File size: 9,796 Bytes
e3a3eca
4f4656c
 
 
 
cb415f3
 
4f4656c
 
 
cb415f3
 
4f4656c
eeb7e29
 
 
 
 
82201a6
4f4656c
 
 
 
 
 
 
 
 
 
 
 
 
406a690
9d41154
 
 
 
 
cb415f3
4f4656c
 
 
 
cb415f3
 
 
4f4656c
 
 
 
 
 
 
 
cb415f3
eeb7e29
cb415f3
 
 
 
 
 
 
 
 
 
 
 
eeb7e29
cb415f3
 
 
4f4656c
eeb7e29
 
4f4656c
eeb7e29
 
4f4656c
eeb7e29
4f4656c
95aa48f
eeb7e29
 
cb415f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95aa48f
cb415f3
 
 
 
 
 
 
 
 
4f4656c
cb415f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
406a690
4db08f4
cb415f3
 
 
 
 
4f4656c
 
 
 
eeb7e29
4f4656c
cb415f3
4f4656c
 
 
cb415f3
4db08f4
cb415f3
4f4656c
 
 
 
 
 
cb415f3
4f4656c
 
 
24dc2ac
4f4656c
cb415f3
4f4656c
 
 
 
 
eeb7e29
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import spaces
import torch
from pipelines.inverted_ve_pipeline import STYLE_DESCRIPTION_DICT, create_image_grid
import gradio as gr
import os, json
import numpy as np
from PIL import Image
from pipelines.pipeline_stable_diffusion_xl import StableDiffusionXLPipeline
from random import randint
from utils import init_latent
from transformers import Blip2Processor, Blip2ForConditionalGeneration
from diffusers import DDIMScheduler

device = 'cuda' if torch.cuda.is_available() else 'cpu'
if device == 'cpu':
    torch_dtype = torch.float32
else:
    torch_dtype = torch.float16

def memory_efficient(model):
    try:
        model.to(device)
    except Exception as e:
        print("Error moving model to device:", e)
    try:
        model.enable_model_cpu_offload()
    except AttributeError:
        print("enable_model_cpu_offload is not supported.")
    try:
        model.enable_vae_slicing()
    except AttributeError:
        print("enable_vae_slicing is not supported.")

    # if device == 'cuda':
    #     try:
    #         model.enable_xformers_memory_efficient_attention()
    #     except AttributeError:
    #         print("enable_xformers_memory_efficient_attention is not supported.")

model = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch_dtype)
print("SDXL")
memory_efficient(model)

blip_processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
blip_model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch_dtype).to(device)


# controlnet_scale, canny thres 1, 2 (2 > 1, 2:1, 3:1)

def parse_config(config):
    with open(config, 'r') as f:
        config = json.load(f)
    return config


def load_example_style():
    folder_path = 'assets/ref'
    examples = []
    for filename in os.listdir(folder_path):
        if filename.endswith((".png")):
            image_path = os.path.join(folder_path, filename)
            image_name = os.path.basename(image_path)
            style_name = image_name.split('_')[1]

            config_path = './config/{}.json'.format(style_name)
            config = parse_config(config_path)
            inf_object_name = config["inference_info"]["inf_object_list"][0]

            image_info = [image_path, style_name, inf_object_name, 1, 50]
            examples.append(image_info)

    return examples

def blip_inf_prompt(image):
    inputs = blip_processor(images=image, return_tensors="pt").to(device, torch.float16)

    generated_ids = blip_model.generate(**inputs)
    generated_text = blip_processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()

    return generated_text

@spaces.GPU
def style_fn(image_path, style_name, content_text, output_number=1, diffusion_step=50):

    user_image_flag = not style_name.strip() # empty

    if not user_image_flag:
        real_img = None
        config_path = './config/{}.json'.format(style_name)
        config = parse_config(config_path)

        inf_object = content_text
        inf_seeds = [randint(0, 10**10) for _ in range(int(output_number))]

        activate_layer_indices_list = config['inference_info']['activate_layer_indices_list']
        activate_step_indices_list = config['inference_info']['activate_step_indices_list']
        ref_seed = config['reference_info']['ref_seeds'][0]

        attn_map_save_steps = config['inference_info']['attn_map_save_steps']
        guidance_scale = config['guidance_scale']
        use_inf_negative_prompt = config['inference_info']['use_negative_prompt']

        ref_object = config["reference_info"]["ref_object_list"][0]
        ref_with_style_description = config['reference_info']['with_style_description']
        inf_with_style_description = config['inference_info']['with_style_description']

        use_shared_attention = config['inference_info']['use_shared_attention']
        adain_queries = config['inference_info']['adain_queries']
        adain_keys = config['inference_info']['adain_keys']
        adain_values = config['inference_info']['adain_values']

        use_advanced_sampling = config['inference_info']['use_advanced_sampling']
        use_prompt_as_null = False

