ with open(self.samples[i], 'rb') as f:
135
+ img = Image.open(f)
136
+ img = img.convert('RGB')
137
+ if self.transform is not None:
138
+ img = self.transform(img)
139
+ return img, i
140
+
141
+ def __len__(self):
142
+ return len(self.samples)
143
+
144
+
145
+ def is_image_file(s):
146
+ ext = s.split(".")[-1]
147
+ if ext in ['jpg', 'jpeg', 'png', 'ppm', 'bmp', 'pgm', 'tif', 'tiff', 'webp']:
148
+ return True
149
+ return False
150
+
151
+
152
+ @torch.no_grad()
153
+ def extract_features(image_list, model, args):
154
+ transform = pth_transforms.Compose([
155
+ pth_transforms.Resize((args.imsize, args.imsize), interpolation=3),
156
+ pth_transforms.ToTensor(),
157
+ pth_transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
158
+ ])
159
+ tempdataset = ImgListDataset(image_list, transform=transform)
160
+ data_loader = torch.utils.data.DataLoader(tempdataset, batch_size=args.batch_size_per_gpu,
161
+ num_workers=args.num_workers, drop_last=False,
162
+ sampler=torch.utils.data.DistributedSampler(tempdataset, shuffle=False))
163
+ features = None
164
+ for samples, index in utils.MetricLogger(delimiter=" ").log_every(data_loader, 10):
165
+ samples, index = samples.cuda(non_blocking=True), index.cuda(non_blocking=True)
166
+ feats = model.get_intermediate_layers(samples, n=1)[0].clone()
167
+
168
+ cls_output_token = feats[:, 0, :] # [CLS] token
169
+ # GeM with exponent 4 for output patch tokens
170
+ b, h, w, d = len(samples), int(samples.shape[-2] / model.patch_embed.patch_size), int(samples.shape[-1] / model.patch_embed.patch_size), feats.shape[-1]
171
+ feats = feats[:, 1:, :].reshape(b, h, w, d)
172
+ feats = feats.clamp(min=1e-6).permute(0, 3, 1, 2)
173
+ feats = nn.functional.avg_pool2d(feats.pow(4), (h, w)).pow(1. / 4).reshape(b, -1)
174
+ # concatenate [CLS] token and GeM pooled patch tokens
175
+ feats = torch.cat((cls_output_token, feats), dim=1)
176
+
177
+ # init storage feature matrix
178
+ if dist.get_rank() == 0 and features is None:
179
+ features = torch.zeros(len(data_loader.dataset), feats.shape[-1])
180
+ if args.use_cuda:
181
+ features = features.cuda(non_blocking=True)
182
+
183
+ # get indexes from all processes
184
+ y_all = torch.empty(dist.get_world_size(), index.size(0), dtype=index.dtype, device=index.device)
185
+ y_l = list(y_all.unbind(0))
186
+ y_all_reduce = torch.distributed.all_gather(y_l, index, async_op=True)
187
+ y_all_reduce.wait()
188
+ index_all = torch.cat(y_l)
189
+
190
+ # share features between processes
191
+ feats_all = torch.empty(dist.get_world_size(), feats.size(0), feats.size(1),
192
+ dtype=feats.dtype, device=feats.device)
193
+ output_l = list(feats_all.unbind(0))
194
+ output_all_reduce = torch.distributed.all_gather(output_l, feats, async_op=True)
195
+ output_all_reduce.wait()
196
+
197
+ # update storage feature matrix
198
+ if dist.get_rank() == 0:
199
+ if args.use_cuda:
200
+ features.index_copy_(0, index_all, torch.cat(output_l))
201
+ else:
202
+ features.index_copy_(0, index_all.cpu(), torch.cat(output_l).cpu())
203
+ return features # features is still None for every rank which is not 0 (main)
204
+
205
+
206
+ if __name__ == '__main__':
207
+ parser = argparse.ArgumentParser('Copy detection on Copydays')
208
+ parser.add_argument('--data_path', default='/path/to/copydays/', type=str,
209
+ help="See https://lear.inrialpes.fr/~jegou/data.php#copydays")
210
+ parser.add_argument('--whitening_path', default='/path/to/whitening_data/', type=str,
211
+ help="""Path to directory with images used for computing the whitening operator.
212
+ In our paper, we use 20k random images from YFCC100M.""")
213
+ parser.add_argument('--distractors_path', default='/path/to/distractors/', type=str,
214
+ help="Path to directory with distractors images. In our paper, we use 10k random images from YFCC100M.")
215
+ parser.add_argument('--imsize', default=320, type=int, help='Image size (square image)')
216
+ parser.add_argument('--batch_size_per_gpu', default=16, type=int, help='Per-GPU batch-size')
217
+ parser.add_argument('--pretrained_weights', default='', type=str, help="Path to pretrained weights to evaluate.")
218
+ parser.add_argument('--use_cuda', default=True, type=utils.bool_flag)
219
+ parser.add_argument('--arch', default='vit_base', type=str, help='Architecture')
220
+ parser.add_argument('--patch_size', default=8, type=int, help='Patch resolution of the model.')
221
+ parser.add_argument("--checkpoint_key", default="teacher", type=str,
222
+ help='Key to use in the checkpoint (example: "teacher")')
223
+ parser.add_argument('--num_workers', default=10, type=int, help='Number of data loading workers per GPU.')
224
+ parser.add_argument("--dist_url", default="env://", type=str, help="""url used to set up
225
+ distributed training; see https://pytorch.org/docs/stable/distributed.html""")
226
+ parser.add_argument("--local_rank", default=0, type=int, help="Please ignore and do not set this argument.")
227
+ args = parser.parse_args()
228
+
229
+ utils.init_distributed_mode(args)
230
+ print("git:\n {}\n".format(utils.get_sha()))
231
+ print("\n".join("%s: %s" % (k, str(v)) for k, v in sorted(dict(vars(args)).items())))
232
+ cudnn.benchmark = True
233
+
234
+ # ============ building network ... ============
235
+ if "vit" in args.arch:
236
+ model = vits.__dict__[args.arch](patch_size=args.patch_size, num_classes=0)
237
+ print(f"Model {args.arch} {args.patch_size}x{args.patch_size} built.")
238
+ else:
239
+ print(f"Architecture {args.arch} non supported")
240
+ sys.exit(1)
241
+ if args.use_cuda:
242
+ model.cuda()
243
+ model.eval()
244
+ utils.load_pretrained_weights(model, args.pretrained_weights, args.checkpoint_key, args.arch, args.patch_size)
245
+
246
+ dataset = CopydaysDataset(args.data_path)
247
+
248
+ # ============ Extract features ... ============
249
+ # extract features for queries
250
+ queries = []
251
+ for q in dataset.query_blocks:
252
+ queries.append(extract_features(dataset.get_block(q), model, args))
253
+ if utils.get_rank() == 0:
254
+ queries = torch.cat(queries)
255
+ print(f"Extraction of queries features done. Shape: {queries.shape}")
256
+
257
+ # extract features for database
258
+ database = []
259
+ for b in dataset.database_blocks:
260
+ database.append(extract_features(dataset.get_block(b), model, args))
261
+
262
+ # extract features for distractors
263
+ if os.path.isdir(args.distractors_path):
264
+ print("Using distractors...")
265
+ list_distractors = [os.path.join(args.distractors_path, s) for s in os.listdir(args.distractors_path) if is_image_file(s)]
266
+ database.append(extract_features(list_distractors, model, args))
267
+ if utils.get_rank() == 0:
268
+ database = torch.cat(database)
269
+ print(f"Extraction of database and distractors features done. Shape: {database.shape}")
270
+
271
+ # ============ Whitening ... ============
272
+ if os.path.isdir(args.whitening_path):
273
+ print(f"Extracting features on images from {args.whitening_path} for learning the whitening operator.")
274
+ list_whit = [os.path.join(args.whitening_path, s) for s in os.listdir(args.whitening_path) if is_image_file(s)]
275
+ features_for_whitening = extract_features(list_whit, model, args)
276
+ if utils.get_rank() == 0:
277
+ # center
278
+ mean_feature = torch.mean(features_for_whitening, dim=0)
279
+ database -= mean_feature
280
+ queries -= mean_feature
281
+ pca = utils.PCA(dim=database.shape[-1], whit=0.5)
282
+ # compute covariance
283
+ cov = torch.mm(features_for_whitening.T, features_for_whitening) / features_for_whitening.shape[0]
284
+ pca.train_pca(cov.cpu().numpy())
285
+ database = pca.apply(database)
286
+ queries = pca.apply(queries)
287
+
288
+ # ============ Copy detection ... ============
289
+ if utils.get_rank() == 0:
290
+ # l2 normalize the features
291
+ database = nn.functional.normalize(database, dim=1, p=2)
292
+ queries = nn.functional.normalize(queries, dim=1, p=2)
293
+
294
+ # similarity
295
+ similarity = torch.mm(queries, database.T)
296
+ distances, indices = similarity.topk(20, largest=True, sorted=True)
297
+
298
+ # evaluate
299
+ retrieved = dataset.eval_result(indices, distances)
300
+ dist.barrier()
301
+
dino/eval_image_retrieval.py ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Facebook, Inc. and its affiliates.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import os
15
+ import sys
16
+ import pickle
17
+ import argparse
18
+
19
+ import torch
20
+ from torch import nn
21
+ import torch.distributed as dist
22
+ import torch.backends.cudnn as cudnn
23
+ from torchvision import models as torchvision_models
24
+ from torchvision import transforms as pth_transforms
25
+ from PIL import Image, ImageFile
26
+ import numpy as np
27
+
28
+ import utils
29
+ import vision_transformer as vits
30
+ from eval_knn import extract_features
31
+
32
+
33
+ class OxfordParisDataset(torch.utils.data.Dataset):
34
+ def __init__(self, dir_main, dataset, split, transform=None, imsize=None):
35
+ if dataset not in ['roxford5k', 'rparis6k']:
36
+ raise ValueError('Unknown dataset: {}!'.format(dataset))
37
+
38
+ # loading imlist, qimlist, and gnd, in cfg as a dict
39
+ gnd_fname = os.path.join(dir_main, dataset, 'gnd_{}.pkl'.format(dataset))
40
+ with open(gnd_fname, 'rb') as f:
41
+ cfg = pickle.load(f)
42
+ cfg['gnd_fname'] = gnd_fname
43
+ cfg['ext'] = '.jpg'
44
+ cfg['qext'] = '.jpg'
45
+ cfg['dir_data'] = os.path.join(dir_main, dataset)
46
+ cfg['dir_images'] = os.path.join(cfg['dir_data'], 'jpg')
47
+ cfg['n'] = len(cfg['imlist'])
48
+ cfg['nq'] = len(cfg['qimlist'])
49
+ cfg['im_fname'] = config_imname
50
+ cfg['qim_fname'] = config_qimname
51
+ cfg['dataset'] = dataset
52
+ self.cfg = cfg
53
+
54
+ self.samples = cfg["qimlist"] if split == "query" else cfg["imlist"]
55
+ self.transform = transform
56
+ self.imsize = imsize
57
+
58
+ def __len__(self):
59
+ return len(self.samples)
60
+
61
+ def __getitem__(self, index):
62
+ path = os.path.join(self.cfg["dir_images"], self.samples[index] + ".jpg")
63
+ ImageFile.LOAD_TRUNCATED_IMAGES = True
64
+ with open(path, 'rb') as f:
65
+ img = Image.open(f)
66
+ img = img.convert('RGB')
67
+ if self.imsize is not None:
68
+ img.thumbnail((self.imsize, self.imsize), Image.ANTIALIAS)
69
+ if self.transform is not None:
70
+ img = self.transform(img)
71
+ return img, index
72
+
73
+
74
+ def config_imname(cfg, i):
75
+ return os.path.join(cfg['dir_images'], cfg['imlist'][i] + cfg['ext'])
76
+
77
+
78
+ def config_qimname(cfg, i):
79
+ return os.path.join(cfg['dir_images'], cfg['qimlist'][i] + cfg['qext'])
80
+
81
+
82
+ if __name__ == '__main__':
83
+ parser = argparse.ArgumentParser('Image Retrieval on revisited Paris and Oxford')
84
+ parser.add_argument('--data_path', default='/path/to/revisited_paris_oxford/', type=str)
85
+ parser.add_argument('--dataset', default='roxford5k', type=str, choices=['roxford5k', 'rparis6k'])
86
+ parser.add_argument('--multiscale', default=False, type=utils.bool_flag)
87
+ parser.add_argument('--imsize', default=224, type=int, help='Image size')
88
+ parser.add_argument('--pretrained_weights', default='', type=str, help="Path to pretrained weights to evaluate.")
89
+ parser.add_argument('--use_cuda', default=True, type=utils.bool_flag)
90
+ parser.add_argument('--arch', default='vit_small', type=str, help='Architecture')
91
+ parser.add_argument('--patch_size', default=16, type=int, help='Patch resolution of the model.')
92
+ parser.add_argument("--checkpoint_key", default="teacher", type=str,
93
+ help='Key to use in the checkpoint (example: "teacher")')
94
+ parser.add_argument('--num_workers', default=10, type=int, help='Number of data loading workers per GPU.')
95
+ parser.add_argument("--dist_url", default="env://", type=str, help="""url used to set up
96
+ distributed training; see https://pytorch.org/docs/stable/distributed.html""")
97
+ parser.add_argument("--local_rank", default=0, type=int, help="Please ignore and do not set this argument.")
98
+ args = parser.parse_args()
99
+
100
+ utils.init_distributed_mode(args)
101
+ print("git:\n {}\n".format(utils.get_sha()))
102
+ print("\n".join("%s: %s" % (k, str(v)) for k, v in sorted(dict(vars(args)).items())))
103
+ cudnn.benchmark = True
104
+
105
+ # ============ preparing data ... ============
106
+ transform = pth_transforms.Compose([
107
+ pth_transforms.ToTensor(),
108
+ pth_transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
109
+ ])
110
+ dataset_train = OxfordParisDataset(args.data_path, args.dataset, split="train", transform=transform, imsize=args.imsize)
111
+ dataset_query = OxfordParisDataset(args.data_path, args.dataset, split="query", transform=transform, imsize=args.imsize)
112
+ sampler = torch.utils.data.DistributedSampler(dataset_train, shuffle=False)
113
+ data_loader_train = torch.utils.data.DataLoader(
114
+ dataset_train,
115
+ sampler=sampler,
116
+ batch_size=1,
117
+ num_workers=args.num_workers,
118
+ pin_memory=True,
119
+ drop_last=False,
120
+ )
121
+ data_loader_query = torch.utils.data.DataLoader(
122
+ dataset_query,
123
+ batch_size=1,
124
+ num_workers=args.num_workers,
125
+ pin_memory=True,
126
+ drop_last=False,
127
+ )
128
+ print(f"train: {len(dataset_train)} imgs / query: {len(dataset_query)} imgs")
129
+
130
+ # ============ building network ... ============
131
+ if "vit" in args.arch:
132
+ model = vits.__dict__[args.arch](patch_size=args.patch_size, num_classes=0)
133
+ print(f"Model {args.arch} {args.patch_size}x{args.patch_size} built.")
134
+ elif "xcit" in args.arch:
135
+ model = torch.hub.load('facebookresearch/xcit', args.arch, num_classes=0)
136
+ elif args.arch in torchvision_models.__dict__.keys():
137
+ model = torchvision_models.__dict__[args.arch](num_classes=0)
138
+ else:
139
+ print(f"Architecture {args.arch} non supported")
140
+ sys.exit(1)
141
+ if args.use_cuda:
142
+ model.cuda()
143
+ model.eval()
144
+
145
+ # load pretrained weights
146
+ if os.path.isfile(args.pretrained_weights):
147
+ state_dict = torch.load(args.pretrained_weights, map_location="cpu")
148
+ if args.checkpoint_key is not None and args.checkpoint_key in state_dict:
149
+ print(f"Take key {args.checkpoint_key} in provided checkpoint dict")
150
+ state_dict = state_dict[args.checkpoint_key]
151
+ # remove `module.` prefix
152
+ state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
153
+ # remove `backbone.` prefix induced by multicrop wrapper
154
+ state_dict = {k.replace("backbone.", ""): v for k, v in state_dict.items()}
155
+ msg = model.load_state_dict(state_dict, strict=False)
156
+ print('Pretrained weights found at {} and loaded with msg: {}'.format(args.pretrained_weights, msg))
157
+ elif args.arch == "vit_small" and args.patch_size == 16:
158
+ print("Since no pretrained weights have been provided, we load pretrained DINO weights on Google Landmark v2.")
159
+ model.load_state_dict(torch.hub.load_state_dict_from_url(url="https://dl.fbaipublicfiles.com/dino/dino_vitsmall16_googlelandmark_pretrain/dino_vitsmall16_googlelandmark_pretrain.pth"))
160
+ else:
161
+ print("Warning: We use random weights.")
162
+
163
+ ############################################################################
164
+ # Step 1: extract features
165
+ train_features = extract_features(model, data_loader_train, args.use_cuda, multiscale=args.multiscale)
166
+ query_features = extract_features(model, data_loader_query, args.use_cuda, multiscale=args.multiscale)
167
+
168
+ if utils.get_rank() == 0: # only rank 0 will work from now on
169
+ # normalize features
170
+ train_features = nn.functional.normalize(train_features, dim=1, p=2)
171
+ query_features = nn.functional.normalize(query_features, dim=1, p=2)
172
+
173
+ ############################################################################
174
+ # Step 2: similarity
175
+ sim = torch.mm(train_features, query_features.T)
176
+ ranks = torch.argsort(-sim, dim=0).cpu().numpy()
177
+
178
+ ############################################################################
179
+ # Step 3: evaluate
180
+ gnd = dataset_train.cfg['gnd']
181
+ # evaluate ranks
182
+ ks = [1, 5, 10]
183
+ # search for easy & hard
184
+ gnd_t = []
185
+ for i in range(len(gnd)):
186
+ g = {}
187
+ g['ok'] = np.concatenate([gnd[i]['easy'], gnd[i]['hard']])
188
+ g['junk'] = np.concatenate([gnd[i]['junk']])
189
+ gnd_t.append(g)
190
+ mapM, apsM, mprM, prsM = utils.compute_map(ranks, gnd_t, ks)
191
+ # search for hard
192
+ gnd_t = []
193
+ for i in range(len(gnd)):
194
+ g = {}
195
+ g['ok'] = np.concatenate([gnd[i]['hard']])
196
+ g['junk'] = np.concatenate([gnd[i]['junk'], gnd[i]['easy']])
197
+ gnd_t.append(g)
198
+ mapH, apsH, mprH, prsH = utils.compute_map(ranks, gnd_t, ks)
199
+ print('>> {}: mAP M: {}, H: {}'.format(args.dataset, np.around(mapM*100, decimals=2), np.around(mapH*100, decimals=2)))
200
+ print('>> {}: mP@k{} M: {}, H: {}'.format(args.dataset, np.array(ks), np.around(mprM*100, decimals=2), np.around(mprH*100, decimals=2)))
201
+ dist.barrier()
dino/eval_knn.py ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Facebook, Inc. and its affiliates.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import os
15
+ import sys
16
+ import argparse
17
+
18
+ import torch
19
+ from torch import nn
20
+ import torch.distributed as dist
21
+ import torch.backends.cudnn as cudnn
22
+ from torchvision import datasets
23
+ from torchvision import transforms as pth_transforms
24
+ from torchvision import models as torchvision_models
25
+
26
+ import utils
27
+ import vision_transformer as vits
28
+
29
+
30
+ def extract_feature_pipeline(args):
31
+ # ============ preparing data ... ============
32
+ transform = pth_transforms.Compose([
33
+ pth_transforms.Resize(256, interpolation=3),
34
+ pth_transforms.CenterCrop(224),
35
+ pth_transforms.ToTensor(),
36
+ pth_transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
37
+ ])
38
+ dataset_train = ReturnIndexDataset(os.path.join(args.data_path, "train"), transform=transform)
39
+ dataset_val = ReturnIndexDataset(os.path.join(args.data_path, "val"), transform=transform)
40
+ sampler = torch.utils.data.DistributedSampler(dataset_train, shuffle=False)
41
+ data_loader_train = torch.utils.data.DataLoader(
42
+ dataset_train,
43
+ sampler=sampler,
44
+ batch_size=args.batch_size_per_gpu,
45
+ num_workers=args.num_workers,
46
+ pin_memory=True,
47
+ drop_last=False,
48
+ )
49
+ data_loader_val = torch.utils.data.DataLoader(
50
+ dataset_val,
51
+ batch_size=args.batch_size_per_gpu,
52
+ num_workers=args.num_workers,
53
+ pin_memory=True,
54
+ drop_last=False,
55
+ )
56
+ print(f"Data loaded with {len(dataset_train)} train and {len(dataset_val)} val imgs.")
