Spaces:
Runtime error
Runtime error
File size: 14,157 Bytes
0ed69a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
import gradio as gr
import numpy as np
import torch
import requests
import random
import os
import sys
import pickle
from PIL import Image
from tqdm.auto import tqdm
from datetime import datetime
import diffusers
from diffusers import DDIMScheduler
from transformers import CLIPTextModel, CLIPTokenizer
import torch.nn.functional as F
from utils import preprocess_mask, process_sketch, process_prompts, process_example
#################################################
#################################################
canvas_html = "<div id='canvas-root' style='max-width:400px; margin: 0 auto'></div>"
load_js = """
async () => {
const url = "https://huggingface.co/datasets/radames/gradio-components/raw/main/sketch-canvas.js"
fetch(url)
.then(res => res.text())
.then(text => {
const script = document.createElement('script');
script.type = "module"
script.src = URL.createObjectURL(new Blob([text], { type: 'application/javascript' }));
document.head.appendChild(script);
});
}
"""
get_js_colors = """
async (canvasData) => {
const canvasEl = document.getElementById("canvas-root");
return [canvasEl._data]
}
"""
css = '''
#color-bg{display:flex;justify-content: center;align-items: center;}
.color-bg-item{width: 100%; height: 32px}
#main_button{width:100%}
<style>
'''
#################################################
#################################################
global sreg, creg, sizereg, COUNT, creg_maps, sreg_maps, pipe, text_cond
sreg = 0
creg = 0
sizereg = 0
COUNT = 0
reg_sizes = {}
creg_maps = {}
sreg_maps = {}
text_cond = 0
device="cuda"
MAX_COLORS = 12
pipe = diffusers.StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
variant="fp16").to(device)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.scheduler.set_timesteps(50)
timesteps = pipe.scheduler.timesteps
sp_sz = pipe.unet.sample_size
with open('./valset.pkl', 'rb') as f:
val_prompt = pickle.load(f)
#################################################
#################################################
def mod_forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None):
residual = hidden_states
if self.spatial_norm is not None:
hidden_states = self.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape)
attention_mask = self.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if self.group_norm is not None:
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = self.to_q(hidden_states)
global sreg, creg, COUNT, creg_maps, sreg_maps, reg_sizes, text_cond
sa_ = True if encoder_hidden_states is None else False
encoder_hidden_states = text_cond if encoder_hidden_states is not None else hidden_states
if self.norm_cross:
encoder_hidden_states = self.norm_encoder_hidden_states(encoder_hidden_states)
key = self.to_k(encoder_hidden_states)
value = self.to_v(encoder_hidden_states)
query = self.head_to_batch_dim(query)
key = self.head_to_batch_dim(key)
value = self.head_to_batch_dim(value)
if COUNT/32 < 50*0.3:
dtype = query.dtype
if self.upcast_attention:
query = query.float()
key = key.float()
sim = torch.baddbmm(torch.empty(query.shape[0], query.shape[1], key.shape[1],
dtype=query.dtype, device=query.device),
query, key.transpose(-1, -2), beta=0, alpha=self.scale)
treg = torch.pow(timesteps[COUNT//32]/1000, 5)
## reg at self-attn
if sa_:
min_value = sim[int(sim.size(0)/2):].min(-1)[0].unsqueeze(-1)
