Spaces:
Build error
Build error
File size: 7,311 Bytes
bb3ea39 dd504c0 880da41 dd504c0 402b433 880da41 402b433 880da41 497a5c7 bb3ea39 f4b82b2 9651aac e7c9542 dd504c0 402b433 f4b82b2 c9dadbf f4b82b2 351ead9 f4b82b2 c9dadbf f4b82b2 9651aac 0f77bb9 c9dadbf 0f77bb9 c712472 f4b82b2 f981819 f4b82b2 c9dadbf 689e965 402b433 689e965 402b433 7c408ba 402b433 0f77bb9 402b433 dd504c0 402b433 722b0aa e52b6e6 0f77bb9 402b433 dd504c0 402b433 dd504c0 402b433 dca7dd8 0f77bb9 402b433 dd504c0 402b433 dd504c0 402b433 f4b82b2 0f77bb9 3d3c7f5 0f77bb9 a0c42c4 0f77bb9 a0c42c4 0f77bb9 3d3c7f5 0f77bb9 a0c42c4 0f77bb9 a0c42c4 ce1e3e0 dca7dd8 0f77bb9 1a2db09 274f0f4 1a2db09 dca7dd8 274f0f4 0f77bb9 dca7dd8 1a2db09 0f77bb9 74bae21 1a2db09 0f77bb9 2134c75 1a2db09 dca7dd8 0f77bb9 1a2db09 2134c75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import gradio as gr
import cv2
import torch
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib import colors
from mpl_toolkits.axes_grid1 import ImageGrid
from torchvision import transforms
import fire_network
import numpy as np
from PIL import Image
# Possible Scales for multiscale inference
scales = [2.0, 1.414, 1.0, 0.707, 0.5, 0.353, 0.25]
device = 'cpu'
# Load net
state = torch.load('fire.pth', map_location='cpu')
state['net_params']['pretrained'] = None # no need for imagenet pretrained model
net = fire_network.init_network(**state['net_params']).to(device)
net.load_state_dict(state['state_dict'])
transform = transforms.Compose([
transforms.Resize(1024),
transforms.ToTensor(),
transforms.Normalize(**dict(zip(["mean", "std"], net.runtime['mean_std'])))
])
# sf_idx_ = [55, 14, 5, 4, 52, 57, 40, 9]
col = plt.get_cmap('tab10')
def generate_matching_superfeatures(im1, im2, scale_id=6, threshold=50, sf_ids=''):
print('im1:', im1.size)
print('im2:', im2.size)
# which sf
sf_idx_ = [55, 14, 5, 4, 52, 57, 40, 9]
if sf_ids.lower().startswith('r'):
n_sf_ids = int(sf_ids[1:])
sf_idx_ = np.random.randint(256, size=n_sf_ids)
elif sf_ids != '':
sf_idx_ = map(int, sf_ids.strip().split(','))
im1_tensor = transform(im1).unsqueeze(0)
im2_tensor = transform(im2).unsqueeze(0)
im1_cv = np.array(im1)[:, :, ::-1].copy()
im2_cv = np.array(im2)[:, :, ::-1].copy()
# extract features
with torch.no_grad():
output1 = net.get_superfeatures(im1_tensor.to(device), scales=[scales[scale_id]])
feats1 = output1[0][0]
attns1 = output1[1][0]
strenghts1 = output1[2][0]
output2 = net.get_superfeatures(im2_tensor.to(device), scales=[scales[scale_id]])
feats2 = output2[0][0]
attns2 = output2[1][0]
strenghts2 = output2[2][0]
print(feats1.shape, feats2.shape)
print(attns1.shape, attns2.shape)
print(strenghts1.shape, strenghts2.shape)
# Store all binary SF att maps to show them all at once in the end
all_att_bin1 = []
all_att_bin2 = []
for n, i in enumerate(sf_idx_):
# all_atts[n].append(attn[j][scale_id][0,i,:,:].numpy())
att_heat = np.array(attns1[0,i,:,:].numpy(), dtype=np.float32)
att_heat = np.uint8(att_heat / np.max(att_heat[:]) * 255.0)
att_heat_bin = np.where(att_heat>threshold, 255, 0)
# print(att_heat_bin)
all_att_bin1.append(att_heat_bin)
att_heat = np.array(attns2[0,i,:,:].numpy(), dtype=np.float32)
att_heat = np.uint8(att_heat / np.max(att_heat[:]) * 255.0)
att_heat_bin = np.where(att_heat>threshold, 255, 0)
all_att_bin2.append(att_heat_bin)
fin_img = []
img1rsz = np.copy(im1_cv)
print('im1:', im1.size)
print('img1rsz:', img1rsz.shape)
for j, att in enumerate(all_att_bin1):
att = cv2.resize(att, im1.size, interpolation=cv2.INTER_NEAREST)
# att = cv2.resize(att, imgz[i].shape[:2][::-1], interpolation=cv2.INTER_CUBIC)
# att = cv2.resize(att, imgz[i].shape[:2][::-1])
# att = att.resize(shape)
# att = resize(att, im1.size)
mask2d = zip(*np.where(att==255))