57
+
58
+ # ============ building network ... ============
59
+ if "vit" in args.arch:
60
+ model = vits.__dict__[args.arch](patch_size=args.patch_size, num_classes=0)
61
+ print(f"Model {args.arch} {args.patch_size}x{args.patch_size} built.")
62
+ elif "xcit" in args.arch:
63
+ model = torch.hub.load('facebookresearch/xcit', args.arch, num_classes=0)
64
+ elif args.arch in torchvision_models.__dict__.keys():
65
+ model = torchvision_models.__dict__[args.arch](num_classes=0)
66
+ else:
67
+ print(f"Architecture {args.arch} non supported")
68
+ sys.exit(1)
69
+ model.cuda()
70
+ utils.load_pretrained_weights(model, args.pretrained_weights, args.checkpoint_key, args.arch, args.patch_size)
71
+ model.eval()
72
+
73
+ # ============ extract features ... ============
74
+ print("Extracting features for train set...")
75
+ train_features = extract_features(model, data_loader_train, args.use_cuda)
76
+ print("Extracting features for val set...")
77
+ test_features = extract_features(model, data_loader_val, args.use_cuda)
78
+
79
+ if utils.get_rank() == 0:
80
+ train_features = nn.functional.normalize(train_features, dim=1, p=2)
81
+ test_features = nn.functional.normalize(test_features, dim=1, p=2)
82
+
83
+ train_labels = torch.tensor([s[-1] for s in dataset_train.samples]).long()
84
+ test_labels = torch.tensor([s[-1] for s in dataset_val.samples]).long()
85
+ # save features and labels
86
+ if args.dump_features and dist.get_rank() == 0:
87
+ torch.save(train_features.cpu(), os.path.join(args.dump_features, "trainfeat.pth"))
88
+ torch.save(test_features.cpu(), os.path.join(args.dump_features, "testfeat.pth"))
89
+ torch.save(train_labels.cpu(), os.path.join(args.dump_features, "trainlabels.pth"))
90
+ torch.save(test_labels.cpu(), os.path.join(args.dump_features, "testlabels.pth"))
91
+ return train_features, test_features, train_labels, test_labels
92
+
93
+
94
+ @torch.no_grad()
95
+ def extract_features(model, data_loader, use_cuda=True, multiscale=False):
96
+ metric_logger = utils.MetricLogger(delimiter=" ")
97
+ features = None
98
+ for samples, index in metric_logger.log_every(data_loader, 10):
99
+ samples = samples.cuda(non_blocking=True)
100
+ index = index.cuda(non_blocking=True)
101
+ if multiscale:
102
+ feats = utils.multi_scale(samples, model)
103
+ else:
104
+ feats = model(samples).clone()
105
+
106
+ # init storage feature matrix
107
+ if dist.get_rank() == 0 and features is None:
108
+ features = torch.zeros(len(data_loader.dataset), feats.shape[-1])
109
+ if use_cuda:
110
+ features = features.cuda(non_blocking=True)
111
+ print(f"Storing features into tensor of shape {features.shape}")
112
+
113
+ # get indexes from all processes
114
+ y_all = torch.empty(dist.get_world_size(), index.size(0), dtype=index.dtype, device=index.device)
115
+ y_l = list(y_all.unbind(0))
116
+ y_all_reduce = torch.distributed.all_gather(y_l, index, async_op=True)
117
+ y_all_reduce.wait()
118
+ index_all = torch.cat(y_l)
119
+
120
+ # share features between processes
121
+ feats_all = torch.empty(
122
+ dist.get_world_size(),
123
+ feats.size(0),
124
+ feats.size(1),
125
+ dtype=feats.dtype,
126
+ device=feats.device,
127
+ )
128
+ output_l = list(feats_all.unbind(0))
129
+ output_all_reduce = torch.distributed.all_gather(output_l, feats, async_op=True)
130
+ output_all_reduce.wait()
131
+
132
+ # update storage feature matrix
133
+ if dist.get_rank() == 0:
134
+ if use_cuda:
135
+ features.index_copy_(0, index_all, torch.cat(output_l))
136
+ else:
137
+ features.index_copy_(0, index_all.cpu(), torch.cat(output_l).cpu())
138
+ return features
139
+
140
+
141
+ @torch.no_grad()
142
+ def knn_classifier(train_features, train_labels, test_features, test_labels, k, T, num_classes=1000):
143
+ top1, top5, total = 0.0, 0.0, 0
144
+ train_features = train_features.t()
145
+ num_test_images, num_chunks = test_labels.shape[0], 100
146
+ imgs_per_chunk = num_test_images // num_chunks
147
+ retrieval_one_hot = torch.zeros(k, num_classes).cuda()
148
+ for idx in range(0, num_test_images, imgs_per_chunk):
149
+ # get the features for test images
150
+ features = test_features[
151
+ idx : min((idx + imgs_per_chunk), num_test_images), :
152
+ ]
153
+ targets = test_labels[idx : min((idx + imgs_per_chunk), num_test_images)]
154
+ batch_size = targets.shape[0]
155
+
156
+ # calculate the dot product and compute top-k neighbors
157
+ similarity = torch.mm(features, train_features)
158
+ distances, indices = similarity.topk(k, largest=True, sorted=True)
159
+ candidates = train_labels.view(1, -1).expand(batch_size, -1)
160
+ retrieved_neighbors = torch.gather(candidates, 1, indices)
161
+
162
+ retrieval_one_hot.resize_(batch_size * k, num_classes).zero_()
163
+ retrieval_one_hot.scatter_(1, retrieved_neighbors.view(-1, 1), 1)
164
+ distances_transform = distances.clone().div_(T).exp_()
165
+ probs = torch.sum(
166
+ torch.mul(
167
+ retrieval_one_hot.view(batch_size, -1, num_classes),
168
+ distances_transform.view(batch_size, -1, 1),
169
+ ),
170
+ 1,
171
+ )
172
+ _, predictions = probs.sort(1, True)
173
+
174
+ # find the predictions that match the target
175
+ correct = predictions.eq(targets.data.view(-1, 1))
176
+ top1 = top1 + correct.narrow(1, 0, 1).sum().item()
177
+ top5 = top5 + correct.narrow(1, 0, min(5, k)).sum().item() # top5 does not make sense if k < 5
178
+ total += targets.size(0)
179
+ top1 = top1 * 100.0 / total
180
+ top5 = top5 * 100.0 / total
181
+ return top1, top5
182
+
183
+
184
+ class ReturnIndexDataset(datasets.ImageFolder):
185
+ def __getitem__(self, idx):
186
+ img, lab = super(ReturnIndexDataset, self).__getitem__(idx)
187
+ return img, idx
188
+
189
+
190
+ if __name__ == '__main__':
191
+ parser = argparse.ArgumentParser('Evaluation with weighted k-NN on ImageNet')
192
+ parser.add_argument('--batch_size_per_gpu', default=128, type=int, help='Per-GPU batch-size')
193
+ parser.add_argument('--nb_knn', default=[10, 20, 100, 200], nargs='+', type=int,
194
+ help='Number of NN to use. 20 is usually working the best.')
195
+ parser.add_argument('--temperature', default=0.07, type=float,
196
+ help='Temperature used in the voting coefficient')
197
+ parser.add_argument('--pretrained_weights', default='', type=str, help="Path to pretrained weights to evaluate.")
198
+ parser.add_argument('--use_cuda', default=True, type=utils.bool_flag,
199
+ help="Should we store the features on GPU? We recommend setting this to False if you encounter OOM")
200
+ parser.add_argument('--arch', default='vit_small', type=str, help='Architecture')
201
+ parser.add_argument('--patch_size', default=16, type=int, help='Patch resolution of the model.')
202
+ parser.add_argument("--checkpoint_key", default="teacher", type=str,
203
+ help='Key to use in the checkpoint (example: "teacher")')
204
+ parser.add_argument('--dump_features', default=None,
205
+ help='Path where to save computed features, empty for no saving')
206
+ parser.add_argument('--load_features', default=None, help="""If the features have
207
+ already been computed, where to find them.""")
208
+ parser.add_argument('--num_workers', default=10, type=int, help='Number of data loading workers per GPU.')
209
+ parser.add_argument("--dist_url", default="env://", type=str, help="""url used to set up
210
+ distributed training; see https://pytorch.org/docs/stable/distributed.html""")
211
+ parser.add_argument("--local_rank", default=0, type=int, help="Please ignore and do not set this argument.")
212
+ parser.add_argument('--data_path', default='/path/to/imagenet/', type=str)
213
+ args = parser.parse_args()
214
+
215
+ utils.init_distributed_mode(args)
216
+ print("git:\n {}\n".format(utils.get_sha()))
217
+ print("\n".join("%s: %s" % (k, str(v)) for k, v in sorted(dict(vars(args)).items())))
218
+ cudnn.benchmark = True
219
+
220
+ if args.load_features:
221
+ train_features = torch.load(os.path.join(args.load_features, "trainfeat.pth"))
222
+ test_features = torch.load(os.path.join(args.load_features, "testfeat.pth"))
223
+ train_labels = torch.load(os.path.join(args.load_features, "trainlabels.pth"))
224
+ test_labels = torch.load(os.path.join(args.load_features, "testlabels.pth"))
225
+ else:
226
+ # need to extract features !
227
+ train_features, test_features, train_labels, test_labels = extract_feature_pipeline(args)
228
+
229
+ if utils.get_rank() == 0:
230
+ if args.use_cuda:
231
+ train_features = train_features.cuda()
232
+ test_features = test_features.cuda()
233
+ train_labels = train_labels.cuda()
234
+ test_labels = test_labels.cuda()
235
+
236
+ print("Features are ready!\nStart the k-NN classification.")
237
+ for k in args.nb_knn:
238
+ top1, top5 = knn_classifier(train_features, train_labels,
239
+ test_features, test_labels, k, args.temperature)
240
+ print(f"{k}-NN classifier result: Top1: {top1}, Top5: {top5}")
241
+ dist.barrier()
dino/eval_linear.py ADDED
@@ -0,0 +1,273 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Facebook, Inc. and its affiliates.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import os
15
+ import argparse
16
+ import json
17
+ from pathlib import Path
18
+
19
+ import torch
20
+ from torch import nn
21
+ import torch.distributed as dist
22
+ import torch.backends.cudnn as cudnn
23
+ from torchvision import datasets
24
+ from torchvision import transforms as pth_transforms
25
+ from torchvision import models as torchvision_models
26
+
27
+ import utils
28
+ import vision_transformer as vits
29
+
30
+
31
+ def eval_linear(args):
32
+ utils.init_distributed_mode(args)
33
+ print("git:\n {}\n".format(utils.get_sha()))
34
+ print("\n".join("%s: %s" % (k, str(v)) for k, v in sorted(dict(vars(args)).items())))
35
+ cudnn.benchmark = True
36
+
37
+ # ============ preparing data ... ============
38
+ train_transform = pth_transforms.Compose([
39
+ pth_transforms.RandomResizedCrop(224),
40
+ pth_transforms.RandomHorizontalFlip(),
41
+ pth_transforms.ToTensor(),
42
+ pth_transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
43
+ ])
44
+ val_transform = pth_transforms.Compose([
45
+ pth_transforms.Resize(256, interpolation=3),
46
+ pth_transforms.CenterCrop(224),
47
+ pth_transforms.ToTensor(),
48
+ pth_transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
49
+ ])
50
+ dataset_train = datasets.ImageFolder(os.path.join(args.data_path, "train"), transform=train_transform)
51
+ dataset_val = datasets.ImageFolder(os.path.join(args.data_path, "val"), transform=val_transform)
52
+ sampler = torch.utils.data.distributed.DistributedSampler(dataset_train)
53
+ train_loader = torch.utils.data.DataLoader(
54
+ dataset_train,
55
+ sampler=sampler,
56
+ batch_size=args.batch_size_per_gpu,
57
+ num_workers=args.num_workers,
58
+ pin_memory=True,
59
+ )
60
+ val_loader = torch.utils.data.DataLoader(
61
+ dataset_val,
62
+ batch_size=args.batch_size_per_gpu,
63
+ num_workers=args.num_workers,
64
+ pin_memory=True,
65
+ )
66
+ print(f"Data loaded with {len(dataset_train)} train and {len(dataset_val)} val imgs.")
67
+
68
+ # ============ building network ... ============
69
+ # if the network is a Vision Transformer (i.e. vit_tiny, vit_small, vit_base)
70
+ if args.arch in vits.__dict__.keys():
71
+ model = vits.__dict__[args.arch](patch_size=args.patch_size, num_classes=0)
72
+ embed_dim = model.embed_dim * (args.n_last_blocks + int(args.avgpool_patchtokens))
73
+ # if the network is a XCiT
74
+ elif "xcit" in args.arch:
75
+ model = torch.hub.load('facebookresearch/xcit', args.arch, num_classes=0)
76
+ embed_dim = model.embed_dim
77
+ # otherwise, we check if the architecture is in torchvision models
78
+ elif args.arch in torchvision_models.__dict__.keys():
79
+ model = torchvision_models.__dict__[args.arch]()
80
+ embed_dim = model.fc.weight.shape[1]
81
+ model.fc = nn.Identity()
82
+ else:
83
+ print(f"Unknow architecture: {args.arch}")
84
+ sys.exit(1)
85
+ model.cuda()
86
+ model.eval()
87
+ # load weights to evaluate
88
+ utils.load_pretrained_weights(model, args.pretrained_weights, args.checkpoint_key, args.arch, args.patch_size)
89
+ print(f"Model {args.arch} built.")
90
+
91
+ linear_classifier = LinearClassifier(embed_dim, num_labels=args.num_labels)
92
+ linear_classifier = linear_classifier.cuda()
93
+ linear_classifier = nn.parallel.DistributedDataParallel(linear_classifier, device_ids=[args.gpu])
94
+
95
+ # set optimizer
96
+ optimizer = torch.optim.SGD(
97
+ linear_classifier.parameters(),
98
+ args.lr * (args.batch_size_per_gpu * utils.get_world_size()) / 256., # linear scaling rule
99
+ momentum=0.9,
100
+ weight_decay=0, # we do not apply weight decay
101
+ )
102
+ scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs, eta_min=0)
103
+
104
+ # Optionally resume from a checkpoint
105
+ to_restore = {"epoch": 0, "best_acc": 0.}
106
+ utils.restart_from_checkpoint(
107
+ os.path.join(args.output_dir, "checkpoint.pth.tar"),
108
+ run_variables=to_restore,
109
+ state_dict=linear_classifier,
110
+ optimizer=optimizer,
111
+ scheduler=scheduler,
112
+ )
113
+ start_epoch = to_restore["epoch"]
114
+ best_acc = to_restore["best_acc"]
115
+
116
+ for epoch in range(start_epoch, args.epochs):
117
+ train_loader.sampler.set_epoch(epoch)
118
+
119
+ train_stats = train(model, linear_classifier, optimizer, train_loader, epoch, args.n_last_blocks, args.avgpool_patchtokens)
120
+ scheduler.step()
121
+
122
+ log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
123
+ 'epoch': epoch}
124
+ if epoch % args.val_freq == 0 or epoch == args.epochs - 1:
125
+ test_stats = validate_network(val_loader, model, linear_classifier, args.n_last_blocks, args.avgpool_patchtokens)
126
+ print(f"Accuracy at epoch {epoch} of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
127
+ best_acc = max(best_acc, test_stats["acc1"])
128
+ print(f'Max accuracy so far: {best_acc:.2f}%')
129
+ log_stats = {**{k: v for k, v in log_stats.items()},
130
+ **{f'test_{k}': v for k, v in test_stats.items()}}
131
+ if utils.is_main_process():
132
+ with (Path(args.output_dir) / "log.txt").open("a") as f:
133
+ f.write(json.dumps(log_stats) + "\n")
134
+ save_dict = {
135
+ "epoch": epoch + 1,
136
+ "state_dict": linear_classifier.state_dict(),
137
+ "optimizer": optimizer.state_dict(),
138
+ "scheduler": scheduler.state_dict(),
139
+ "best_acc": best_acc,
140
+ }
141
+ torch.save(save_dict, os.path.join(args.output_dir, "checkpoint.pth.tar"))
142
+ print("Training of the supervised linear classifier on frozen features completed.\n"
143
+ "Top-1 test accuracy: {acc:.1f}".format(acc=best_acc))
144
+
145
+
146
+ def train(model, linear_classifier, optimizer, loader, epoch, n, avgpool):
147
+ linear_classifier.train()
148
+ metric_logger = utils.MetricLogger(delimiter=" ")
149
+ metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
150
+ header = 'Epoch: [{}]'.format(epoch)
151
+ for (inp, target) in metric_logger.log_every(loader, 20, header):
152
+ # move to gpu
153
+ inp = inp.cuda(non_blocking=True)
154
+ target = target.cuda(non_blocking=True)
155
+
156
+ # forward
157
+ with torch.no_grad():
158
+ if "vit" in args.arch:
159
+ intermediate_output = model.get_intermediate_layers(inp, n)
160
+ output = [x[:, 0] for x in intermediate_output]
161
+ if avgpool:
162
+ output.append(torch.mean(intermediate_output[-1][:, 1:], dim=1))
163
+ output = torch.cat(output, dim=-1)
164
+ else:
165
+ output = model(inp)
166
+ output = linear_classifier(output)
167
+
168
+ # compute cross entropy loss
169
+ loss = nn.CrossEntropyLoss()(output, target)
170
+
171
+ # compute the gradients
172
+ optimizer.zero_grad()
173
+ loss.backward()
174
+
175
+ # step
176
+ optimizer.step()
177
+
178
+ # log
179
+ torch.cuda.synchronize()
180
+ metric_logger.update(loss=loss.item())
181
+ metric_logger.update(lr=optimizer.param_groups[0]["lr"])
182
+ # gather the stats from all processes
183
+ metric_logger.synchronize_between_processes()
184
+ print("Averaged stats:", metric_logger)
185
+ return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
186
+
187
+
188
+ @torch.no_grad()
189
+ def validate_network(val_loader, model, linear_classifier, n, avgpool):
190
+ linear_classifier.eval()
191
+ metric_logger = utils.MetricLogger(delimiter=" ")
192
+ header = 'Test:'
193
+ for inp, target in metric_logger.log_every(val_loader, 20, header):
194
+ # move to gpu
195
+ inp = inp.cuda(non_blocking=True)
196
+ target = target.cuda(non_blocking=True)
197
+
198
+ # forward
199
+ with torch.no_grad():
200
+ if "vit" in args.arch:
201
+ intermediate_output = model.get_intermediate_layers(inp, n)
202
+ output = [x[:, 0] for x in intermediate_output]
203
+ if avgpool:
204
+ output.append(torch.mean(intermediate_output[-1][:, 1:], dim=1))
205
+ output = torch.cat(output, dim=-1)
206
+ else:
207
+ output = model(inp)
208
+ output = linear_classifier(output)
209
+ loss = nn.CrossEntropyLoss()(output, target)
210
+
211
+ if linear_classifier.module.num_labels >= 5:
212
+ acc1, acc5 = utils.accuracy(output, target, topk=(1, 5))
213
+ else:
214
+ acc1, = utils.accuracy(output, target, topk=(1,))
215
+
216
+ batch_size = inp.shape[0]
217
+ metric_logger.update(loss=loss.item())
218
+ metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
219
+ if linear_classifier.module.num_labels >= 5:
220
+ metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
221
+ if linear_classifier.module.num_labels >= 5:
222
+ print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}'
223
+ .format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss))
224
+ else:
225
+ print('* Acc@1 {top1.global_avg:.3f} loss {losses.global_avg:.3f}'
226
+ .format(top1=metric_logger.acc1, losses=metric_logger.loss))
227
+ return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
228
+
229
+
230
+ class LinearClassifier(nn.Module):
231
+ """Linear layer to train on top of frozen features"""
232
+ def __init__(self, dim, num_labels=1000):
233
+ super(LinearClassifier, self).__init__()
234
+ self.num_labels = num_labels
235
+ self.linear = nn.Linear(dim, num_labels)
236
+ self.linear.weight.data.normal_(mean=0.0, std=0.01)
237
+ self.linear.bias.data.zero_()
238
+
239
+ def forward(self, x):
240
+ # flatten
241
+ x = x.view(x.size(0), -1)
242
+
243
+ # linear layer
244
+ return self.linear(x)
245
+
246
+
247
+ if __name__ == '__main__':
248
+ parser = argparse.ArgumentParser('Evaluation with linear classification on ImageNet')
249
+ parser.add_argument('--n_last_blocks', default=4, type=int, help="""Concatenate [CLS] tokens
250
+ for the `n` last blocks. We use `n=4` when evaluating ViT-Small and `n=1` with ViT-Base.""")