max_value = sim[int(sim.size(0)/2):].max(-1)[0].unsqueeze(-1)
mask = sreg_maps[sim.size(1)].repeat(self.heads,1,1)
size_reg = reg_sizes[sim.size(1)].repeat(self.heads,1,1)
sim[int(sim.size(0)/2):] += (mask>0)*size_reg*sreg*treg*(max_value-sim[int(sim.size(0)/2):])
sim[int(sim.size(0)/2):] -= ~(mask>0)*size_reg*sreg*treg*(sim[int(sim.size(0)/2):]-min_value)
## reg at cross-attn
else:
min_value = sim[int(sim.size(0)/2):].min(-1)[0].unsqueeze(-1)
max_value = sim[int(sim.size(0)/2):].max(-1)[0].unsqueeze(-1)
mask = creg_maps[sim.size(1)].repeat(self.heads,1,1)
size_reg = reg_sizes[sim.size(1)].repeat(self.heads,1,1)
sim[int(sim.size(0)/2):] += (mask>0)*size_reg*creg*treg*(max_value-sim[int(sim.size(0)/2):])
sim[int(sim.size(0)/2):] -= ~(mask>0)*size_reg*creg*treg*(sim[int(sim.size(0)/2):]-min_value)
attention_probs = sim.softmax(dim=-1)
attention_probs = attention_probs.to(dtype)
else:
attention_probs = self.get_attention_scores(query, key, attention_mask)
COUNT += 1
hidden_states = torch.bmm(attention_probs, value)
hidden_states = self.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = self.to_out[0](hidden_states)
# dropout
hidden_states = self.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if self.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / self.rescale_output_factor
return hidden_states
for _module in pipe.unet.modules():
if _module.__class__.__name__ == "Attention":
_module.__class__.__call__ = mod_forward
#################################################
#################################################
def process_generation(binary_matrixes, seed, creg_, sreg_, sizereg_, bsz, master_prompt, *prompts):
global creg, sreg, sizereg
creg, sreg, sizereg = creg_, sreg_, sizereg_
clipped_prompts = prompts[:len(binary_matrixes)]
prompts = [master_prompt] + list(clipped_prompts)
layouts = torch.cat([preprocess_mask(mask_, sp_sz, sp_sz, device) for mask_ in binary_matrixes])
text_input = pipe.tokenizer(prompts, padding="max_length", return_length=True, return_overflowing_tokens=False,
max_length=pipe.tokenizer.model_max_length, truncation=True, return_tensors="pt")
cond_embeddings = pipe.text_encoder(text_input.input_ids.to(device))[0]
uncond_input = pipe.tokenizer([""]*bsz, padding="max_length", max_length=pipe.tokenizer.model_max_length,
truncation=True, return_tensors="pt")
uncond_embeddings = pipe.text_encoder(uncond_input.input_ids.to(device))[0]
###########################
###### prep for sreg ######
###########################
global sreg_maps, reg_sizes
sreg_maps = {}
reg_sizes = {}
for r in range(4):
res = int(sp_sz/np.power(2,r))
layouts_s = F.interpolate(layouts,(res, res),mode='nearest')
layouts_s = (layouts_s.view(layouts_s.size(0),1,-1)*layouts_s.view(layouts_s.size(0),-1,1)).sum(0).unsqueeze(0).repeat(bsz,1,1)
reg_sizes[np.power(res, 2)] = 1-sizereg*layouts_s.sum(-1, keepdim=True)/(np.power(res, 2))
sreg_maps[np.power(res, 2)] = layouts_s
###########################
###### prep for creg ######
###########################
pww_maps = torch.zeros(1,77,sp_sz,sp_sz).to(device)
for i in range(1,len(prompts)):
wlen = text_input['length'][i] - 2
widx = text_input['input_ids'][i][1:1+wlen]
for j in range(77):
try:
if (text_input['input_ids'][0][j:j+wlen] == widx).sum() == wlen:
pww_maps[:,j:j+wlen,:,:] = layouts[i-1:i]
cond_embeddings[0][j:j+wlen] = cond_embeddings[i][1:1+wlen]
break
except:
raise gr.Error("Please check whether every segment prompt is included in the full text !")