for m,n in mask2d:
col_ = col.colors[j] if j < 7 else col.colors[j+1]
if j == 0: col_ = col.colors[9]
col_ = 255*np.array(colors.to_rgba(col_))[:3]
img1rsz[m,n, :] = col_[::-1]
fin_img.append(img1rsz)
img2rsz = np.copy(im2_cv)
print('im2:', im2.size)
print('img2rsz:', img2rsz.shape)
for j, att in enumerate(all_att_bin2):
att = cv2.resize(att, im2.size, interpolation=cv2.INTER_NEAREST)
# att = cv2.resize(att, imgz[i].shape[:2][::-1], interpolation=cv2.INTER_CUBIC)
# # att = cv2.resize(att, imgz[i].shape[:2][::-1])
# att = att.resize(im2.shape)
# print('att:', att.shape)
mask2d = zip(*np.where(att==255))
for m,n in mask2d:
col_ = col.colors[j] if j < 7 else col.colors[j+1]
if j == 0: col_ = col.colors[9]
col_ = 255*np.array(colors.to_rgba(col_))[:3]
img2rsz[m,n, :] = col_[::-1]
fin_img.append(img2rsz)
fig1 = plt.figure(1)
plt.imshow(cv2.cvtColor(img1rsz, cv2.COLOR_BGR2RGB))
ax1 = plt.gca()
# ax1.axis('scaled')
ax1.axis('off')
plt.tight_layout()
# fig1.canvas.draw()
fig2 = plt.figure(2)
plt.imshow(cv2.cvtColor(img2rsz, cv2.COLOR_BGR2RGB))
ax2 = plt.gca()
# ax2.axis('scaled')
ax2.axis('off')
plt.tight_layout()
# fig2.canvas.draw()
# fig = plt.figure()
# grid = ImageGrid(fig, 111, nrows_ncols=(2, 1), axes_pad=0.1)
# for ax, img in zip(grid, fin_img):
# ax.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
# ax.axis('scaled')
# ax.axis('off')
# plt.tight_layout()
# fig.suptitle("Matching SFs", fontsize=16)
# fig.canvas.draw()
# # Now we can save it to a numpy array.
# data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
# data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
return fig1, fig2, ','.join(map(str, sf_idx_))
# GRADIO APP
title = "Visualizing Super-features"
description = "This is a visualization demo for the ICLR 2022 paper <b><a href='https://github.com/naver/fire' target='_blank'>Learning Super-Features for Image Retrieval</a></p></b>"
article = "<p style='text-align: center'><a href='https://github.com/naver/fire' target='_blank'>Original Github Repo</a></p>"
# css = ".output-image, .input-image {height: 40rem !important; width: 100% !important;}"
# css = "@media screen and (max-width: 600px) { .output_image, .input_image {height:20rem !important; width: 100% !important;} }"
# css = ".output_image, .input_image {hieght: 1000px !important}"
css = ".input_image, .input_image {height: 600px !important; width: 600px !important;} "
# css = ".output-image, .input-image {height: 40rem !important; width: 100% !important;}"
iface = gr.Interface(
fn=generate_matching_superfeatures,
inputs=[
# gr.inputs.Image(shape=(1024, 1024), type="pil", label="First Image"),
# gr.inputs.Image(shape=(1024, 1024), type="pil", label="Second Image"),
gr.inputs.Image(type="pil", label="First Image"),
gr.inputs.Image(type="pil", label="Second Image"),
gr.inputs.Slider(minimum=0, maximum=6, step=1, default=2, label="Scale"),
gr.inputs.Slider(minimum=1, maximum=255, step=25, default=100, label="Binarization Threshold"),
gr.inputs.Textbox(lines=1, default="", label="SF IDs to show (comma separated numbers from 0-255; typing 'rX' will return X random SFs", optional=True)],
outputs=[
"plot",
"plot",
gr.outputs.Textbox(label="SFs")],
# outputs=gr.outputs.Image(shape=(1024,2048), type="plot"),
title=title,
theme='peach',
layout="horizontal",
description=description,
article=article,
css=css,
examples=[
["chateau_1.png", "chateau_2.png", 2, 100, '55,14,5,4,52,57,40,9'],
["anafi1.jpeg", "anafi2.jpeg", 4, 50, '99,100,142,213,236']
],
)
iface.launch(enable_queue=True) |