251
+ parser.add_argument('--avgpool_patchtokens', default=False, type=utils.bool_flag,
252
+ help="""Whether ot not to concatenate the global average pooled features to the [CLS] token.
253
+ We typically set this to False for ViT-Small and to True with ViT-Base.""")
254
+ parser.add_argument('--arch', default='vit_small', type=str, help='Architecture')
255
+ parser.add_argument('--patch_size', default=16, type=int, help='Patch resolution of the model.')
256
+ parser.add_argument('--pretrained_weights', default='', type=str, help="Path to pretrained weights to evaluate.")
257
+ parser.add_argument("--checkpoint_key", default="teacher", type=str, help='Key to use in the checkpoint (example: "teacher")')
258
+ parser.add_argument('--epochs', default=100, type=int, help='Number of epochs of training.')
259
+ parser.add_argument("--lr", default=0.001, type=float, help="""Learning rate at the beginning of
260
+ training (highest LR used during training). The learning rate is linearly scaled
261
+ with the batch size, and specified here for a reference batch size of 256.
262
+ We recommend tweaking the LR depending on the checkpoint evaluated.""")
263
+ parser.add_argument('--batch_size_per_gpu', default=128, type=int, help='Per-GPU batch-size')
264
+ parser.add_argument("--dist_url", default="env://", type=str, help="""url used to set up
265
+ distributed training; see https://pytorch.org/docs/stable/distributed.html""")
266
+ parser.add_argument("--local_rank", default=0, type=int, help="Please ignore and do not set this argument.")
267
+ parser.add_argument('--data_path', default='/path/to/imagenet/', type=str)
268
+ parser.add_argument('--num_workers', default=10, type=int, help='Number of data loading workers per GPU.')
269
+ parser.add_argument('--val_freq', default=1, type=int, help="Epoch frequency for validation.")
270
+ parser.add_argument('--output_dir', default=".", help='Path to save logs and checkpoints')
271
+ parser.add_argument('--num_labels', default=1000, type=int, help='Number of labels for linear classifier')
272
+ args = parser.parse_args()
273
+ eval_linear(args)
dino/eval_video_segmentation.py ADDED
@@ -0,0 +1,292 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Facebook, Inc. and its affiliates.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """
15
+ Some parts are taken from https://github.com/Liusifei/UVC
16
+ """
17
+ import os
18
+ import copy
19
+ import glob
20
+ import queue
21
+ from urllib.request import urlopen
22
+ import argparse
23
+ import numpy as np
24
+ from tqdm import tqdm
25
+
26
+ import cv2
27
+ import torch
28
+ import torch.nn as nn
29
+ from torch.nn import functional as F
30
+ from PIL import Image
31
+ from torchvision import transforms
32
+
33
+ import utils
34
+ import vision_transformer as vits
35
+
36
+
37
+ @torch.no_grad()
38
+ def eval_video_tracking_davis(args, model, frame_list, video_dir, first_seg, seg_ori, color_palette):
39
+ """
40
+ Evaluate tracking on a video given first frame & segmentation
41
+ """
42
+ video_folder = os.path.join(args.output_dir, video_dir.split('/')[-1])
43
+ os.makedirs(video_folder, exist_ok=True)
44
+
45
+ # The queue stores the n preceeding frames
46
+ que = queue.Queue(args.n_last_frames)
47
+
48
+ # first frame
49
+ frame1, ori_h, ori_w = read_frame(frame_list[0])
50
+ # extract first frame feature
51
+ frame1_feat = extract_feature(model, frame1).T # dim x h*w
52
+
53
+ # saving first segmentation
54
+ out_path = os.path.join(video_folder, "00000.png")
55
+ imwrite_indexed(out_path, seg_ori, color_palette)
56
+ mask_neighborhood = None
57
+ for cnt in tqdm(range(1, len(frame_list))):
58
+ frame_tar = read_frame(frame_list[cnt])[0]
59
+
60
+ # we use the first segmentation and the n previous ones
61
+ used_frame_feats = [frame1_feat] + [pair[0] for pair in list(que.queue)]
62
+ used_segs = [first_seg] + [pair[1] for pair in list(que.queue)]
63
+
64
+ frame_tar_avg, feat_tar, mask_neighborhood = label_propagation(args, model, frame_tar, used_frame_feats, used_segs, mask_neighborhood)
65
+
66
+ # pop out oldest frame if neccessary
67
+ if que.qsize() == args.n_last_frames:
68
+ que.get()
69
+ # push current results into queue
70
+ seg = copy.deepcopy(frame_tar_avg)
71
+ que.put([feat_tar, seg])
72
+
73
+ # upsampling & argmax
74
+ frame_tar_avg = F.interpolate(frame_tar_avg, scale_factor=args.patch_size, mode='bilinear', align_corners=False, recompute_scale_factor=False)[0]
75
+ frame_tar_avg = norm_mask(frame_tar_avg)
76
+ _, frame_tar_seg = torch.max(frame_tar_avg, dim=0)
77
+
78
+ # saving to disk
79
+ frame_tar_seg = np.array(frame_tar_seg.squeeze().cpu(), dtype=np.uint8)
80
+ frame_tar_seg = np.array(Image.fromarray(frame_tar_seg).resize((ori_w, ori_h), 0))
81
+ frame_nm = frame_list[cnt].split('/')[-1].replace(".jpg", ".png")
82
+ imwrite_indexed(os.path.join(video_folder, frame_nm), frame_tar_seg, color_palette)
83
+
84
+
85
+ def restrict_neighborhood(h, w):
86
+ # We restrict the set of source nodes considered to a spatial neighborhood of the query node (i.e. ``local attention'')
87
+ mask = torch.zeros(h, w, h, w)
88
+ for i in range(h):
89
+ for j in range(w):
90
+ for p in range(2 * args.size_mask_neighborhood + 1):
91
+ for q in range(2 * args.size_mask_neighborhood + 1):
92
+ if i - args.size_mask_neighborhood + p < 0 or i - args.size_mask_neighborhood + p >= h:
93
+ continue
94
+ if j - args.size_mask_neighborhood + q < 0 or j - args.size_mask_neighborhood + q >= w:
95
+ continue
96
+ mask[i, j, i - args.size_mask_neighborhood + p, j - args.size_mask_neighborhood + q] = 1
97
+
98
+ mask = mask.reshape(h * w, h * w)
99
+ return mask.cuda(non_blocking=True)
100
+
101
+
102
+ def norm_mask(mask):
103
+ c, h, w = mask.size()
104
+ for cnt in range(c):
105
+ mask_cnt = mask[cnt,:,:]
106
+ if(mask_cnt.max() > 0):
107
+ mask_cnt = (mask_cnt - mask_cnt.min())
108
+ mask_cnt = mask_cnt/mask_cnt.max()
109
+ mask[cnt,:,:] = mask_cnt
110
+ return mask
111
+
112
+
113
+ def label_propagation(args, model, frame_tar, list_frame_feats, list_segs, mask_neighborhood=None):
114
+ """
115
+ propagate segs of frames in list_frames to frame_tar
116
+ """
117
+ ## we only need to extract feature of the target frame
118
+ feat_tar, h, w = extract_feature(model, frame_tar, return_h_w=True)
119
+
120
+ return_feat_tar = feat_tar.T # dim x h*w
121
+
122
+ ncontext = len(list_frame_feats)
123
+ feat_sources = torch.stack(list_frame_feats) # nmb_context x dim x h*w
124
+
125
+ feat_tar = F.normalize(feat_tar, dim=1, p=2)
126
+ feat_sources = F.normalize(feat_sources, dim=1, p=2)
127
+
128
+ feat_tar = feat_tar.unsqueeze(0).repeat(ncontext, 1, 1)
129
+ aff = torch.exp(torch.bmm(feat_tar, feat_sources) / 0.1) # nmb_context x h*w (tar: query) x h*w (source: keys)
130
+
131
+ if args.size_mask_neighborhood > 0:
132
+ if mask_neighborhood is None:
133
+ mask_neighborhood = restrict_neighborhood(h, w)
134
+ mask_neighborhood = mask_neighborhood.unsqueeze(0).repeat(ncontext, 1, 1)
135
+ aff *= mask_neighborhood
136
+
137
+ aff = aff.transpose(2, 1).reshape(-1, h * w) # nmb_context*h*w (source: keys) x h*w (tar: queries)
138
+ tk_val, _ = torch.topk(aff, dim=0, k=args.topk)
139
+ tk_val_min, _ = torch.min(tk_val, dim=0)
140
+ aff[aff < tk_val_min] = 0
141
+
142
+ aff = aff / torch.sum(aff, keepdim=True, axis=0)
143
+
144
+ list_segs = [s.cuda() for s in list_segs]
145
+ segs = torch.cat(list_segs)
146
+ nmb_context, C, h, w = segs.shape
147
+ segs = segs.reshape(nmb_context, C, -1).transpose(2, 1).reshape(-1, C).T # C x nmb_context*h*w
148
+ seg_tar = torch.mm(segs, aff)
149
+ seg_tar = seg_tar.reshape(1, C, h, w)
150
+ return seg_tar, return_feat_tar, mask_neighborhood
151
+
152
+
153
+ def extract_feature(model, frame, return_h_w=False):
154
+ """Extract one frame feature everytime."""
155
+ out = model.get_intermediate_layers(frame.unsqueeze(0).cuda(), n=1)[0]
156
+ out = out[:, 1:, :] # we discard the [CLS] token
157
+ h, w = int(frame.shape[1] / model.patch_embed.patch_size), int(frame.shape[2] / model.patch_embed.patch_size)
158
+ dim = out.shape[-1]
159
+ out = out[0].reshape(h, w, dim)
160
+ out = out.reshape(-1, dim)
161
+ if return_h_w:
162
+ return out, h, w
163
+ return out
164
+
165
+
166
+ def imwrite_indexed(filename, array, color_palette):
167
+ """ Save indexed png for DAVIS."""
168
+ if np.atleast_3d(array).shape[2] != 1:
169
+ raise Exception("Saving indexed PNGs requires 2D array.")
170
+
171
+ im = Image.fromarray(array)
172
+ im.putpalette(color_palette.ravel())
173
+ im.save(filename, format='PNG')
174
+
175
+
176
+ def to_one_hot(y_tensor, n_dims=None):
177
+ """
178
+ Take integer y (tensor or variable) with n dims &
179
+ convert it to 1-hot representation with n+1 dims.
180
+ """
181
+ if(n_dims is None):
182
+ n_dims = int(y_tensor.max()+ 1)
183
+ _,h,w = y_tensor.size()
184
+ y_tensor = y_tensor.type(torch.LongTensor).view(-1, 1)
185
+ n_dims = n_dims if n_dims is not None else int(torch.max(y_tensor)) + 1
186
+ y_one_hot = torch.zeros(y_tensor.size()[0], n_dims).scatter_(1, y_tensor, 1)
187
+ y_one_hot = y_one_hot.view(h,w,n_dims)
188
+ return y_one_hot.permute(2, 0, 1).unsqueeze(0)
189
+
190
+
191
+ def read_frame_list(video_dir):
192
+ frame_list = [img for img in glob.glob(os.path.join(video_dir,"*.jpg"))]
193
+ frame_list = sorted(frame_list)
194
+ return frame_list
195
+
196
+
197
+ def read_frame(frame_dir, scale_size=[480]):
198
+ """
199
+ read a single frame & preprocess
200
+ """
201
+ img = cv2.imread(frame_dir)
202
+ ori_h, ori_w, _ = img.shape
203
+ if len(scale_size) == 1:
204
+ if(ori_h > ori_w):
205
+ tw = scale_size[0]
206
+ th = (tw * ori_h) / ori_w
207
+ th = int((th // 64) * 64)
208
+ else:
209
+ th = scale_size[0]
210
+ tw = (th * ori_w) / ori_h
211
+ tw = int((tw // 64) * 64)
212
+ else:
213
+ th, tw = scale_size
214
+ img = cv2.resize(img, (tw, th))
215
+ img = img.astype(np.float32)
216
+ img = img / 255.0
217
+ img = img[:, :, ::-1]
218
+ img = np.transpose(img.copy(), (2, 0, 1))
219
+ img = torch.from_numpy(img).float()
220
+ img = color_normalize(img)
221
+ return img, ori_h, ori_w
222
+
223
+
224
+ def read_seg(seg_dir, factor, scale_size=[480]):
225
+ seg = Image.open(seg_dir)
226
+ _w, _h = seg.size # note PIL.Image.Image's size is (w, h)
227
+ if len(scale_size) == 1:
228
+ if(_w > _h):
229
+ _th = scale_size[0]
230
+ _tw = (_th * _w) / _h
231
+ _tw = int((_tw // 64) * 64)
232
+ else:
233
+ _tw = scale_size[0]
234
+ _th = (_tw * _h) / _w
235
+ _th = int((_th // 64) * 64)
236
+ else:
237
+ _th = scale_size[1]
238
+ _tw = scale_size[0]
239
+ small_seg = np.array(seg.resize((_tw // factor, _th // factor), 0))
240
+ small_seg = torch.from_numpy(small_seg.copy()).contiguous().float().unsqueeze(0)
241
+ return to_one_hot(small_seg), np.asarray(seg)
242
+
243
+
244
+ def color_normalize(x, mean=[0.485, 0.456, 0.406], std=[0.228, 0.224, 0.225]):
245
+ for t, m, s in zip(x, mean, std):
246
+ t.sub_(m)
247
+ t.div_(s)
248
+ return x
249
+
250
+
251
+ if __name__ == '__main__':
252
+ parser = argparse.ArgumentParser('Evaluation with video object segmentation on DAVIS 2017')
253
+ parser.add_argument('--pretrained_weights', default='', type=str, help="Path to pretrained weights to evaluate.")
254
+ parser.add_argument('--arch', default='vit_small', type=str,
255
+ choices=['vit_tiny', 'vit_small', 'vit_base'], help='Architecture (support only ViT atm).')
256
+ parser.add_argument('--patch_size', default=16, type=int, help='Patch resolution of the model.')
257
+ parser.add_argument("--checkpoint_key", default="teacher", type=str, help='Key to use in the checkpoint (example: "teacher")')
258
+ parser.add_argument('--output_dir', default=".", help='Path where to save segmentations')
259
+ parser.add_argument('--data_path', default='/path/to/davis/', type=str)
260
+ parser.add_argument("--n_last_frames", type=int, default=7, help="number of preceeding frames")
261
+ parser.add_argument("--size_mask_neighborhood", default=12, type=int,
262
+ help="We restrict the set of source nodes considered to a spatial neighborhood of the query node")
263
+ parser.add_argument("--topk", type=int, default=5, help="accumulate label from top k neighbors")
264
+ parser.add_argument("--bs", type=int, default=6, help="Batch size, try to reduce if OOM")
265
+ args = parser.parse_args()
266
+
267
+ print("git:\n {}\n".format(utils.get_sha()))
268
+ print("\n".join("%s: %s" % (k, str(v)) for k, v in sorted(dict(vars(args)).items())))
269
+
270
+ # building network
271
+ model = vits.__dict__[args.arch](patch_size=args.patch_size, num_classes=0)
272
+ print(f"Model {args.arch} {args.patch_size}x{args.patch_size} built.")
273
+ model.cuda()
274
+ utils.load_pretrained_weights(model, args.pretrained_weights, args.checkpoint_key, args.arch, args.patch_size)
275
+ for param in model.parameters():
276
+ param.requires_grad = False
277
+ model.eval()
278
+
279
+ color_palette = []
280
+ for line in urlopen("https://raw.githubusercontent.com/Liusifei/UVC/master/libs/data/palette.txt"):
281
+ color_palette.append([int(i) for i in line.decode("utf-8").split('\n')[0].split(" ")])
282
+ color_palette = np.asarray(color_palette, dtype=np.uint8).reshape(-1,3)
283
+
284
+ video_list = open(os.path.join(args.data_path, "ImageSets/2017/val.txt")).readlines()
285
+ for i, video_name in enumerate(video_list):
286
+ video_name = video_name.strip()
287
+ print(f'[{i}/{len(video_list)}] Begin to segmentate video {video_name}.')
288
+ video_dir = os.path.join(args.data_path, "JPEGImages/480p/", video_name)
289
+ frame_list = read_frame_list(video_dir)
290
+ seg_path = frame_list[0].replace("JPEGImages", "Annotations").replace("jpg", "png")
291
+ first_seg, seg_ori = read_seg(seg_path, args.patch_size)
292
+ eval_video_tracking_davis(args, model, frame_list, video_dir, first_seg, seg_ori, color_palette)
dino/hubconf.py ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Facebook, Inc. and its affiliates.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import torch
15
+ from torchvision.models.resnet import resnet50
16
+
17
+ import vision_transformer as vits
18
+
19
+ dependencies = ["torch", "torchvision"]
20
+
21
+
22
+ def dino_vits16(pretrained=True, **kwargs):
23
+ """
24
+ ViT-Small/16x16 pre-trained with DINO.
25
+ Achieves 74.5% top-1 accuracy on ImageNet with k-NN classification.
26
+ """
27
+ model = vits.__dict__["vit_small"](patch_size=16, num_classes=0, **kwargs)
28
+ if pretrained:
29
+ state_dict = torch.hub.load_state_dict_from_url(
30
+ url="https://dl.fbaipublicfiles.com/dino/dino_deitsmall16_pretrain/dino_deitsmall16_pretrain.pth",
31
+ map_location="cpu",
32
+ )
33
+ model.load_state_dict(state_dict, strict=True)
34
+ return model
35
+
36
+
37
+ def dino_vits8(pretrained=True, **kwargs):
38
+ """
39
+ ViT-Small/8x8 pre-trained with DINO.