return
global creg_maps
creg_maps = {}
for r in range(4):
res = int(sp_sz/np.power(2,r))
layout_c = F.interpolate(pww_maps,(res,res),mode='nearest').view(1,77,-1).permute(0,2,1).repeat(bsz,1,1)
creg_maps[np.power(res, 2)] = layout_c
###########################
#### prep for text_emb ####
###########################
global text_cond
text_cond = torch.cat([uncond_embeddings, cond_embeddings[:1].repeat(bsz,1,1)])
global COUNT
COUNT = 0
if seed == -1:
latents = torch.randn(bsz,4,sp_sz,sp_sz).to(device)
else:
latents = torch.randn(bsz,4,sp_sz,sp_sz, generator=torch.Generator().manual_seed(seed)).to(device)
image = pipe(prompts[:1]*bsz, latents=latents).images
return(image)
#################################################
#################################################
### define the interface
with gr.Blocks(css=css) as demo:
binary_matrixes = gr.State([])
color_layout = gr.State([])
gr.Markdown('''## DenseDiffusion: Dense Text-to-Image Generation with Attention Modulation''')
gr.Markdown('''
#### ๐บ Instruction to generate images ๐บ <br>
(1) Create the image layout. <br>
(2) Label each segment with a text prompt. <br>
(3) Adjust the full text. The default full text is automatically concatenated from each segment's text. The default one works well, but refineing the full text will further improve the result. <br>
(4) Check the generated images, and tune the hyperparameters if needed. <br>
- w<sup>c</sup> : The degree of attention modulation at cross-attention layers. <br>
- w<sup>s</sup> : The degree of attention modulation at self-attention layers. <br>
''')
with gr.Row():
with gr.Box(elem_id="main-image"):
canvas_data = gr.JSON(value={}, visible=False)
canvas = gr.HTML(canvas_html)
button_run = gr.Button("(1) I've finished my sketch ! ๐บ", elem_id="main_button", interactive=True)
prompts = []
colors = []
color_row = [None] * MAX_COLORS
with gr.Column(visible=False) as post_sketch:
for n in range(MAX_COLORS):
if n == 0 :
with gr.Row(visible=False) as color_row[n]:
colors.append(gr.Image(shape=(100, 100), label="background", type="pil", image_mode="RGB", width=100, height=100))
prompts.append(gr.Textbox(label="Prompt for the background (white region)", value=""))
else:
with gr.Row(visible=False) as color_row[n]:
colors.append(gr.Image(shape=(100, 100), label="segment "+str(n), type="pil", image_mode="RGB", width=100, height=100))
prompts.append(gr.Textbox(label="Prompt for the segment "+str(n)))
get_genprompt_run = gr.Button("(2) I've finished segment labeling ! ๐บ", elem_id="prompt_button", interactive=True)
with gr.Column(visible=False) as gen_prompt_vis:
general_prompt = gr.Textbox(value='', label="(3) Textual Description for the entire image", interactive=True)
with gr.Accordion("(4) Tune the hyperparameters", open=False):
creg_ = gr.Slider(label=" w\u1D9C (The degree of attention modulation at cross-attention layers) ", minimum=0, maximum=2., value=1.0, step=0.1)
sreg_ = gr.Slider(label=" w \u02E2 (The degree of attention modulation at self-attention layers) ", minimum=0, maximum=2., value=0.3, step=0.1)
sizereg_ = gr.Slider(label="The degree of mask-area adaptive adjustment", minimum=0, maximum=1., value=1., step=0.1)
bsz_ = gr.Slider(label="Number of Samples to generate", minimum=1, maximum=4, value=1, step=1)
seed_ = gr.Slider(label="Seed", minimum=-1, maximum=999999999, value=-1, step=1)
final_run_btn = gr.Button("Generate ! ๐บ")
layout_path = gr.Textbox(label="layout_path", visible=False)
all_prompts = gr.Textbox(label="all_prompts", visible=False)
with gr.Column():
out_image = gr.Gallery(label="Result", columns=2, height='auto')
button_run.click(process_sketch, inputs=[canvas_data], outputs=[post_sketch, binary_matrixes, *color_row, *colors], _js=get_js_colors, queue=False)
get_genprompt_run.click(process_prompts, inputs=[binary_matrixes, *prompts], outputs=[gen_prompt_vis, general_prompt], queue=False)
final_run_btn.click(process_generation, inputs=[binary_matrixes, seed_, creg_, sreg_, sizereg_, bsz_, general_prompt, *prompts], outputs=out_image)
gr.Examples(
examples=[['0.png', '***'.join([val_prompt[0]['textual_condition']] + val_prompt[0]['segment_descriptions']), 381940206],
['1.png', '***'.join([val_prompt[1]['textual_condition']] + val_prompt[1]['segment_descriptions']), 307504592],
['5.png', '***'.join([val_prompt[5]['textual_condition']] + val_prompt[5]['segment_descriptions']), 114972190]],
inputs=[layout_path, all_prompts, seed_],
outputs=[post_sketch, binary_matrixes, *color_row, *colors, *prompts, gen_prompt_vis, general_prompt, seed_],
fn=process_example,
run_on_click=True,
label='๐บ Examples ๐บ',
)
demo.load(None, None, None, _js=load_js)
demo.launch(debug=True) |