        style_name = config["style_name_list"][0]
        style_description_pos, style_description_neg = STYLE_DESCRIPTION_DICT[style_name][0], \
                                                       STYLE_DESCRIPTION_DICT[style_name][1]
        if ref_with_style_description:
            ref_prompt = style_description_pos.replace("{object}", ref_object)
        else:
            ref_prompt = ref_object

        if inf_with_style_description:
            inf_prompt = style_description_pos.replace("{object}", inf_object)
        else:
            inf_prompt = inf_object
    else:
        model.scheduler = DDIMScheduler.from_config(model.scheduler.config)
        origin_real_img = Image.open(image_path).resize((1024, 1024), resample=Image.BICUBIC)
        real_img = np.array(origin_real_img).astype(np.float32) / 255.0

        style_name = 'default'

        config_path = './config/{}.json'.format(style_name)
        config = parse_config(config_path)

        inf_object = content_text
        inf_seeds = [randint(0, 10**10) for _ in range(int(output_number))]

        activate_layer_indices_list = config['inference_info']['activate_layer_indices_list']
        activate_step_indices_list = config['inference_info']['activate_step_indices_list']
        ref_seed = 0

        attn_map_save_steps = config['inference_info']['attn_map_save_steps']
        guidance_scale = config['guidance_scale']
        use_inf_negative_prompt = False

        use_shared_attention = config['inference_info']['use_shared_attention']
        adain_queries = config['inference_info']['adain_queries']
        adain_keys = config['inference_info']['adain_keys']
        adain_values = config['inference_info']['adain_values']

        use_advanced_sampling = False
        use_prompt_as_null = True

        ref_prompt = blip_inf_prompt(origin_real_img)
        inf_prompt = inf_object
        style_description_neg = None


    # Inference
    with torch.inference_mode():
        grid = None

        for activate_layer_indices in activate_layer_indices_list:

            for activate_step_indices in activate_step_indices_list:

                str_activate_layer, str_activate_step = model.activate_layer(
                    activate_layer_indices=activate_layer_indices,
                    attn_map_save_steps=attn_map_save_steps,
                    activate_step_indices=activate_step_indices, use_shared_attention=use_shared_attention,
                    adain_queries=adain_queries,
                    adain_keys=adain_keys,
                    adain_values=adain_values,
                )

                ref_latent = init_latent(model, device_name=device, dtype=torch_dtype, seed=ref_seed)
                latents = [ref_latent]
                num_images_per_prompt = len(inf_seeds) + 1

                for inf_seed in inf_seeds:
                    # latents.append(model.get_init_latent(inf_seed, precomputed_path=None))
                    inf_latent = init_latent(model, device_name=device, dtype=torch_dtype, seed=inf_seed)
                    latents.append(inf_latent)

                latents = torch.cat(latents, dim=0)
                latents.to(device)

                images = model(
                    prompt=ref_prompt,
                    negative_prompt=style_description_neg,
                    guidance_scale=guidance_scale,
                    num_inference_steps=diffusion_step,
                    latents=latents,
                    num_images_per_prompt=num_images_per_prompt,
                    target_prompt=inf_prompt,
                    use_inf_negative_prompt=use_inf_negative_prompt,
                    use_advanced_sampling=use_advanced_sampling,
                    use_prompt_as_null=use_prompt_as_null,
                    image=real_img
                )[0][1:]

                n_row = 1
                n_col = len(inf_seeds)

                # make grid
                grid = create_image_grid(images, n_row, n_col, padding=10)

        return grid

description_md = """

### We introduce `Visual Style Prompting`, which reflects the style of a reference image to the images generated by a pretrained text-to-image diffusion model without finetuning or optimization (e.g., Figure N).
### πŸ“– [[Paper](https://arxiv.org/abs/2402.12974)] | ✨ [[Project page](https://curryjung.github.io/VisualStylePrompt)] | ✨ [[Code](https://github.com/naver-ai/Visual-Style-Prompting)]
### πŸ”₯ [[w/ Controlnet ver](https://huggingface.co/spaces/naver-ai/VisualStylePrompting_Controlnet)]
---
### πŸ”₯ To try out our vanilla demo,
1. Choose a `style reference` from the collection of images below.
2. Enter the `text prompt`.
3. Choose the `number of outputs`.

### πŸ‘‰οΈ To better reflect the style of a user's image, the higher the resolution, the better.
### πŸ‘‰ To achieve faster results, we recommend lowering the diffusion steps to 30.
### Enjoy ! πŸ˜„
"""

iface_style = gr.Interface(
    fn=style_fn,
    inputs=[
        gr.components.Image(label="Style Image", type="filepath"),
        gr.components.Textbox(label='Style name', visible=False),
        gr.components.Textbox(label="Text prompt", placeholder="Enter Text prompt"),
        gr.components.Textbox(label="Number of outputs", placeholder="Enter Number of outputs"),
        gr.components.Slider(minimum=10, maximum=50, step=10, value=50, label="Diffusion steps")
    ],
    outputs=gr.components.Image(label="Generated Image"),
    title="🎨 Visual Style Prompting (default)",
    description=description_md,
    examples=load_example_style(),
)

iface_style.launch(debug=True)