40
+ Achieves 78.3% top-1 accuracy on ImageNet with k-NN classification.
41
+ """
42
+ model = vits.__dict__["vit_small"](patch_size=8, num_classes=0, **kwargs)
43
+ if pretrained:
44
+ state_dict = torch.hub.load_state_dict_from_url(
45
+ url="https://dl.fbaipublicfiles.com/dino/dino_deitsmall8_pretrain/dino_deitsmall8_pretrain.pth",
46
+ map_location="cpu",
47
+ )
48
+ model.load_state_dict(state_dict, strict=True)
49
+ return model
50
+
51
+
52
+ def dino_vitb16(pretrained=True, **kwargs):
53
+ """
54
+ ViT-Base/16x16 pre-trained with DINO.
55
+ Achieves 76.1% top-1 accuracy on ImageNet with k-NN classification.
56
+ """
57
+ model = vits.__dict__["vit_base"](patch_size=16, num_classes=0, **kwargs)
58
+ if pretrained:
59
+ state_dict = torch.hub.load_state_dict_from_url(
60
+ url="https://dl.fbaipublicfiles.com/dino/dino_vitbase16_pretrain/dino_vitbase16_pretrain.pth",
61
+ map_location="cpu",
62
+ )
63
+ model.load_state_dict(state_dict, strict=True)
64
+ return model
65
+
66
+
67
+ def dino_vitb8(pretrained=True, **kwargs):
68
+ """
69
+ ViT-Base/8x8 pre-trained with DINO.
70
+ Achieves 77.4% top-1 accuracy on ImageNet with k-NN classification.
71
+ """
72
+ model = vits.__dict__["vit_base"](patch_size=8, num_classes=0, **kwargs)
73
+ if pretrained:
74
+ state_dict = torch.hub.load_state_dict_from_url(
75
+ url="https://dl.fbaipublicfiles.com/dino/dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth",
76
+ map_location="cpu",
77
+ )
78
+ model.load_state_dict(state_dict, strict=True)
79
+ return model
80
+
81
+
82
+ def dino_resnet50(pretrained=True, **kwargs):
83
+ """
84
+ ResNet-50 pre-trained with DINO.
85
+ Achieves 75.3% top-1 accuracy on ImageNet linear evaluation benchmark (requires to train `fc`).
86
+ """
87
+ model = resnet50(pretrained=False, **kwargs)
88
+ model.fc = torch.nn.Identity()
89
+ if pretrained:
90
+ state_dict = torch.hub.load_state_dict_from_url(
91
+ url="https://dl.fbaipublicfiles.com/dino/dino_resnet50_pretrain/dino_resnet50_pretrain.pth",
92
+ map_location="cpu",
93
+ )
94
+ model.load_state_dict(state_dict, strict=False)
95
+ return model
96
+
97
+
98
+ def dino_xcit_small_12_p16(pretrained=True, **kwargs):
99
+ """
100
+ XCiT-Small-12/16 pre-trained with DINO.
101
+ """
102
+ model = torch.hub.load('facebookresearch/xcit', "xcit_small_12_p16", num_classes=0, **kwargs)
103
+ if pretrained:
104
+ state_dict = torch.hub.load_state_dict_from_url(
105
+ url="https://dl.fbaipublicfiles.com/dino/dino_xcit_small_12_p16_pretrain/dino_xcit_small_12_p16_pretrain.pth",
106
+ map_location="cpu",
107
+ )
108
+ model.load_state_dict(state_dict, strict=True)
109
+ return model
110
+
111
+
112
+ def dino_xcit_small_12_p8(pretrained=True, **kwargs):
113
+ """
114
+ XCiT-Small-12/8 pre-trained with DINO.
115
+ """
116
+ model = torch.hub.load('facebookresearch/xcit', "xcit_small_12_p8", num_classes=0, **kwargs)
117
+ if pretrained:
118
+ state_dict = torch.hub.load_state_dict_from_url(
119
+ url="https://dl.fbaipublicfiles.com/dino/dino_xcit_small_12_p8_pretrain/dino_xcit_small_12_p8_pretrain.pth",
120
+ map_location="cpu",
121
+ )
122
+ model.load_state_dict(state_dict, strict=True)
123
+ return model
124
+
125
+
126
+ def dino_xcit_medium_24_p16(pretrained=True, **kwargs):
127
+ """
128
+ XCiT-Medium-24/16 pre-trained with DINO.
129
+ """
130
+ model = torch.hub.load('facebookresearch/xcit', "xcit_medium_24_p16", num_classes=0, **kwargs)
131
+ if pretrained:
132
+ state_dict = torch.hub.load_state_dict_from_url(
133
+ url="https://dl.fbaipublicfiles.com/dino/dino_xcit_medium_24_p16_pretrain/dino_xcit_medium_24_p16_pretrain.pth",
134
+ map_location="cpu",
135
+ )
136
+ model.load_state_dict(state_dict, strict=True)
137
+ return model
138
+
139
+
140
+ def dino_xcit_medium_24_p8(pretrained=True, **kwargs):
141
+ """
142
+ XCiT-Medium-24/8 pre-trained with DINO.
143
+ """
144
+ model = torch.hub.load('facebookresearch/xcit', "xcit_medium_24_p8", num_classes=0, **kwargs)
145
+ if pretrained:
146
+ state_dict = torch.hub.load_state_dict_from_url(
147
+ url="https://dl.fbaipublicfiles.com/dino/dino_xcit_medium_24_p8_pretrain/dino_xcit_medium_24_p8_pretrain.pth",
148
+ map_location="cpu",
149
+ )
150
+ model.load_state_dict(state_dict, strict=True)
151
+ return model
dino/main_dino.py ADDED
@@ -0,0 +1,471 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Facebook, Inc. and its affiliates.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import argparse
15
+ import os
16
+ import sys
17
+ import datetime
18
+ import time
19
+ import math
20
+ import json
21
+ from pathlib import Path
22
+
23
+ import numpy as np
24
+ from PIL import Image
25
+ import torch
26
+ import torch.nn as nn
27
+ import torch.distributed as dist
28
+ import torch.backends.cudnn as cudnn
29
+ import torch.nn.functional as F
30
+ from torchvision import datasets, transforms
31
+ from torchvision import models as torchvision_models
32
+
33
+ import utils
34
+ import vision_transformer as vits
35
+ from vision_transformer import DINOHead
36
+
37
+ torchvision_archs = sorted(name for name in torchvision_models.__dict__
38
+ if name.islower() and not name.startswith("__")
39
+ and callable(torchvision_models.__dict__[name]))
40
+
41
+ def get_args_parser():
42
+ parser = argparse.ArgumentParser('DINO', add_help=False)
43
+
44
+ # Model parameters
45
+ parser.add_argument('--arch', default='vit_small', type=str,
46
+ choices=['vit_tiny', 'vit_small', 'vit_base', 'xcit', 'deit_tiny', 'deit_small'] \
47
+ + torchvision_archs + torch.hub.list("facebookresearch/xcit"),
48
+ help="""Name of architecture to train. For quick experiments with ViTs,
49
+ we recommend using vit_tiny or vit_small.""")
50
+ parser.add_argument('--patch_size', default=16, type=int, help="""Size in pixels
51
+ of input square patches - default 16 (for 16x16 patches). Using smaller
52
+ values leads to better performance but requires more memory. Applies only
53
+ for ViTs (vit_tiny, vit_small and vit_base). If <16, we recommend disabling
54
+ mixed precision training (--use_fp16 false) to avoid unstabilities.""")
55
+ parser.add_argument('--out_dim', default=65536, type=int, help="""Dimensionality of
56
+ the DINO head output. For complex and large datasets large values (like 65k) work well.""")
57
+ parser.add_argument('--norm_last_layer', default=True, type=utils.bool_flag,
58
+ help="""Whether or not to weight normalize the last layer of the DINO head.
59
+ Not normalizing leads to better performance but can make the training unstable.
60
+ In our experiments, we typically set this paramater to False with vit_small and True with vit_base.""")
61
+ parser.add_argument('--momentum_teacher', default=0.996, type=float, help="""Base EMA
62
+ parameter for teacher update. The value is increased to 1 during training with cosine schedule.
63
+ We recommend setting a higher value with small batches: for example use 0.9995 with batch size of 256.""")
64
+ parser.add_argument('--use_bn_in_head', default=False, type=utils.bool_flag,
65
+ help="Whether to use batch normalizations in projection head (Default: False)")
66
+
67
+ # Temperature teacher parameters
68
+ parser.add_argument('--warmup_teacher_temp', default=0.04, type=float,
69
+ help="""Initial value for the teacher temperature: 0.04 works well in most cases.
70
+ Try decreasing it if the training loss does not decrease.""")
71
+ parser.add_argument('--teacher_temp', default=0.04, type=float, help="""Final value (after linear warmup)
72
+ of the teacher temperature. For most experiments, anything above 0.07 is unstable. We recommend
73
+ starting with the default value of 0.04 and increase this slightly if needed.""")
74
+ parser.add_argument('--warmup_teacher_temp_epochs', default=0, type=int,
75
+ help='Number of warmup epochs for the teacher temperature (Default: 30).')
76
+
77
+ # Training/Optimization parameters
78
+ parser.add_argument('--use_fp16', type=utils.bool_flag, default=True, help="""Whether or not
79
+ to use half precision for training. Improves training time and memory requirements,
80
+ but can provoke instability and slight decay of performance. We recommend disabling
81
+ mixed precision if the loss is unstable, if reducing the patch size or if training with bigger ViTs.""")
82
+ parser.add_argument('--weight_decay', type=float, default=0.04, help="""Initial value of the
83
+ weight decay. With ViT, a smaller value at the beginning of training works well.""")
84
+ parser.add_argument('--weight_decay_end', type=float, default=0.4, help="""Final value of the
85
+ weight decay. We use a cosine schedule for WD and using a larger decay by
86
+ the end of training improves performance for ViTs.""")
87
+ parser.add_argument('--clip_grad', type=float, default=3.0, help="""Maximal parameter
88
+ gradient norm if using gradient clipping. Clipping with norm .3 ~ 1.0 can
89
+ help optimization for larger ViT architectures. 0 for disabling.""")
90
+ parser.add_argument('--batch_size_per_gpu', default=64, type=int,
91
+ help='Per-GPU batch-size : number of distinct images loaded on one GPU.')
92
+ parser.add_argument('--epochs', default=100, type=int, help='Number of epochs of training.')
93
+ parser.add_argument('--freeze_last_layer', default=1, type=int, help="""Number of epochs
94
+ during which we keep the output layer fixed. Typically doing so during
95
+ the first epoch helps training. Try increasing this value if the loss does not decrease.""")
96
+ parser.add_argument("--lr", default=0.0005, type=float, help="""Learning rate at the end of
97
+ linear warmup (highest LR used during training). The learning rate is linearly scaled
98
+ with the batch size, and specified here for a reference batch size of 256.""")
99
+ parser.add_argument("--warmup_epochs", default=10, type=int,
100
+ help="Number of epochs for the linear learning-rate warm up.")
101
+ parser.add_argument('--min_lr', type=float, default=1e-6, help="""Target LR at the
102
+ end of optimization. We use a cosine LR schedule with linear warmup.""")
103
+ parser.add_argument('--optimizer', default='adamw', type=str,
104
+ choices=['adamw', 'sgd', 'lars'], help="""Type of optimizer. We recommend using adamw with ViTs.""")
105
+ parser.add_argument('--drop_path_rate', type=float, default=0.1, help="stochastic depth rate")
106
+
107
+ # Multi-crop parameters
108
+ parser.add_argument('--global_crops_scale', type=float, nargs='+', default=(0.4, 1.),
109
+ help="""Scale range of the cropped image before resizing, relatively to the origin image.
110
+ Used for large global view cropping. When disabling multi-crop (--local_crops_number 0), we
111
+ recommand using a wider range of scale ("--global_crops_scale 0.14 1." for example)""")
112
+ parser.add_argument('--local_crops_number', type=int, default=8, help="""Number of small
113
+ local views to generate. Set this parameter to 0 to disable multi-crop training.
114
+ When disabling multi-crop we recommend to use "--global_crops_scale 0.14 1." """)
115
+ parser.add_argument('--local_crops_scale', type=float, nargs='+', default=(0.05, 0.4),
116
+ help="""Scale range of the cropped image before resizing, relatively to the origin image.
117
+ Used for small local view cropping of multi-crop.""")
118
+
119
+ # Misc
120
+ parser.add_argument('--data_path', default='/path/to/imagenet/train/', type=str,
121
+ help='Please specify path to the ImageNet training data.')
122
+ parser.add_argument('--output_dir', default=".", type=str, help='Path to save logs and checkpoints.')
123
+ parser.add_argument('--saveckp_freq', default=20, type=int, help='Save checkpoint every x epochs.')
124
+ parser.add_argument('--seed', default=0, type=int, help='Random seed.')
125
+ parser.add_argument('--num_workers', default=10, type=int, help='Number of data loading workers per GPU.')
126
+ parser.add_argument("--dist_url", default="env://", type=str, help="""url used to set up
127
+ distributed training; see https://pytorch.org/docs/stable/distributed.html""")
128
+ parser.add_argument("--local_rank", default=0, type=int, help="Please ignore and do not set this argument.")
129
+ return parser
130
+
131
+
132
+ def train_dino(args):
133
+ utils.init_distributed_mode(args)
134
+ utils.fix_random_seeds(args.seed)
135
+ print("git:\n {}\n".format(utils.get_sha()))
136
+ print("\n".join("%s: %s" % (k, str(v)) for k, v in sorted(dict(vars(args)).items())))
137
+ cudnn.benchmark = True
138
+
139
+ # ============ preparing data ... ============
140
+ transform = DataAugmentationDINO(
141
+ args.global_crops_scale,
142
+ args.local_crops_scale,
143
+ args.local_crops_number,
144
+ )
145
+ dataset = datasets.ImageFolder(args.data_path, transform=transform)
146
+ sampler = torch.utils.data.DistributedSampler(dataset, shuffle=True)
147
+ data_loader = torch.utils.data.DataLoader(
148
+ dataset,
149
+ sampler=sampler,
150
+ batch_size=args.batch_size_per_gpu,
151
+ num_workers=args.num_workers,
152
+ pin_memory=True,
153
+ drop_last=True,
154
+ )
155
+ print(f"Data loaded: there are {len(dataset)} images.")
156
+
157
+ # ============ building student and teacher networks ... ============
158
+ # we changed the name DeiT-S for ViT-S to avoid confusions
159
+ args.arch = args.arch.replace("deit", "vit")
160
+ # if the network is a Vision Transformer (i.e. vit_tiny, vit_small, vit_base)
161
+ if args.arch in vits.__dict__.keys():
162
+ student = vits.__dict__[args.arch](
163
+ patch_size=args.patch_size,
164
+ drop_path_rate=args.drop_path_rate, # stochastic depth
165
+ )
166
+ teacher = vits.__dict__[args.arch](patch_size=args.patch_size)
167
+ embed_dim = student.embed_dim
168
+ # if the network is a XCiT
169
+ elif args.arch in torch.hub.list("facebookresearch/xcit"):
170
+ student = torch.hub.load('facebookresearch/xcit', args.arch,
171
+ pretrained=False, drop_path_rate=args.drop_path_rate)
172
+ teacher = torch.hub.load('facebookresearch/xcit', args.arch, pretrained=False)
173
+ embed_dim = student.embed_dim
174
+ # otherwise, we check if the architecture is in torchvision models
175
+ elif args.arch in torchvision_models.__dict__.keys():
176
+ student = torchvision_models.__dict__[args.arch]()
177
+ teacher = torchvision_models.__dict__[args.arch]()
178
+ embed_dim = student.fc.weight.shape[1]
179
+ else:
180
+ print(f"Unknow architecture: {args.arch}")
181
+
182
+ # multi-crop wrapper handles forward with inputs of different resolutions
183
+ student = utils.MultiCropWrapper(student, DINOHead(
184
+ embed_dim,
185
+ args.out_dim,
186
+ use_bn=args.use_bn_in_head,
187
+ norm_last_layer=args.norm_last_layer,
188
+ ))
189
+ teacher = utils.MultiCropWrapper(
190
+ teacher,
191
+ DINOHead(embed_dim, args.out_dim, args.use_bn_in_head),
192
+ )
193
+ # move networks to gpu
194
+ student, teacher = student.cuda(), teacher.cuda()
195
+ # synchronize batch norms (if any)
196
+ if utils.has_batchnorms(student):
197
+ student = nn.SyncBatchNorm.convert_sync_batchnorm(student)
198
+ teacher = nn.SyncBatchNorm.convert_sync_batchnorm(teacher)
199
+
200
+ # we need DDP wrapper to have synchro batch norms working...
201
+ teacher = nn.parallel.DistributedDataParallel(teacher, device_ids=[args.gpu])
202
+ teacher_without_ddp = teacher.module
203
+ else:
204
+ # teacher_without_ddp and teacher are the same thing
205
+ teacher_without_ddp = teacher
206
+ student = nn.parallel.DistributedDataParallel(student, device_ids=[args.gpu])
207
+ # teacher and student start with the same weights
208
+ teacher_without_ddp.load_state_dict(student.module.state_dict())
209
+ # there is no backpropagation through the teacher, so no need for gradients
210
+ for p in teacher.parameters():
211
+ p.requires_grad = False
212
+ print(f"Student and Teacher are built: they are both {args.arch} network.")
213
+
214
+ # ============ preparing loss ... ============
215
+ dino_loss = DINOLoss(
216
+ args.out_dim,
217
+ args.local_crops_number + 2, # total number of crops = 2 global crops + local_crops_number
218
+ args.warmup_teacher_temp,
219
+ args.teacher_temp,
220
+ args.warmup_teacher_temp_epochs,
221
+ args.epochs,
222
+ ).cuda()
223
+
224
+ # ============ preparing optimizer ... ============
225
+ params_groups = utils.get_params_groups(student)
226
+ if args.optimizer == "adamw":
227
+ optimizer = torch.optim.AdamW(params_groups) # to use with ViTs
228
+ elif args.optimizer == "sgd":
229
+ optimizer = torch.optim.SGD(params_groups, lr=0, momentum=0.9) # lr is set by scheduler
230
+ elif args.optimizer == "lars":
231
+ optimizer = utils.LARS(params_groups) # to use with convnet and large batches
232
+ # for mixed precision training
233
+ fp16_scaler = None
234
+ if args.use_fp16:
235
+ fp16_scaler = torch.cuda.amp.GradScaler()
236
+
237
+ # ============ init schedulers ... ============
238
+ lr_schedule = utils.cosine_scheduler(
239
+ args.lr * (args.batch_size_per_gpu * utils.get_world_size()) / 256., # linear scaling rule
240
+ args.min_lr,
241
+ args.epochs, len(data_loader),
242
+ warmup_epochs=args.warmup_epochs,
243
+ )
244
+ wd_schedule = utils.cosine_scheduler(
245
+ args.weight_decay,
246
+ args.weight_decay_end,
247
+ args.epochs, len(data_loader),
248
+ )
249
+ # momentum parameter is increased to 1. during training with a cosine schedule
250
+ momentum_schedule = utils.cosine_scheduler(args.momentum_teacher, 1,
251
+ args.epochs, len(data_loader))
252
+ print(f"Loss, optimizer and schedulers ready.")
253
+
254
+ # ============ optionally resume training ... ============
255
+ to_restore = {"epoch": 0}
256
+ utils.restart_from_checkpoint(
257
+ os.path.join(args.output_dir, "checkpoint.pth"),
258
+ run_variables=to_restore,
259
+ student=student,
260
+ teacher=teacher,
261
+ optimizer=optimizer,
262
+ fp16_scaler=fp16_scaler,
263
+ dino_loss=dino_loss,
264
+ )
265
+ start_epoch = to_restore["epoch"]
266
+
267
+ start_time = time.time()
268
+ print("Starting DINO training !")
269
+ for epoch in range(start_epoch, args.epochs):
270
+ data_loader.sampler.set_epoch(epoch)
271
+
272
+ # ============ training one epoch of DINO ... ============
273
+ train_stats = train_one_epoch(student, teacher, teacher_without_ddp, dino_loss,
274
+ data_loader, optimizer, lr_schedule, wd_schedule, momentum_schedule,
275
+ epoch, fp16_scaler, args)
276
+
277
+ # ============ writing logs ... ============
278
+ save_dict = {
279
+ 'student': student.state_dict(),
280
+ 'teacher': teacher.state_dict(),
281
+ 'optimizer': optimizer.state_dict(),
282
+ 'epoch': epoch + 1,
283
+ 'args': args,
284
+ 'dino_loss': dino_loss.state_dict(),
285
+ }
286
+ if fp16_scaler is not None:
287
+ save_dict['fp16_scaler'] = fp16_scaler.state_dict()
288
+ utils.save_on_master(save_dict, os.path.join(args.output_dir, 'checkpoint.pth'))
289
+ if args.saveckp_freq and epoch % args.saveckp_freq == 0:
290
+ utils.save_on_master(save_dict, os.path.join(args.output_dir, f'checkpoint{epoch:04}.pth'))
291
+ log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
292
+ 'epoch': epoch}
293
+ if utils.is_main_process():
294
+ with (Path(args.output_dir) / "log.txt").open("a") as f:
295
+ f.write(json.dumps(log_stats) + "\n")
296
+ total_time = time.time() - start_time
297
+ total_time_str = str(datetime.timedelta(seconds=int(total_time)))
298
+ print('Training time {}'.format(total_time_str))
299
+
300
+
301
+ def train_one_epoch(student, teacher, teacher_without_ddp, dino_loss, data_loader,
302
+ optimizer, lr_schedule, wd_schedule, momentum_schedule,epoch,
303
+ fp16_scaler, args):
304
+ metric_logger = utils.MetricLogger(delimiter=" ")
305
+ header = 'Epoch: [{}/{}]'.format(epoch, args.epochs)
306
+ for it, (images, _) in enumerate(metric_logger.log_every(data_loader, 10, header)):
307
+ # update weight decay and learning rate according to their schedule
308
+ it = len(data_loader) * epoch + it # global training iteration
309
+ for i, param_group in enumerate(optimizer.param_groups):
310
+ param_group["lr"] = lr_schedule[it]
311
+ if i == 0: # only the first group is regularized
312
+ param_group["weight_decay"] = wd_schedule[it]
313
+
314
+ # move images to gpu
315
+ images = [im.cuda(non_blocking=True) for im in images]
316
+ # teacher and student forward passes + compute dino loss
317
+ with torch.cuda.amp.autocast(fp16_scaler is not None):
318
+ teacher_output = teacher(images[:2]) # only the 2 global views pass through the teacher
319
+ student_output = student(images)
320
+ loss = dino_loss(student_output, teacher_output, epoch)
321
+
322
+ if not math.isfinite(loss.item()):
323
+ print("Loss is {}, stopping training".format(loss.item()), force=True)
324
+ sys.exit(1)
325
+
326
+ # student update
327
+ optimizer.zero_grad()
328
+ param_norms = None
329
+ if fp16_scaler is None:
330
+ loss.backward()
331
+ if args.clip_grad:
332
+ param_norms = utils.clip_gradients(student, args.clip_grad)
333
+ utils.cancel_gradients_last_layer(epoch, student,
334
+ args.freeze_last_layer)
335
+ optimizer.step()
336
+ else:
337
+ fp16_scaler.scale(loss).backward()
338
+ if args.clip_grad:
339
+ fp16_scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place
340
+ param_norms = utils.clip_gradients(student, args.clip_grad)
341
+ utils.cancel_gradients_last_layer(epoch, student,
342
+ args.freeze_last_layer)
343
+ fp16_scaler.step(optimizer)
344
+ fp16_scaler.update()
345
+
346
+ # EMA update for the teacher
347
+ with torch.no_grad():
348
+ m = momentum_schedule[it] # momentum parameter
349
+ for param_q, param_k in zip(student.module.parameters(), teacher_without_ddp.parameters()):
350
+ param_k.data.mul_(m).add_((1 - m) * param_q.detach().data)
351
+
352
+ # logging
353
+ torch.cuda.synchronize()
354
+ metric_logger.update(loss=loss.item())
355
+ metric_logger.update(lr=optimizer.param_groups[0]["lr"])
356
+ metric_logger.update(wd=optimizer.param_groups[0]["weight_decay"])
357
+ # gather the stats from all processes
358
+ metric_logger.synchronize_between_processes()
359
+ print("Averaged stats:", metric_logger)
360
+ return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
361
+
362
+
363
+ class DINOLoss(nn.Module):
364
+ def __init__(self, out_dim, ncrops, warmup_teacher_temp, teacher_temp,
365
+ warmup_teacher_temp_epochs, nepochs, student_temp=0.1,
366
+ center_momentum=0.9):
367
+ super().__init__()
368
+ self.student_temp = student_temp
369
+ self.center_momentum = center_momentum
370
+ self.ncrops = ncrops
371
+ self.register_buffer("center", torch.zeros(1, out_dim))
372
+ # we apply a warm up for the teacher temperature because
373
+ # a too high temperature makes the training instable at the beginning
374
+ self.teacher_temp_schedule = np.concatenate((
375
+ np.linspace(warmup_teacher_temp,
376
+ teacher_temp, warmup_teacher_temp_epochs),
377
+ np.ones(nepochs - warmup_teacher_temp_epochs) * teacher_temp
378
+ ))
379
+
380
+ def forward(self, student_output, teacher_output, epoch):
381
+ """
382
+ Cross-entropy between softmax outputs of the teacher and student networks.
383
+ """
384
+ student_out = student_output / self.student_temp
385
+ student_out = student_out.chunk(self.ncrops)
386
+
387
+ # teacher centering and sharpening
388
+ temp = self.teacher_temp_schedule[epoch]
389
+ teacher_out = F.softmax((teacher_output - self.center) / temp, dim=-1)
390
+ teacher_out = teacher_out.detach().chunk(2)
391
+
392
+ total_loss = 0
393
+ n_loss_terms = 0
394
+ for iq, q in enumerate(teacher_out):
395
+ for v in range(len(student_out)):
396
+ if v == iq:
397
+ # we skip cases where student and teacher operate on the same view
398
+ continue
399
+ loss = torch.sum(-q * F.log_softmax(student_out[v], dim=-1), dim=-1)
400
+ total_loss += loss.mean()
401
+ n_loss_terms += 1
402
+ total_loss /= n_loss_terms
403
+ self.update_center(teacher_output)
404
+ return total_loss
405
+
406
+ @torch.no_grad()
407
+ def update_center(self, teacher_output):
408
+ """
409
+ Update center used for teacher output.
410
+ """
411
+ batch_center = torch.sum(teacher_output, dim=0, keepdim=True)
412
+ dist.all_reduce(batch_center)
413
+ batch_center = batch_center / (len(teacher_output) * dist.get_world_size())
414
+
415
+ # ema update
416
+ self.center = self.center * self.center_momentum + batch_center * (1 - self.center_momentum)
417
+
418
+
419
+ class DataAugmentationDINO(object):
420
+ def __init__(self, global_crops_scale, local_crops_scale, local_crops_number):
421
+ flip_and_color_jitter = transforms.Compose([
422
+ transforms.RandomHorizontalFlip(p=0.5),
423
+ transforms.RandomApply(
424
+ [transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.2, hue=0.1)],
425
+ p=0.8
426
+ ),
427
+ transforms.RandomGrayscale(p=0.2),
428
+ ])
429
+ normalize = transforms.Compose([
430
+ transforms.ToTensor(),
431
+ transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
432
+ ])
433
+
434
+ # first global crop
435
+ self.global_transfo1 = transforms.Compose([
436
+ transforms.RandomResizedCrop(224, scale=global_crops_scale, interpolation=Image.BICUBIC),
437
+ flip_and_color_jitter,
438
+ utils.GaussianBlur(1.0),
439
+ normalize,
440
+ ])
441
+ # second global crop
442
+ self.global_transfo2 = transforms.Compose([
443
+ transforms.RandomResizedCrop(224, scale=global_crops_scale, interpolation=Image.BICUBIC),
444
+ flip_and_color_jitter,
445
+ utils.GaussianBlur(0.1),
446
+ utils.Solarization(0.2),
447
+ normalize,
448
+ ])
449
+ # transformation for the local small crops
450
+ self.local_crops_number = local_crops_number
451
+ self.local_transfo = transforms.Compose([
452
+ transforms.RandomResizedCrop(96, scale=local_crops_scale, interpolation=Image.BICUBIC),
453
+ flip_and_color_jitter,
454
+ utils.GaussianBlur(p=0.5),
455
+ normalize,
456
+ ])
457
+
458
+ def __call__(self, image):
459
+ crops = []
460
+ crops.append(self.global_transfo1(image))
461
+ crops.append(self.global_transfo2(image))
462
+ for _ in range(self.local_crops_number):
463
+ crops.append(self.local_transfo(image))
464
+ return crops
465
+
466
+
467
+ if __name__ == '__main__':
468
+ parser = argparse.ArgumentParser('DINO', parents=[get_args_parser()])
469
+ args = parser.parse_args()
470
+ Path(args.output_dir).mkdir(parents=True, exist_ok=True)
471
+ train_dino(args)
dino/run_with_submitit.py ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Facebook, Inc. and its affiliates.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """
15
+ A script to run multinode training with submitit.
16
+ Almost copy-paste from https://github.com/facebookresearch/deit/blob/main/run_with_submitit.py
17
+ """
18
+ import argparse
19
+ import os
20
+ import uuid
21
+ from pathlib import Path
22
+
23
+ import main_dino
24
+ import submitit
25
+
26
+
27
+ def parse_args():
28
+ parser = argparse.ArgumentParser("Submitit for DINO", parents=[main_dino.get_args_parser()])
29
+ parser.add_argument("--ngpus", default=8, type=int, help="Number of gpus to request on each node")
30
+ parser.add_argument("--nodes", default=2, type=int, help="Number of nodes to request")
31
+ parser.add_argument("--timeout", default=2800, type=int, help="Duration of the job")
32
+
33
+ parser.add_argument("--partition", default="learnfair", type=str, help="Partition where to submit")
34
+ parser.add_argument("--use_volta32", action='store_true', help="Big models? Use this")
35
+ parser.add_argument('--comment', default="", type=str,
36
+ help='Comment to pass to scheduler, e.g. priority message')
37
+ return parser.parse_args()
38
+
39
+
40
+ def get_shared_folder() -> Path:
41
+ user = os.getenv("USER")
42
+ if Path("/checkpoint/").is_dir():
43
+ p = Path(f"/checkpoint/{user}/experiments")
44
+ p.mkdir(exist_ok=True)
45
+ return p
46
+ raise RuntimeError("No shared folder available")
47
+
48
+
49
+ def get_init_file():
50
+ # Init file must not exist, but it's parent dir must exist.
51
+ os.makedirs(str(get_shared_folder()), exist_ok=True)
52
+ init_file = get_shared_folder() / f"{uuid.uuid4().hex}_init"
53
+ if init_file.exists():
54
+ os.remove(str(init_file))
55
+ return init_file
56
+
57
+
58
+ class Trainer(object):
59
+ def __init__(self, args):
60
+ self.args = args
61
+
62
+ def __call__(self):
63
+ import main_dino
64
+
65
+ self._setup_gpu_args()
66
+ main_dino.train_dino(self.args)
67
+
68
+ def checkpoint(self):
69
+ import os
70
+ import submitit
71
+
72
+ self.args.dist_url = get_init_file().as_uri()
73
+ print("Requeuing ", self.args)
74
+ empty_trainer = type(self)(self.args)
75
+ return submitit.helpers.DelayedSubmission(empty_trainer)
76
+
77
+ def _setup_gpu_args(self):
78
+ import submitit
79
+ from pathlib import Path
80
+
81
+ job_env = submitit.JobEnvironment()
82
+ self.args.output_dir = Path(str(self.args.output_dir).replace("%j", str(job_env.job_id)))
83
+ self.args.gpu = job_env.local_rank
84
+ self.args.rank = job_env.global_rank
85
+ self.args.world_size = job_env.num_tasks
86
+ print(f"Process group: {job_env.num_tasks} tasks, rank: {job_env.global_rank}")
87
+
88
+
89
+ def main():
90
+ args = parse_args()
91
+ if args.output_dir == "":
92
+ args.output_dir = get_shared_folder() / "%j"
93
+ Path(args.output_dir).mkdir(parents=True, exist_ok=True)
94
+ executor = submitit.AutoExecutor(folder=args.output_dir, slurm_max_num_timeout=30)
95
+
96
+ num_gpus_per_node = args.ngpus
97
+ nodes = args.nodes
98
+ timeout_min = args.timeout
99
+
100
+ partition = args.partition
101
+ kwargs = {}
102
+ if args.use_volta32:
103
+ kwargs['slurm_constraint'] = 'volta32gb'
104
+ if args.comment:
105
+ kwargs['slurm_comment'] = args.comment
106
+
107
+ executor.update_parameters(
108
+ mem_gb=40 * num_gpus_per_node,
109
+ gpus_per_node=num_gpus_per_node,
110
+ tasks_per_node=num_gpus_per_node, # one task per GPU
111
+ cpus_per_task=10,
112
+ nodes=nodes,
113
+ timeout_min=timeout_min, # max is 60 * 72
114
+ # Below are cluster dependent parameters
115
+ slurm_partition=partition,
116
+ slurm_signal_delay_s=120,
117
+ **kwargs
118
+ )
119
+
120
+ executor.update_parameters(name="dino")
121
+
122
+ args.dist_url = get_init_file().as_uri()
123
+
124
+ trainer = Trainer(args)
125
+ job = executor.submit(trainer)
126
+
127
+ print(f"Submitted job_id: {job.job_id}")
128
+ print(f"Logs and checkpoints will be saved at: {args.output_dir}")
129
+
130
+
131
+ if __name__ == "__main__":
132
+ main()
dino/utils.py ADDED
@@ -0,0 +1,809 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Facebook, Inc. and its affiliates.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """
15
+ Misc functions.
16
+
17
+ Mostly copy-paste from torchvision references or other public repos like DETR:
18
+ https://github.com/facebookresearch/detr/blob/master/util/misc.py
19
+ """
20
+ import os
21
+ import sys
22
+ import time
23
+ import math
24
+ import random
25
+ import datetime
26
+ import subprocess
27
+ from collections import defaultdict, deque
28
+
29
+ import numpy as np
30
+ import torch
31
+ from torch import nn
32
+ import torch.distributed as dist
33
+ from PIL import ImageFilter, ImageOps
34
+
35
+
36
+ class GaussianBlur(object):
37
+ """
38
+ Apply Gaussian Blur to the PIL image.
39
+ """
40
+ def __init__(self, p=0.5, radius_min=0.1, radius_max=2.):
41
+ self.prob = p
42
+ self.radius_min = radius_min
43
+ self.radius_max = radius_max
44
+
45
+ def __call__(self, img):
46
+ do_it = random.random() <= self.prob
47
+ if not do_it:
48
+ return img
49
+
50
+ return img.filter(
51
+ ImageFilter.GaussianBlur(
52
+ radius=random.uniform(self.radius_min, self.radius_max)
53
+ )
54
+ )
55
+
56
+
57
+ class Solarization(object):
58
+ """
59
+ Apply Solarization to the PIL image.
60
+ """
61
+ def __init__(self, p):
62
+ self.p = p
63
+
64
+ def __call__(self, img):
65
+ if random.random() < self.p:
66
+ return ImageOps.solarize(img)
67
+ else:
68
+ return img
69
+
70
+
71
+ def load_pretrained_weights(model, pretrained_weights, checkpoint_key, model_name, patch_size):
72
+ if os.path.isfile(pretrained_weights):
73
+ state_dict = torch.load(pretrained_weights, map_location="cpu")
74
+ if checkpoint_key is not None and checkpoint_key in state_dict:
75
+ print(f"Take key {checkpoint_key} in provided checkpoint dict")
76
+ state_dict = state_dict[checkpoint_key]
77
+ # remove `module.` prefix
78
+ state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
79
+ # remove `backbone.` prefix induced by multicrop wrapper
80
+ state_dict = {k.replace("backbone.", ""): v for k, v in state_dict.items()}
81
+ msg = model.load_state_dict(state_dict, strict=False)
82
+ print('Pretrained weights found at {} and loaded with msg: {}'.format(pretrained_weights, msg))
83
+ else:
84
+ print("Please use the `--pretrained_weights` argument to indicate the path of the checkpoint to evaluate.")
85
+ url = None
86
+ if model_name == "vit_small" and patch_size == 16:
87
+ url = "dino_deitsmall16_pretrain/dino_deitsmall16_pretrain.pth"
88
+ elif model_name == "vit_small" and patch_size == 8:
89
+ url = "dino_deitsmall8_pretrain/dino_deitsmall8_pretrain.pth"
90
+ elif model_name == "vit_base" and patch_size == 16:
91
+ url = "dino_vitbase16_pretrain/dino_vitbase16_pretrain.pth"
92
+ elif model_name == "vit_base" and patch_size == 8:
93
+ url = "dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth"
94
+ elif model_name == "xcit_small_12_p16":
95
+ url = "dino_xcit_small_12_p16_pretrain/dino_xcit_small_12_p16_pretrain.pth"
96
+ elif model_name == "xcit_small_12_p8":
97
+ url = "dino_xcit_small_12_p8_pretrain/dino_xcit_small_12_p8_pretrain.pth"
98
+ elif model_name == "xcit_medium_24_p16":
99
+ url = "dino_xcit_medium_24_p16_pretrain/dino_xcit_medium_24_p16_pretrain.pth"
100
+ elif model_name == "xcit_medium_24_p8":
101
+ url = "dino_xcit_medium_24_p8_pretrain/dino_xcit_medium_24_p8_pretrain.pth"
102
+ elif model_name == "resnet50":
103
+ url = "dino_resnet50_pretrain/dino_resnet50_pretrain.pth"
104
+ if url is not None:
105
+ print("Since no pretrained weights have been provided, we load the reference pretrained DINO weights.")
106
+ state_dict = torch.hub.load_state_dict_from_url(url="https://dl.fbaipublicfiles.com/dino/" + url)
107
+ model.load_state_dict(state_dict, strict=True)
108
+ else:
109
+ print("There is no reference weights available for this model => We use random weights.")
110
+
111
+
112
+ def clip_gradients(model, clip):
113
+ norms = []
114
+ for name, p in model.named_parameters():
115
+ if p.grad is not None:
116
+ param_norm = p.grad.data.norm(2)
117
+ norms.append(param_norm.item())
118
+ clip_coef = clip / (param_norm + 1e-6)
119
+ if clip_coef < 1:
120
+ p.grad.data.mul_(clip_coef)
121
+ return norms
122
+
123
+
124
+ def cancel_gradients_last_layer(epoch, model, freeze_last_layer):
125
+ if epoch >= freeze_last_layer:
126
+ return
127
+ for n, p in model.named_parameters():
128
+ if "last_layer" in n:
129
+ p.grad = None
130
+
131
+
132
+ def restart_from_checkpoint(ckp_path, run_variables=None, **kwargs):
133
+ """
134
+ Re-start from checkpoint
135
+ """
136
+ if not os.path.isfile(ckp_path):
137
+ return
138
+ print("Found checkpoint at {}".format(ckp_path))
139
+
140
+ # open checkpoint file
141
+ checkpoint = torch.load(ckp_path, map_location="cpu")
142
+
143
+ # key is what to look for in the checkpoint file
144
+ # value is the object to load
145
+ # example: {'state_dict': model}
146
+ for key, value in kwargs.items():
147
+ if key in checkpoint and value is not None:
148
+ try:
149
+ msg = value.load_state_dict(checkpoint[key], strict=False)
150
+ print("=> loaded '{}' from checkpoint '{}' with msg {}".format(key, ckp_path, msg))
151
+ except TypeError:
152
+ try:
153
+ msg = value.load_state_dict(checkpoint[key])
154
+ print("=> loaded '{}' from checkpoint: '{}'".format(key, ckp_path))
155
+ except ValueError:
156
+ print("=> failed to load '{}' from checkpoint: '{}'".format(key, ckp_path))
157
+ else:
158
+ print("=> key '{}' not found in checkpoint: '{}'".format(key, ckp_path))
159
+
160
+ # re load variable important for the run
161
+ if run_variables is not None:
162
+ for var_name in run_variables:
163
+ if var_name in checkpoint:
164
+ run_variables[var_name] = checkpoint[var_name]
165
+
166
+
167
+ def cosine_scheduler(base_value, final_value, epochs, niter_per_ep, warmup_epochs=0, start_warmup_value=0):
168
+ warmup_schedule = np.array([])
169
+ warmup_iters = warmup_epochs * niter_per_ep
170
+ if warmup_epochs > 0:
171
+ warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters)
172
+
173
+ iters = np.arange(epochs * niter_per_ep - warmup_iters)
174
+ schedule = final_value + 0.5 * (base_value - final_value) * (1 + np.cos(np.pi * iters / len(iters)))
175
+
176
+ schedule = np.concatenate((warmup_schedule, schedule))
177
+ assert len(schedule) == epochs * niter_per_ep
178
+ return schedule
179
+
180
+
181
+ def bool_flag(s):
182
+ """
183
+ Parse boolean arguments from the command line.
184
+ """
185
+ FALSY_STRINGS = {"off", "false", "0"}
186
+ TRUTHY_STRINGS = {"on", "true", "1"}
187
+ if s.lower() in FALSY_STRINGS:
188
+ return False
189
+ elif s.lower() in TRUTHY_STRINGS:
190
+ return True
191
+ else:
192
+ raise argparse.ArgumentTypeError("invalid value for a boolean flag")
193
+
194
+
195
+ def fix_random_seeds(seed=31):
196
+ """
197
+ Fix random seeds.
198
+ """
199
+ torch.manual_seed(seed)
200
+ torch.cuda.manual_seed_all(seed)
201
+ np.random.seed(seed)
202
+
203
+
204
+ class SmoothedValue(object):
205
+ """Track a series of values and provide access to smoothed values over a
206
+ window or the global series average.
207
+ """
208
+
209
+ def __init__(self, window_size=20, fmt=None):
210
+ if fmt is None:
211
+ fmt = "{median:.6f} ({global_avg:.6f})"
212
+ self.deque = deque(maxlen=window_size)
213
+ self.total = 0.0
214
+ self.count = 0
215
+ self.fmt = fmt
216
+
217
+ def update(self, value, n=1):
218
+ self.deque.append(value)
219
+ self.count += n
220
+ self.total += value * n
221
+
222
+ def synchronize_between_processes(self):
223
+ """
224
+ Warning: does not synchronize the deque!
225
+ """
226
+ if not is_dist_avail_and_initialized():
227
+ return
228
+ t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
229
+ dist.barrier()
230
+ dist.all_reduce(t)
231
+ t = t.tolist()
232
+ self.count = int(t[0])
233
+ self.total = t[1]
234
+
235
+ @property
236
+ def median(self):
237
+ d = torch.tensor(list(self.deque))
238
+ return d.median().item()
239
+
240
+ @property
241
+ def avg(self):
242
+ d = torch.tensor(list(self.deque), dtype=torch.float32)
243
+ return d.mean().item()
244
+
245
+ @property
246
+ def global_avg(self):
247
+ return self.total / self.count
248
+
249
+ @property
250
+ def max(self):
251
+ return max(self.deque)
252
+
253
+ @property
254
+ def value(self):
255
+ return self.deque[-1]
256
+
257
+ def __str__(self):
258
+ return self.fmt.format(
259
+ median=self.median,
260
+ avg=self.avg,
261
+ global_avg=self.global_avg,
262
+ max=self.max,
263
+ value=self.value)
264
+
265
+
266
+ def reduce_dict(input_dict, average=True):
267
+ """
268
+ Args:
269
+ input_dict (dict): all the values will be reduced
270
+ average (bool): whether to do average or sum
271
+ Reduce the values in the dictionary from all processes so that all processes
272
+ have the averaged results. Returns a dict with the same fields as
273
+ input_dict, after reduction.
274
+ """
275
+ world_size = get_world_size()
276
+ if world_size < 2:
277
+ return input_dict
278
+ with torch.no_grad():
279
+ names = []
280
+ values = []
281
+ # sort the keys so that they are consistent across processes
282
+ for k in sorted(input_dict.keys()):
283
+ names.append(k)
284
+ values.append(input_dict[k])
285
+ values = torch.stack(values, dim=0)
286
+ dist.all_reduce(values)
287
+ if average:
288
+ values /= world_size
289
+ reduced_dict = {k: v for k, v in zip(names, values)}
290
+ return reduced_dict
291
+
292
+
293
+ class MetricLogger(object):
294
+ def __init__(self, delimiter="\t"):
295
+ self.meters = defaultdict(SmoothedValue)
296
+ self.delimiter = delimiter
297
+
298
+ def update(self, **kwargs):
299
+ for k, v in kwargs.items():
300
+ if isinstance(v, torch.Tensor):
301
+ v = v.item()
302
+ assert isinstance(v, (float, int))
303
+ self.meters[k].update(v)
304
+
305
+ def __getattr__(self, attr):
306
+ if attr in self.meters:
307
+ return self.meters[attr]
308
+ if attr in self.__dict__:
309
+ return self.__dict__[attr]
310
+ raise AttributeError("'{}' object has no attribute '{}'".format(
311
+ type(self).__name__, attr))
312
+
313
+ def __str__(self):
314
+ loss_str = []
315
+ for name, meter in self.meters.items():
316
+ loss_str.append(
317
+ "{}: {}".format(name, str(meter))
318
+ )
319
+ return self.delimiter.join(loss_str)
320
+
321
+ def synchronize_between_processes(self):
322
+ for meter in self.meters.values():
323
+ meter.synchronize_between_processes()
324
+
325
+ def add_meter(self, name, meter):
326
+ self.meters[name] = meter
327
+
328
+ def log_every(self, iterable, print_freq, header=None):
329
+ i = 0
330
+ if not header:
331
+ header = ''
332
+ start_time = time.time()
333
+ end = time.time()
334
+ iter_time = SmoothedValue(fmt='{avg:.6f}')
335
+ data_time = SmoothedValue(fmt='{avg:.6f}')
336
+ space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
337
+ if torch.cuda.is_available():
338
+ log_msg = self.delimiter.join([
339
+ header,
340
+ '[{0' + space_fmt + '}/{1}]',
341
+ 'eta: {eta}',
342
+ '{meters}',
343
+ 'time: {time}',
344
+ 'data: {data}',
345
+ 'max mem: {memory:.0f}'
346
+ ])
347
+ else:
348
+ log_msg = self.delimiter.join([
349
+ header,
350
+ '[{0' + space_fmt + '}/{1}]',
351
+ 'eta: {eta}',
352
+ '{meters}',
353
+ 'time: {time}',
354
+ 'data: {data}'
355
+ ])
356
+ MB = 1024.0 * 1024.0
357
+ for obj in iterable:
358
+ data_time.update(time.time() - end)
359
+ yield obj
360
+ iter_time.update(time.time() - end)
361
+ if i % print_freq == 0 or i == len(iterable) - 1:
362
+ eta_seconds = iter_time.global_avg * (len(iterable) - i)
363
+ eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
364
+ if torch.cuda.is_available():
365
+ print(log_msg.format(
366
+ i, len(iterable), eta=eta_string,
367
+ meters=str(self),
368
+ time=str(iter_time), data=str(data_time),
369
+ memory=torch.cuda.max_memory_allocated() / MB))
370
+ else:
371
+ print(log_msg.format(
372
+ i, len(iterable), eta=eta_string,
373
+ meters=str(self),
374
+ time=str(iter_time), data=str(data_time)))
375
+ i += 1
376
+ end = time.time()
377
+ total_time = time.time() - start_time
378
+ total_time_str = str(datetime.timedelta(seconds=int(total_time)))
379
+ print('{} Total time: {} ({:.6f} s / it)'.format(
380
+ header, total_time_str, total_time / len(iterable)))
381
+
382
+
383
+ def get_sha():
384
+ cwd = os.path.dirname(os.path.abspath(__file__))
385
+
386
+ def _run(command):
387
+ return subprocess.check_output(command, cwd=cwd).decode('ascii').strip()
388
+ sha = 'N/A'
389
+ diff = "clean"
390
+ branch = 'N/A'
391
+ try:
392
+ sha = _run(['git', 'rev-parse', 'HEAD'])
393
+ subprocess.check_output(['git', 'diff'], cwd=cwd)
394
+ diff = _run(['git', 'diff-index', 'HEAD'])
395
+ diff = "has uncommited changes" if diff else "clean"
396
+ branch = _run(['git', 'rev-parse', '--abbrev-ref', 'HEAD'])
397
+ except Exception:
398
+ pass
399
+ message = f"sha: {sha}, status: {diff}, branch: {branch}"
400
+ return message
401
+
402
+
403
+ def is_dist_avail_and_initialized():
404
+ if not dist.is_available():
405
+ return False
406
+ if not dist.is_initialized():
407
+ return False
408
+ return True
409
+
410
+
411
+ def get_world_size():
412
+ if not is_dist_avail_and_initialized():
413
+ return 1
414
+ return dist.get_world_size()
415
+
416
+
417
+ def get_rank():
418
+ if not is_dist_avail_and_initialized():
419
+ return 0
420
+ return dist.get_rank()
421
+
422
+
423
+ def is_main_process():
424
+ return get_rank() == 0
425
+
426
+
427
+ def save_on_master(*args, **kwargs):
428
+ if is_main_process():
429
+ torch.save(*args, **kwargs)
430
+
431
+
432
+ def setup_for_distributed(is_master):
433
+ """
434
+ This function disables printing when not in master process
435
+ """
436
+ import builtins as __builtin__
437
+ builtin_print = __builtin__.print
438
+
439
+ def print(*args, **kwargs):
440
+ force = kwargs.pop('force', False)
441
+ if is_master or force:
442
+ builtin_print(*args, **kwargs)
443
+
444
+ __builtin__.print = print
445
+
446
+
447
+ def init_distributed_mode(args):
448
+ # launched with torch.distributed.launch
449
+ if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
450
+ args.rank = int(os.environ["RANK"])
451
+ args.world_size = int(os.environ['WORLD_SIZE'])
452
+ args.gpu = int(os.environ['LOCAL_RANK'])
453
+ # launched with submitit on a slurm cluster
454
+ elif 'SLURM_PROCID' in os.environ:
455
+ args.rank = int(os.environ['SLURM_PROCID'])
456
+ args.gpu = args.rank % torch.cuda.device_count()
457
+ # launched naively with `python main_dino.py`
458
+ # we manually add MASTER_ADDR and MASTER_PORT to env variables
459
+ elif torch.cuda.is_available():
460
+ print('Will run the code on one GPU.')
461
+ args.rank, args.gpu, args.world_size = 0, 0, 1
462
+ os.environ['MASTER_ADDR'] = '127.0.0.1'
463
+ os.environ['MASTER_PORT'] = '29500'
464
+ else:
465
+ print('Does not support training without GPU.')
466
+ sys.exit(1)
467
+
468
+ dist.init_process_group(
469
+ backend="nccl",
470
+ init_method=args.dist_url,
471
+ world_size=args.world_size,
472
+ rank=args.rank,
473
+ )
474
+
475
+ torch.cuda.set_device(args.gpu)
476
+ print('| distributed init (rank {}): {}'.format(
477
+ args.rank, args.dist_url), flush=True)
478
+ dist.barrier()
479
+ setup_for_distributed(args.rank == 0)
480
+
481
+
482
+ def accuracy(output, target, topk=(1,)):
483
+ """Computes the accuracy over the k top predictions for the specified values of k"""
484
+ maxk = max(topk)
485
+ batch_size = target.size(0)
486
+ _, pred = output.topk(maxk, 1, True, True)
487
+ pred = pred.t()
488
+ correct = pred.eq(target.reshape(1, -1).expand_as(pred))
489
+ return [correct[:k].reshape(-1).float().sum(0) * 100. / batch_size for k in topk]
490
+
491
+
492
+ def _no_grad_trunc_normal_(tensor, mean, std, a, b):
493
+ # Cut & paste from PyTorch official master until it's in a few official releases - RW
494
+ # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
495
+ def norm_cdf(x):
496
+ # Computes standard normal cumulative distribution function
497
+ return (1. + math.erf(x / math.sqrt(2.))) / 2.
498
+
499
+ if (mean < a - 2 * std) or (mean > b + 2 * std):
500
+ warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
501
+ "The distribution of values may be incorrect.",
502
+ stacklevel=2)
503
+
504
+ with torch.no_grad():
505
+ # Values are generated by using a truncated uniform distribution and
506
+ # then using the inverse CDF for the normal distribution.
507
+ # Get upper and lower cdf values
508
+ l = norm_cdf((a - mean) / std)
509
+ u = norm_cdf((b - mean) / std)
510
+
511
+ # Uniformly fill tensor with values from [l, u], then translate to
512
+ # [2l-1, 2u-1].
513
+ tensor.uniform_(2 * l - 1, 2 * u - 1)
514
+
515
+ # Use inverse cdf transform for normal distribution to get truncated
516
+ # standard normal
517
+ tensor.erfinv_()
518
+
519
+ # Transform to proper mean, std
520
+ tensor.mul_(std * math.sqrt(2.))
521
+ tensor.add_(mean)
522
+
523
+ # Clamp to ensure it's in the proper range
524
+ tensor.clamp_(min=a, max=b)
525
+ return tensor
526
+
527
+
528
+ def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
529
+ # type: (Tensor, float, float, float, float) -> Tensor
530
+ return _no_grad_trunc_normal_(tensor, mean, std, a, b)
531
+
532
+
533
+ class LARS(torch.optim.Optimizer):
534
+ """
535
+ Almost copy-paste from https://github.com/facebookresearch/barlowtwins/blob/main/main.py
536
+ """
537
+ def __init__(self, params, lr=0, weight_decay=0, momentum=0.9, eta=0.001,
538
+ weight_decay_filter=None, lars_adaptation_filter=None):
539
+ defaults = dict(lr=lr, weight_decay=weight_decay, momentum=momentum,
540
+ eta=eta, weight_decay_filter=weight_decay_filter,
541
+ lars_adaptation_filter=lars_adaptation_filter)
542
+ super().__init__(params, defaults)
543
+
544
+ @torch.no_grad()
545
+ def step(self):
546
+ for g in self.param_groups:
547
+ for p in g['params']:
548
+ dp = p.grad
549
+
550
+ if dp is None:
551
+ continue
552
+
553
+ if p.ndim != 1:
554
+ dp = dp.add(p, alpha=g['weight_decay'])
555
+
556
+ if p.ndim != 1:
557
+ param_norm = torch.norm(p)
558
+ update_norm = torch.norm(dp)
559
+ one = torch.ones_like(param_norm)
560
+ q = torch.where(param_norm > 0.,
561
+ torch.where(update_norm > 0,
562
+ (g['eta'] * param_norm / update_norm), one), one)
563
+ dp = dp.mul(q)
564
+
565
+ param_state = self.state[p]
566
+ if 'mu' not in param_state:
567
+ param_state['mu'] = torch.zeros_like(p)
568
+ mu = param_state['mu']
569
+ mu.mul_(g['momentum']).add_(dp)
570
+
571
+ p.add_(mu, alpha=-g['lr'])
572
+
573
+
574
+ class MultiCropWrapper(nn.Module):
575
+ """
576
+ Perform forward pass separately on each resolution input.
577
+ The inputs corresponding to a single resolution are clubbed and single
578
+ forward is run on the same resolution inputs. Hence we do several
579
+ forward passes = number of different resolutions used. We then
580
+ concatenate all the output features and run the head forward on these
581
+ concatenated features.
582
+ """
583
+ def __init__(self, backbone, head):
584
+ super(MultiCropWrapper, self).__init__()
585
+ # disable layers dedicated to ImageNet labels classification
586
+ backbone.fc, backbone.head = nn.Identity(), nn.Identity()
587
+ self.backbone = backbone
588
+ self.head = head
589
+
590
+ def forward(self, x):
591
+ # convert to list
592
+ if not isinstance(x, list):
593
+ x = [x]
594
+ idx_crops = torch.cumsum(torch.unique_consecutive(
595
+ torch.tensor([inp.shape[-1] for inp in x]),
596
+ return_counts=True,
597
+ )[1], 0)
598
+ start_idx, output = 0, torch.empty(0).to(x[0].device)
599
+ for end_idx in idx_crops:
600
+ _out = self.backbone(torch.cat(x[start_idx: end_idx]))
601
+ # The output is a tuple with XCiT model. See:
602
+ # https://github.com/facebookresearch/xcit/blob/master/xcit.py#L404-L405
603
+ if isinstance(_out, tuple):
604
+ _out = _out[0]
605
+ # accumulate outputs
606
+ output = torch.cat((output, _out))
607
+ start_idx = end_idx
608
+ # Run the head forward on the concatenated features.
609
+ return self.head(output)
610
+
611
+
612
+ def get_params_groups(model):
613
+ regularized = []
614
+ not_regularized = []
615
+ for name, param in model.named_parameters():
616
+ if not param.requires_grad:
617
+ continue
618
+ # we do not regularize biases nor Norm parameters
619
+ if name.endswith(".bias") or len(param.shape) == 1:
620
+ not_regularized.append(param)
621
+ else:
622
+ regularized.append(param)
623
+ return [{'params': regularized}, {'params': not_regularized, 'weight_decay': 0.}]
624
+
625
+
626
+ def has_batchnorms(model):
627
+ bn_types = (nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d, nn.SyncBatchNorm)
628
+ for name, module in model.named_modules():
629
+ if isinstance(module, bn_types):
630
+ return True
631
+ return False
632
+
633
+
634
+ class PCA():
635
+ """
636
+ Class to compute and apply PCA.
637
+ """
638
+ def __init__(self, dim=256, whit=0.5):
639
+ self.dim = dim
640
+ self.whit = whit
641
+ self.mean = None
642
+
643
+ def train_pca(self, cov):
644
+ """
645
+ Takes a covariance matrix (np.ndarray) as input.
646
+ """
647
+ d, v = np.linalg.eigh(cov)
648
+ eps = d.max() * 1e-5
649
+ n_0 = (d < eps).sum()
650
+ if n_0 > 0:
651
+ d[d < eps] = eps
652
+
653
+ # total energy
654
+ totenergy = d.sum()
655
+
656
+ # sort eigenvectors with eigenvalues order
657
+ idx = np.argsort(d)[::-1][:self.dim]
658
+ d = d[idx]
659
+ v = v[:, idx]
660
+
661
+ print("keeping %.2f %% of the energy" % (d.sum() / totenergy * 100.0))
662
+
663
+ # for the whitening
664
+ d = np.diag(1. / d**self.whit)
665
+
666
+ # principal components
667
+ self.dvt = np.dot(d, v.T)
668
+
669
+ def apply(self, x):
670
+ # input is from numpy
671
+ if isinstance(x, np.ndarray):
672
+ if self.mean is not None:
673
+ x -= self.mean
674
+ return np.dot(self.dvt, x.T).T
675
+
676
+ # input is from torch and is on GPU
677
+ if x.is_cuda:
678
+ if self.mean is not None:
679
+ x -= torch.cuda.FloatTensor(self.mean)
680
+ return torch.mm(torch.cuda.FloatTensor(self.dvt), x.transpose(0, 1)).transpose(0, 1)
681
+
682
+ # input if from torch, on CPU
683
+ if self.mean is not None:
684
+ x -= torch.FloatTensor(self.mean)
685
+ return torch.mm(torch.FloatTensor(self.dvt), x.transpose(0, 1)).transpose(0, 1)
686
+
687
+
688
+ def compute_ap(ranks, nres):
689
+ """
690
+ Computes average precision for given ranked indexes.
691
+ Arguments
692
+ ---------
693
+ ranks : zerro-based ranks of positive images
694
+ nres : number of positive images
695
+ Returns
696
+ -------
697
+ ap : average precision
698
+ """
699
+
700
+ # number of images ranked by the system
701
+ nimgranks = len(ranks)
702
+
703
+ # accumulate trapezoids in PR-plot
704
+ ap = 0
705
+
706
+ recall_step = 1. / nres
707
+
708
+ for j in np.arange(nimgranks):
709
+ rank = ranks[j]
710
+
711
+ if rank == 0:
712
+ precision_0 = 1.
713
+ else:
714
+ precision_0 = float(j) / rank
715
+
716
+ precision_1 = float(j + 1) / (rank + 1)
717
+
718
+ ap += (precision_0 + precision_1) * recall_step / 2.
719
+
720
+ return ap
721
+
722
+
723
+ def compute_map(ranks, gnd, kappas=[]):
724
+ """
725
+ Computes the mAP for a given set of returned results.
726
+ Usage:
727
+ map = compute_map (ranks, gnd)
728
+ computes mean average precsion (map) only
729
+ map, aps, pr, prs = compute_map (ranks, gnd, kappas)
730
+ computes mean average precision (map), average precision (aps) for each query
731
+ computes mean precision at kappas (pr), precision at kappas (prs) for each query
732
+ Notes:
733
+ 1) ranks starts from 0, ranks.shape = db_size X #queries
734
+ 2) The junk results (e.g., the query itself) should be declared in the gnd stuct array
735
+ 3) If there are no positive images for some query, that query is excluded from the evaluation
736
+ """
737
+
738
+ map = 0.
739
+ nq = len(gnd) # number of queries
740
+ aps = np.zeros(nq)
741
+ pr = np.zeros(len(kappas))
742
+ prs = np.zeros((nq, len(kappas)))
743
+ nempty = 0
744
+
745
+ for i in np.arange(nq):
746
+ qgnd = np.array(gnd[i]['ok'])
747
+
748
+ # no positive images, skip from the average
749
+ if qgnd.shape[0] == 0:
750
+ aps[i] = float('nan')
751
+ prs[i, :] = float('nan')
752
+ nempty += 1
753
+ continue
754
+
755
+ try:
756
+ qgndj = np.array(gnd[i]['junk'])
757
+ except:
758
+ qgndj = np.empty(0)
759
+
760
+ # sorted positions of positive and junk images (0 based)
761
+ pos = np.arange(ranks.shape[0])[np.in1d(ranks[:,i], qgnd)]
762
+ junk = np.arange(ranks.shape[0])[np.in1d(ranks[:,i], qgndj)]
763
+
764
+ k = 0;
765
+ ij = 0;
766
+ if len(junk):
767
+ # decrease positions of positives based on the number of
768
+ # junk images appearing before them
769
+ ip = 0
770
+ while (ip < len(pos)):
771
+ while (ij < len(junk) and pos[ip] > junk[ij]):
772
+ k += 1
773
+ ij += 1
774
+ pos[ip] = pos[ip] - k
775
+ ip += 1
776
+
777
+ # compute ap
778
+ ap = compute_ap(pos, len(qgnd))
779
+ map = map + ap
780
+ aps[i] = ap
781
+
782
+ # compute precision @ k
783
+ pos += 1 # get it to 1-based
784
+ for j in np.arange(len(kappas)):
785
+ kq = min(max(pos), kappas[j]);
786
+ prs[i, j] = (pos <= kq).sum() / kq
787
+ pr = pr + prs[i, :]
788
+
789
+ map = map / (nq - nempty)
790
+ pr = pr / (nq - nempty)
791
+
792
+ return map, aps, pr, prs
793
+
794
+
795
+ def multi_scale(samples, model):
796
+ v = None
797
+ for s in [1, 1/2**(1/2), 1/2]: # we use 3 different scales
798
+ if s == 1:
799
+ inp = samples.clone()
800
+ else:
801
+ inp = nn.functional.interpolate(samples, scale_factor=s, mode='bilinear', align_corners=False)
802
+ feats = model(inp).clone()
803
+ if v is None:
804
+ v = feats
805
+ else:
806
+ v += feats
807
+ v /= 3
808
+ v /= v.norm()
809
+ return v
dino/video_generation.py ADDED
@@ -0,0 +1,388 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Facebook, Inc. and its affiliates.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import os
15
+ import glob
16
+ import sys
17
+ import argparse
18
+ import cv2
19
+
20
+ from tqdm import tqdm
21
+ import matplotlib.pyplot as plt
22
+ import torch
23
+ import torch.nn as nn
24
+ import torchvision
25
+ from torchvision import transforms as pth_transforms
26
+ import numpy as np
27
+ from PIL import Image
28
+
29
+ import utils
30
+ import vision_transformer as vits
31
+
32
+
33
+ FOURCC = {
34
+ "mp4": cv2.VideoWriter_fourcc(*"MP4V"),
35
+ "avi": cv2.VideoWriter_fourcc(*"XVID"),
36
+ }
37
+ DEVICE = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
38
+
39
+
40
+ class VideoGenerator:
41
+ def __init__(self, args):
42
+ self.args = args
43
+ # self.model = None
44
+ # Don't need to load model if you only want a video
45
+ if not self.args.video_only:
46
+ self.model = self.__load_model()
47
+
48
+ def run(self):
49
+ if self.args.input_path is None:
50
+ print(f"Provided input path {self.args.input_path} is non valid.")
51
+ sys.exit(1)
52
+ else:
53
+ if self.args.video_only:
54
+ self._generate_video_from_images(
55
+ self.args.input_path, self.args.output_path
56
+ )
57
+ else:
58
+ # If input path exists
59
+ if os.path.exists(self.args.input_path):
60
+ frames_folder = os.path.join(self.args.output_path, "frames")
61
+ os.makedirs(frames_folder, exist_ok=True)
62
+ # If input is a video file
63
+ if os.path.isfile(self.args.input_path):
64
+ attention_folder = os.path.join(
65
+ self.args.output_path, "attention"
66
+ )
67
+
68
+ os.makedirs(attention_folder, exist_ok=True)
69
+
70
+ self._extract_frames_from_video(
71
+ self.args.input_path, frames_folder
72
+ )
73
+
74
+ self._inference(
75
+ frames_folder,
76
+ attention_folder,
77
+ )
78
+
79
+ self._generate_video_from_images(
80
+ attention_folder, self.args.output_path
81
+ )
82
+ self._generate_video_from_images(
83
+ frames_folder,
84
+ self.args.output_path,
85
+ file_pattern="reshaped-*.jpg",
86
+ out_video_name="original-reshaped"
87
+ )
88
+ # If input is a folder of already extracted frames
89
+ if os.path.isdir(self.args.input_path):
90
+ attention_folder = os.path.join(
91
+ self.args.output_path, "attention"
92
+ )
93
+
94
+ os.makedirs(attention_folder, exist_ok=True)
95
+
96
+ self._inference(self.args.input_path, attention_folder)
97
+
98
+ self._generate_video_from_images(
99
+ attention_folder, self.args.output_path
100
+ )
101
+ self._generate_video_from_images(
102
+ frames_folder,
103
+ self.args.output_path,
104
+ file_pattern="reshaped-*.jpg",
105
+ out_video_name="original-reshaped"
106
+ )
107
+ # If input path doesn't exists
108
+ else:
109
+ print(f"Provided input path {self.args.input_path} doesn't exists.")
110
+ sys.exit(1)
111
+
112
+ def _extract_frames_from_video(self, inp: str, out: str):
113
+ vidcap = cv2.VideoCapture(inp)
114
+ self.args.fps = vidcap.get(cv2.CAP_PROP_FPS)
115
+
116
+ print(f"Video: {inp} ({self.args.fps} fps)")
117
+ print(f"Extracting frames to {out}")
118
+
119
+ success, image = vidcap.read()
120
+ count = 0
121
+ while success:
122
+ cv2.imwrite(
123
+ os.path.join(out, f"frame-{count:04}.jpg"),
124
+ image,
125
+ )
126
+ success, image = vidcap.read()
127
+ count += 1
128
+
129
+ def _generate_video_from_images(self, inp: str, out: str, file_pattern="attn-*.jpg", out_video_name="video"):
130
+ img_array = []
131
+ attention_images_list = sorted(glob.glob(os.path.join(inp, file_pattern)))
132
+
133
+ # Get size of the first image
134
+ with open(attention_images_list[0], "rb") as f:
135
+ img = Image.open(f)
136
+ img = img.convert("RGB")
137
+ size = (img.width, img.height)
138
+ img_array.append(cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR))
139
+
140
+ print(f"Generating video {size} to {out}")
141
+
142
+ for filename in tqdm(attention_images_list[1:]):
143
+ with open(filename, "rb") as f:
144
+ img = Image.open(f)
145
+ img = img.convert("RGB")
146
+ img_array.append(cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR))
147
+
148
+ out = cv2.VideoWriter(
149
+ os.path.join(out, f"{out_video_name}." + self.args.video_format),
150
+ FOURCC[self.args.video_format],
151
+ self.args.fps,
152
+ size,
153
+ )
154
+
155
+ for i in range(len(img_array)):
156
+ out.write(img_array[i])
157
+ out.release()
158
+ print("Done")
159
+
160
+ def _inference(self, inp: str, out: str):
161
+ print(f"Generating attention images to {out}")
162
+
163
+ for img_path in tqdm(sorted(glob.glob(os.path.join(inp, "*.jpg")))):
164
+ with open(img_path, "rb") as f:
165
+ img_in = Image.open(f)
166
+ img_in = img_in.convert("RGB")
167
+
168
+ if self.args.resize is not None:
169
+ transform = pth_transforms.Compose(
170
+ [
171
+ pth_transforms.ToTensor(),
172
+ pth_transforms.Resize(self.args.resize),
173
+ pth_transforms.Normalize(
174
+ (0.485, 0.456, 0.406), (0.229, 0.224, 0.225)
175
+ ),
176
+ ]
177
+ )
178
+ else:
179
+ transform = pth_transforms.Compose(
180
+ [
181
+ pth_transforms.ToTensor(),
182
+ pth_transforms.Normalize(
183
+ (0.485, 0.456, 0.406), (0.229, 0.224, 0.225)
184
+ ),
185
+ ]
186
+ )
187
+
188
+ img = transform(img_in)
189
+
190
+ # make the image divisible by the patch size
191
+ w, h = (
192
+ img.shape[1] - img.shape[1] % self.args.patch_size,
193
+ img.shape[2] - img.shape[2] % self.args.patch_size,
194
+ )
195
+ img = img[:, :w, :h].unsqueeze(0)
196
+ w_featmap = img.shape[-2] // self.args.patch_size
197
+ h_featmap = img.shape[-1] // self.args.patch_size
198
+
199
+ attentions = self.model.get_last_selfattention(img.to(DEVICE))
200
+ nh = attentions.shape[1] # number of head
201
+
202
+ # we keep only the output patch attention
203
+ attentions = attentions[0, :, 0, 1:].reshape(nh, -1)
204
+
205
+ # we keep only a certain percentage of the mass
206
+ val, idx = torch.sort(attentions)
207
+ val /= torch.sum(val, dim=1, keepdim=True)
208
+ cumval = torch.cumsum(val, dim=1)
209
+ th_attn = cumval > (1 - self.args.threshold)
210
+ idx2 = torch.argsort(idx)
211
+ for head in range(nh):
212
+ th_attn[head] = th_attn[head][idx2[head]]
213
+ th_attn = th_attn.reshape(nh, w_featmap, h_featmap).float()
214
+ # interpolate
215
+ th_attn = (
216
+ nn.functional.interpolate(
217
+ th_attn.unsqueeze(0),
218
+ scale_factor=self.args.patch_size,
219
+ mode="nearest",
220
+ )[0]
221
+ .cpu()
222
+ .numpy()
223
+ )
224
+
225
+ attentions = attentions.reshape(nh, w_featmap, h_featmap)
226
+ attentions = (
227
+ nn.functional.interpolate(
228
+ attentions.unsqueeze(0),
229
+ scale_factor=self.args.patch_size,
230
+ mode="nearest",
231
+ )[0]
232
+ .cpu()
233
+ .numpy()
234
+ )
235
+
236
+ # save attentions heatmaps
237
+ fname = os.path.join(out, "attn-" + os.path.basename(img_path))
238
+ plt.imsave(
239
+ fname=fname,
240
+ arr=sum(
241
+ attentions[i] * 1 / attentions.shape[0]
242
+ for i in range(attentions.shape[0])
243
+ ),
244
+ cmap="inferno",
245
+ format="jpg",
246
+ )
247
+ fname = os.path.join(os.path.dirname(out), "frames/reshaped-" + os.path.basename(img_path))
248
+ img_in = img_in.resize((attentions[0].shape[1], attentions[0].shape[0]))
249
+ img_in.save(fname)
250
+
251
+ def __load_model(self):
252
+ # build model
253
+ model = vits.__dict__[self.args.arch](
254
+ patch_size=self.args.patch_size, num_classes=0
255
+ )
256
+ for p in model.parameters():
257
+ p.requires_grad = False
258
+ model.eval()
259
+ model.to(DEVICE)
260
+
261
+ if os.path.isfile(self.args.pretrained_weights):
262
+ state_dict = torch.load(self.args.pretrained_weights, map_location="cpu")
263
+ if (
264
+ self.args.checkpoint_key is not None
265
+ and self.args.checkpoint_key in state_dict
266
+ ):
267
+ print(
268
+ f"Take key {self.args.checkpoint_key} in provided checkpoint dict"
269
+ )
270
+ state_dict = state_dict[self.args.checkpoint_key]
271
+ state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
272
+ # remove `backbone.` prefix induced by multicrop wrapper
273
+ state_dict = {k.replace("backbone.", ""): v for k, v in state_dict.items()}
274
+ msg = model.load_state_dict(state_dict, strict=False)
275
+ print(
276
+ "Pretrained weights found at {} and loaded with msg: {}".format(
277
+ self.args.pretrained_weights, msg
278
+ )
279
+ )
280
+ else:
281
+ print(
282
+ "Please use the `--pretrained_weights` argument to indicate the path of the checkpoint to evaluate."
283
+ )
284
+ url = None
285
+ if self.args.arch == "vit_small" and self.args.patch_size == 16:
286
+ url = "dino_deitsmall16_pretrain/dino_deitsmall16_pretrain.pth"
287
+ elif self.args.arch == "vit_small" and self.args.patch_size == 8:
288
+ url = "dino_deitsmall8_300ep_pretrain/dino_deitsmall8_300ep_pretrain.pth" # model used for visualizations in our paper
289
+ elif self.args.arch == "vit_base" and self.args.patch_size == 16:
290
+ url = "dino_vitbase16_pretrain/dino_vitbase16_pretrain.pth"
291
+ elif self.args.arch == "vit_base" and self.args.patch_size == 8:
292
+ url = "dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth"
293
+ if url is not None:
294
+ print(
295
+ "Since no pretrained weights have been provided, we load the reference pretrained DINO weights."
296
+ )
297
+ state_dict = torch.hub.load_state_dict_from_url(
298
+ url="https://dl.fbaipublicfiles.com/dino/" + url
299
+ )
300
+ model.load_state_dict(state_dict, strict=True)
301
+ else:
302
+ print(
303
+ "There is no reference weights available for this model => We use random weights."
304
+ )
305
+ return model
306
+
307
+
308
+ def parse_args():
309
+ parser = argparse.ArgumentParser("Generation self-attention video")
310
+ parser.add_argument(
311
+ "--arch",
312
+ default="vit_small",
313
+ type=str,
314
+ choices=["vit_tiny", "vit_small", "vit_base"],
315
+ help="Architecture (support only ViT atm).",
316
+ )
317
+ parser.add_argument(
318
+ "--patch_size", default=8, type=int, help="Patch resolution of the self.model."
319
+ )
320
+ parser.add_argument(
321
+ "--pretrained_weights",
322
+ default="",
323
+ type=str,
324
+ help="Path to pretrained weights to load.",
325
+ )
326
+ parser.add_argument(
327
+ "--checkpoint_key",
328
+ default="teacher",
329
+ type=str,
330
+ help='Key to use in the checkpoint (example: "teacher")',
331
+ )
332
+ parser.add_argument(
333
+ "--input_path",
334
+ required=True,
335
+ type=str,
336
+ help="""Path to a video file if you want to extract frames
337
+ or to a folder of images already extracted by yourself.
338
+ or to a folder of attention images.""",
339
+ )
340
+ parser.add_argument(
341
+ "--output_path",
342
+ default="./",
343
+ type=str,
344
+ help="""Path to store a folder of frames and / or a folder of attention images.
345
+ and / or a final video. Default to current directory.""",
346
+ )
347
+ parser.add_argument(
348
+ "--threshold",
349
+ type=float,
350
+ default=0.6,
351
+ help="""We visualize masks
352
+ obtained by thresholding the self-attention maps to keep xx percent of the mass.""",
353
+ )
354
+ parser.add_argument(
355
+ "--resize",
356
+ default=None,
357
+ type=int,
358
+ nargs="+",
359
+ help="""Apply a resize transformation to input image(s). Use if OOM error.
360
+ Usage (single or W H): --resize 512, --resize 720 1280""",
361
+ )
362
+ parser.add_argument(
363
+ "--video_only",
364
+ action="store_true",
365
+ help="""Use this flag if you only want to generate a video and not all attention images.
366
+ If used, --input_path must be set to the folder of attention images. Ex: ./attention/""",
367
+ )
368
+ parser.add_argument(
369
+ "--fps",
370
+ default=30.0,
371
+ type=float,
372
+ help="FPS of input / output video. Automatically set if you extract frames from a video.",
373
+ )
374
+ parser.add_argument(
375
+ "--video_format",
376
+ default="mp4",
377
+ type=str,
378
+ choices=["mp4", "avi"],
379
+ help="Format of generated video (mp4 or avi).",
380
+ )
381
+
382
+ return parser.parse_args()
383
+
384
+
385
+ if __name__ == "__main__":
386
+ args = parse_args()
387
+
388
+ vg = VideoGenerator(args)
dino/vision_transformer.py ADDED
@@ -0,0 +1,291 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Facebook, Inc. and its affiliates.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """
15
+ Mostly copy-paste from timm library.
16
+ https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
17
+ """
18
+ import math
19
+ from functools import partial
20
+
21
+ import torch
22
+ import torch.nn as nn
23
+
24
+ from utils import trunc_normal_
25
+
26
+
27
+ def drop_path(x, drop_prob: float = 0., training: bool = False):
28
+ if drop_prob == 0. or not training:
29
+ return x
30
+ keep_prob = 1 - drop_prob
31
+ shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
32
+ random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
33
+ random_tensor.floor_() # binarize
34
+ output = x.div(keep_prob) * random_tensor
35
+ return output
36
+
37
+
38
+ class DropPath(nn.Module):
39
+ """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
40
+ """
41
+ def __init__(self, drop_prob=None):
42
+ super(DropPath, self).__init__()
43
+ self.drop_prob = drop_prob
44
+
45
+ def forward(self, x):
46
+ return drop_path(x, self.drop_prob, self.training)
47
+
48
+
49
+ class Mlp(nn.Module):
50
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
51
+ super().__init__()
52
+ out_features = out_features or in_features
53
+ hidden_features = hidden_features or in_features
54
+ self.fc1 = nn.Linear(in_features, hidden_features)
55
+ self.act = act_layer()
56
+ self.fc2 = nn.Linear(hidden_features, out_features)
57
+ self.drop = nn.Dropout(drop)
58
+
59
+ def forward(self, x):
60
+ x = self.fc1(x)
61
+ x = self.act(x)
62
+ x = self.drop(x)
63
+ x = self.fc2(x)
64
+ x = self.drop(x)
65
+ return x
66
+
67
+
68
+ class Attention(nn.Module):
69
+ def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
70
+ super().__init__()
71
+ self.num_heads = num_heads
72
+ head_dim = dim // num_heads
73
+ self.scale = qk_scale or head_dim ** -0.5
74
+
75
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
76
+ self.attn_drop = nn.Dropout(attn_drop)
77
+ self.proj = nn.Linear(dim, dim)
78
+ self.proj_drop = nn.Dropout(proj_drop)
79
+
80
+ def forward(self, x):
81
+ B, N, C = x.shape
82
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
83
+ q, k, v = qkv[0], qkv[1], qkv[2]
84
+
85
+ attn = (q @ k.transpose(-2, -1)) * self.scale
86
+ attn = attn.softmax(dim=-1)
87
+ attn = self.attn_drop(attn)
88
+
89
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
90
+ x = self.proj(x)
91
+ x = self.proj_drop(x)
92
+ return x, attn
93
+
94
+
95
+ class Block(nn.Module):
96
+ def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
97
+ drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
98
+ super().__init__()
99
+ self.norm1 = norm_layer(dim)
100
+ self.attn = Attention(
101
+ dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
102
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
103
+ self.norm2 = norm_layer(dim)
104
+ mlp_hidden_dim = int(dim * mlp_ratio)
105
+ self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
106
+
107
+ def forward(self, x, return_attention=False):
108
+ y, attn = self.attn(self.norm1(x))
109
+ if return_attention:
110
+ return attn
111
+ x = x + self.drop_path(y)
112
+ x = x + self.drop_path(self.mlp(self.norm2(x)))
113
+ return x
114
+
115
+
116
+ class PatchEmbed(nn.Module):
117
+ """ Image to Patch Embedding
118
+ """
119
+ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
120
+ super().__init__()
121
+ num_patches = (img_size // patch_size) * (img_size // patch_size)
122
+ self.img_size = img_size
123
+ self.patch_size = patch_size
124
+ self.num_patches = num_patches
125
+
126
+ self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
127
+
128
+ def forward(self, x):
129
+ B, C, H, W = x.shape
130
+ x = self.proj(x).flatten(2).transpose(1, 2)
131
+ return x
132
+
133
+
134
+ class VisionTransformer(nn.Module):
135
+ """ Vision Transformer """
136
+ def __init__(self, img_size=[224], patch_size=16, in_chans=3, num_classes=0, embed_dim=768, depth=12,
137
+ num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
138
+ drop_path_rate=0., norm_layer=nn.LayerNorm, **kwargs):
139
+ super().__init__()
140
+ self.num_features = self.embed_dim = embed_dim
141
+
142
+ self.patch_embed = PatchEmbed(
143
+ img_size=img_size[0], patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
144
+ num_patches = self.patch_embed.num_patches
145
+
146
+ self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
147
+ self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
148
+ self.pos_drop = nn.Dropout(p=drop_rate)
149
+
150
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
151
+ self.blocks = nn.ModuleList([
152
+ Block(
153
+ dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
154
+ drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)
155
+ for i in range(depth)])
156
+ self.norm = norm_layer(embed_dim)
157
+
158
+ # Classifier head
159
+ self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
160
+
161
+ trunc_normal_(self.pos_embed, std=.02)
162
+ trunc_normal_(self.cls_token, std=.02)
163
+ self.apply(self._init_weights)
164
+
165
+ def _init_weights(self, m):
166
+ if isinstance(m, nn.Linear):
167
+ trunc_normal_(m.weight, std=.02)
168
+ if isinstance(m, nn.Linear) and m.bias is not None:
169
+ nn.init.constant_(m.bias, 0)
170
+ elif isinstance(m, nn.LayerNorm):
171
+ nn.init.constant_(m.bias, 0)
172
+ nn.init.constant_(m.weight, 1.0)
173
+
174
+ def interpolate_pos_encoding(self, x, w, h):
175
+ npatch = x.shape[1] - 1
176
+ N = self.pos_embed.shape[1] - 1
177
+ if npatch == N and w == h:
178
+ return self.pos_embed
179
+ class_pos_embed = self.pos_embed[:, 0]
180
+ patch_pos_embed = self.pos_embed[:, 1:]
181
+ dim = x.shape[-1]
182
+ w0 = w // self.patch_embed.patch_size
183
+ h0 = h // self.patch_embed.patch_size
184
+ # we add a small number to avoid floating point error in the interpolation
185
+ # see discussion at https://github.com/facebookresearch/dino/issues/8
186
+ w0, h0 = w0 + 0.1, h0 + 0.1
187
+ patch_pos_embed = nn.functional.interpolate(
188
+ patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2),
189
+ scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)),
190
+ mode='bicubic',
191
+ )
192
+ assert int(w0) == patch_pos_embed.shape[-2] and int(h0) == patch_pos_embed.shape[-1]
193
+ patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
194
+ return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
195
+
196
+ def prepare_tokens(self, x):
197
+ B, nc, w, h = x.shape
198
+ x = self.patch_embed(x) # patch linear embedding
199
+
200
+ # add the [CLS] token to the embed patch tokens
201
+ cls_tokens = self.cls_token.expand(B, -1, -1)
202
+ x = torch.cat((cls_tokens, x), dim=1)
203
+
204
+ # add positional encoding to each token
205
+ x = x + self.interpolate_pos_encoding(x, w, h)
206
+
207
+ return self.pos_drop(x)
208
+
209
+ def forward(self, x):
210
+ x = self.prepare_tokens(x)
211
+ for blk in self.blocks:
212
+ x = blk(x)
213
+ x = self.norm(x)
214
+ return x[:, 0]
215
+
216
+ def get_last_selfattention(self, x):
217
+ x = self.prepare_tokens(x)
218
+ for i, blk in enumerate(self.blocks):
219
+ if i < len(self.blocks) - 1:
220
+ x = blk(x)
221
+ else:
222
+ # return attention of the last block
223
+ return blk(x, return_attention=True)
224
+
225
+ def get_intermediate_layers(self, x, n=1):
226
+ x = self.prepare_tokens(x)
227
+ # we return the output tokens from the `n` last blocks
228
+ output = []
229
+ for i, blk in enumerate(self.blocks):
230
+ x = blk(x)
231
+ if len(self.blocks) - i <= n:
232
+ output.append(self.norm(x))
233
+ return output
234
+
235
+
236
+ def vit_tiny(patch_size=16, **kwargs):
237
+ model = VisionTransformer(
238
+ patch_size=patch_size, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4,
239
+ qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
240
+ return model
241
+
242
+
243
+ def vit_small(patch_size=16, **kwargs):
244
+ model = VisionTransformer(
245
+ patch_size=patch_size, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4,
246
+ qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
247
+ return model
248
+
249
+
250
+ def vit_base(patch_size=16, **kwargs):
251
+ model = VisionTransformer(
252
+ patch_size=patch_size, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
253
+ qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
254
+ return model
255
+
256
+
257
+ class DINOHead(nn.Module):
258
+ def __init__(self, in_dim, out_dim, use_bn=False, norm_last_layer=True, nlayers=3, hidden_dim=2048, bottleneck_dim=256):
259
+ super().__init__()
260
+ nlayers = max(nlayers, 1)
261
+ if nlayers == 1:
262
+ self.mlp = nn.Linear(in_dim, bottleneck_dim)
263
+ else:
264
+ layers = [nn.Linear(in_dim, hidden_dim)]
265
+ if use_bn:
266
+ layers.append(nn.BatchNorm1d(hidden_dim))
267
+ layers.append(nn.GELU())
268
+ for _ in range(nlayers - 2):
269
+ layers.append(nn.Linear(hidden_dim, hidden_dim))
270
+ if use_bn:
271
+ layers.append(nn.BatchNorm1d(hidden_dim))
272
+ layers.append(nn.GELU())
273
+ layers.append(nn.Linear(hidden_dim, bottleneck_dim))
274
+ self.mlp = nn.Sequential(*layers)
275
+ self.apply(self._init_weights)
276
+ self.last_layer = nn.utils.weight_norm(nn.Linear(bottleneck_dim, out_dim, bias=False))
277
+ self.last_layer.weight_g.data.fill_(1)
278
+ if norm_last_layer:
279
+ self.last_layer.weight_g.requires_grad = False
280
+
281
+ def _init_weights(self, m):
282
+ if isinstance(m, nn.Linear):
283
+ trunc_normal_(m.weight, std=.02)
284
+ if isinstance(m, nn.Linear) and m.bias is not None:
285
+ nn.init.constant_(m.bias, 0)
286
+
287
+ def forward(self, x):
288
+ x = self.mlp(x)
289
+ x = nn.functional.normalize(x, dim=-1, p=2)
290
+ x = self.last_layer(x)
291
+ return x
dino/visualize_attention.py ADDED
@@ -0,0 +1,213 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Facebook, Inc. and its affiliates.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import os
15
+ import sys
16
+ import argparse
17
+ import cv2
18
+ import random
19
+ import colorsys
20
+ import requests
21
+ from io import BytesIO
22
+
23
+ import skimage.io
24
+ from skimage.measure import find_contours
25
+ import matplotlib.pyplot as plt
26
+ from matplotlib.patches import Polygon
27
+ import torch
28
+ import torch.nn as nn
29
+ import torchvision
30
+ from torchvision import transforms as pth_transforms
31
+ import numpy as np
32
+ from PIL import Image
33
+
34
+ import utils
35
+ import vision_transformer as vits
36
+
37
+
38
+ def apply_mask(image, mask, color, alpha=0.5):
39
+ for c in range(3):
40
+ image[:, :, c] = image[:, :, c] * (1 - alpha * mask) + alpha * mask * color[c] * 255
41
+ return image
42
+
43
+
44
+ def random_colors(N, bright=True):
45
+ """
46
+ Generate random colors.
47
+ """
48
+ brightness = 1.0 if bright else 0.7
49
+ hsv = [(i / N, 1, brightness) for i in range(N)]
50
+ colors = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv))
51
+ random.shuffle(colors)
52
+ return colors
53
+
54
+
55
+ def display_instances(image, mask, fname="test", figsize=(5, 5), blur=False, contour=True, alpha=0.5):
56
+ fig = plt.figure(figsize=figsize, frameon=False)
57
+ ax = plt.Axes(fig, [0., 0., 1., 1.])
58
+ ax.set_axis_off()
59
+ fig.add_axes(ax)
60
+ ax = plt.gca()
61
+
62
+ N = 1
63
+ mask = mask[None, :, :]
64
+ # Generate random colors
65
+ colors = random_colors(N)
66
+
67
+ # Show area outside image boundaries.
68
+ height, width = image.shape[:2]
69
+ margin = 0
70
+ ax.set_ylim(height + margin, -margin)
71
+ ax.set_xlim(-margin, width + margin)
72
+ ax.axis('off')
73
+ masked_image = image.astype(np.uint32).copy()
74
+ for i in range(N):
75
+ color = colors[i]
76
+ _mask = mask[i]
77
+ if blur:
78
+ _mask = cv2.blur(_mask,(10,10))
79
+ # Mask
80
+ masked_image = apply_mask(masked_image, _mask, color, alpha)
81
+ # Mask Polygon
82
+ # Pad to ensure proper polygons for masks that touch image edges.
83
+ if contour:
84
+ padded_mask = np.zeros((_mask.shape[0] + 2, _mask.shape[1] + 2))
85
+ padded_mask[1:-1, 1:-1] = _mask
86
+ contours = find_contours(padded_mask, 0.5)
87
+ for verts in contours:
88
+ # Subtract the padding and flip (y, x) to (x, y)
89
+ verts = np.fliplr(verts) - 1
90
+ p = Polygon(verts, facecolor="none", edgecolor=color)
91
+ ax.add_patch(p)
92
+ ax.imshow(masked_image.astype(np.uint8), aspect='auto')
93
+ fig.savefig(fname)
94
+ print(f"{fname} saved.")
95
+ return
96
+
97
+
98
+ if __name__ == '__main__':
99
+ parser = argparse.ArgumentParser('Visualize Self-Attention maps')
100
+ parser.add_argument('--arch', default='vit_small', type=str,
101
+ choices=['vit_tiny', 'vit_small', 'vit_base'], help='Architecture (support only ViT atm).')
102
+ parser.add_argument('--patch_size', default=8, type=int, help='Patch resolution of the model.')
103
+ parser.add_argument('--pretrained_weights', default='', type=str,
104
+ help="Path to pretrained weights to load.")
105
+ parser.add_argument("--checkpoint_key", default="teacher", type=str,
106
+ help='Key to use in the checkpoint (example: "teacher")')
107
+ parser.add_argument("--image_path", default=None, type=str, help="Path of the image to load.")
108
+ parser.add_argument("--image_size", default=(480, 480), type=int, nargs="+", help="Resize image.")
109
+ parser.add_argument('--output_dir', default='.', help='Path where to save visualizations.')
110
+ parser.add_argument("--threshold", type=float, default=None, help="""We visualize masks
111
+ obtained by thresholding the self-attention maps to keep xx% of the mass.""")
112
+ args = parser.parse_args()
113
+
114
+ device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
115
+ # build model
116
+ model = vits.__dict__[args.arch](patch_size=args.patch_size, num_classes=0)
117
+ for p in model.parameters():
118
+ p.requires_grad = False
119
+ model.eval()
120
+ model.to(device)
121
+ if os.path.isfile(args.pretrained_weights):
122
+ state_dict = torch.load(args.pretrained_weights, map_location="cpu")
123
+ if args.checkpoint_key is not None and args.checkpoint_key in state_dict:
124
+ print(f"Take key {args.checkpoint_key} in provided checkpoint dict")
125
+ state_dict = state_dict[args.checkpoint_key]
126
+ # remove `module.` prefix
127
+ state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
128
+ # remove `backbone.` prefix induced by multicrop wrapper
129
+ state_dict = {k.replace("backbone.", ""): v for k, v in state_dict.items()}
130
+ msg = model.load_state_dict(state_dict, strict=False)
131
+ print('Pretrained weights found at {} and loaded with msg: {}'.format(args.pretrained_weights, msg))
132
+ else:
133
+ print("Please use the `--pretrained_weights` argument to indicate the path of the checkpoint to evaluate.")
134
+ url = None
135
+ if args.arch == "vit_small" and args.patch_size == 16:
136
+ url = "dino_deitsmall16_pretrain/dino_deitsmall16_pretrain.pth"
137
+ elif args.arch == "vit_small" and args.patch_size == 8:
138
+ url = "dino_deitsmall8_300ep_pretrain/dino_deitsmall8_300ep_pretrain.pth" # model used for visualizations in our paper
139
+ elif args.arch == "vit_base" and args.patch_size == 16:
140
+ url = "dino_vitbase16_pretrain/dino_vitbase16_pretrain.pth"
141
+ elif args.arch == "vit_base" and args.patch_size == 8:
142
+ url = "dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth"
143
+ if url is not None:
144
+ print("Since no pretrained weights have been provided, we load the reference pretrained DINO weights.")
145
+ state_dict = torch.hub.load_state_dict_from_url(url="https://dl.fbaipublicfiles.com/dino/" + url)
146
+ model.load_state_dict(state_dict, strict=True)
147
+ else:
148
+ print("There is no reference weights available for this model => We use random weights.")
149
+
150
+ # open image
151
+ if args.image_path is None:
152
+ # user has not specified any image - we use our own image
153
+ print("Please use the `--image_path` argument to indicate the path of the image you wish to visualize.")
154
+ print("Since no image path have been provided, we take the first image in our paper.")
155
+ response = requests.get("https://dl.fbaipublicfiles.com/dino/img.png")
156
+ img = Image.open(BytesIO(response.content))
157
+ img = img.convert('RGB')
158
+ elif os.path.isfile(args.image_path):
159
+ with open(args.image_path, 'rb') as f:
160
+ img = Image.open(f)
161
+ img = img.convert('RGB')
162
+ else:
163
+ print(f"Provided image path {args.image_path} is non valid.")
164
+ sys.exit(1)
165
+ transform = pth_transforms.Compose([
166
+ pth_transforms.Resize(args.image_size),
167
+ pth_transforms.ToTensor(),
168
+ pth_transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
169
+ ])
170
+ img = transform(img)
171
+
172
+ # make the image divisible by the patch size
173
+ w, h = img.shape[1] - img.shape[1] % args.patch_size, img.shape[2] - img.shape[2] % args.patch_size
174
+ img = img[:, :w, :h].unsqueeze(0)
175
+
176
+ w_featmap = img.shape[-2] // args.patch_size
177
+ h_featmap = img.shape[-1] // args.patch_size
178
+
179
+ attentions = model.get_last_selfattention(img.to(device))
180
+
181
+ nh = attentions.shape[1] # number of head
182
+
183
+ # we keep only the output patch attention
184
+ attentions = attentions[0, :, 0, 1:].reshape(nh, -1)
185
+
186
+ if args.threshold is not None:
187
+ # we keep only a certain percentage of the mass
188
+ val, idx = torch.sort(attentions)
189
+ val /= torch.sum(val, dim=1, keepdim=True)
190
+ cumval = torch.cumsum(val, dim=1)
191
+ th_attn = cumval > (1 - args.threshold)
192
+ idx2 = torch.argsort(idx)
193
+ for head in range(nh):
194
+ th_attn[head] = th_attn[head][idx2[head]]
195
+ th_attn = th_attn.reshape(nh, w_featmap, h_featmap).float()
196
+ # interpolate
197
+ th_attn = nn.functional.interpolate(th_attn.unsqueeze(0), scale_factor=args.patch_size, mode="nearest")[0].cpu().numpy()
198
+
199
+ attentions = attentions.reshape(nh, w_featmap, h_featmap)
200
+ attentions = nn.functional.interpolate(attentions.unsqueeze(0), scale_factor=args.patch_size, mode="nearest")[0].cpu().numpy()
201
+
202
+ # save attentions heatmaps
203
+ os.makedirs(args.output_dir, exist_ok=True)
204
+ torchvision.utils.save_image(torchvision.utils.make_grid(img, normalize=True, scale_each=True), os.path.join(args.output_dir, "img.png"))
205
+ for j in range(nh):
206
+ fname = os.path.join(args.output_dir, "attn-head" + str(j) + ".png")
207
+ plt.imsave(fname=fname, arr=attentions[j], format='png')
208
+ print(f"{fname} saved.")
209
+
210
+ if args.threshold is not None:
211
+ image = skimage.io.imread(os.path.join(args.output_dir, "img.png"))
212
+ for j in range(nh):
213
+ display_instances(image, th_attn[j], fname=os.path.join(args.output_dir, "mask_th" + str(args.threshold) + "_head" + str(j) +".png"), blur=False)