File size: 4,212 Bytes
934fdee
 
 
 
 
 
3639214
934fdee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e08595
934fdee
 
 
 
 
 
 
 
 
 
 
6e08595
934fdee
 
3639214
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
---
title: Multi HMR
emoji: 👬
colorFrom: pink
colorTo: purple
sdk: gradio
sdk_version: 4.44.1
app_file: app.py
pinned: false
---

<p align="center">
  <h1 align="center">Multi-HMR: Regressing Whole-Body Human Meshes <br> for Multiple Persons in a Single Shot</h1>

  <p align="center">
    Fabien Baradel*, 
    Matthieu Armando, 
    Salma Galaaoui, 
    Romain Brégier, <br>
    Philippe Weinzaepfel,
    Grégory Rogez,
    Thomas Lucas*
  </p>

  <p align="center">
    <sup>*</sup> equal contribution
  </p>

  <p align="center">
  <a href="./"><img alt="arXiv" src="https://img.shields.io/badge/arXiv-xxxx.xxxxx-00ff00.svg"></a>
  <a href="./"><img alt="Blogpost" src="https://img.shields.io/badge/Blogpost-up-yellow"></a>
  <a href="./"><img alt="Demo" src="https://img.shields.io/badge/Demo-up-blue"></a>
  <a href="./"><img alt="Hugging Face Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"></a>
  </p>

  <div align="center">
  <img width="49%" alt="Multi-HMR illustration 1" src="assets/visu1.gif">
  <img width="49%" alt="Multi-HMR illustration 2" src="assets/visu2.gif">

  <br>
  Multi-HMR is a simple yet effective single-shot model for multi-person and expressive human mesh recovery.
  It takes as input a single RGB image and efficiently performs 3D reconstruction of multiple humans in camera space.
  <br>
</div>
</p>

## Installation
First, you need to clone the repo.

We recommand to use virtual enviroment for running MultiHMR.
Please run the following lines for creating the environment with ```venv```:
```bash
python3.9 -m venv .multihmr
source .multihmr/bin/activate
pip install -r requirements.txt
```

Otherwise you can also create a conda environment.
```bash
conda env create -f conda.yaml
conda activate multihmr
```

The installation has been tested with CUDA 11.7.

Checkpoints will automatically be downloaded to `$HOME/models/multiHMR` the first time you run the demo code.

Besides these files, you also need to download the *SMPLX* model.
You will need the [neutral model](http://smplify.is.tue.mpg.de) for running the demo code.
Please go to the corresponding website and register to get access to the downloads section.
Download the model and place `SMPLX_NEUTRAL.npz` in `./models/smplx/`.

## Run Multi-HMR on images
The following command will run Multi-HMR on all images in the specified `--img_folder`, and save renderings of the reconstructions in `--out_folder`.
The `--model_name` flag specifies the model to use.
The `--extra_views` flags additionally renders the side and bev view of the reconstructed scene, `--save_mesh` saves meshes as in a '.npy' file.
```bash
python3.9 demo.py \
    --img_folder example_data \
    --out_folder demo_out \
    --extra_views 1 \
    --model_name multiHMR_896_L_synth
```

## Pre-trained models
We provide multiple pre-trained checkpoints.
Here is a list of their associated features.
Once downloaded you need to place them into `$HOME/models/multiHMR`.

| modelname                     | training data                     | backbone | resolution | runtime (ms) |
|-------------------------------|-----------------------------------|----------|------------|--------------|
| [multiHMR_896_L_synth](./)    | BEDLAM+AGORA                      | ViT-L    | 896x896    |    126       |

We compute the runtime on GPU V100-32GB.

## License
The code is distributed under the CC BY-NC-SA 4.0 License.\
See [Multi-HMR LICENSE](Multi-HMR_License.txt), [Checkpoint LICENSE](Checkpoint_License.txt) and [Example Data LICENSE](Example_Data_License.txt) for more information.

## Citing
If you find this code useful for your research, please have a look to the associated paper [arxiv.org/abs/2402.14654](arxiv.org/abs/2402.14654) and please consider citing the following paper:
```bibtex
@inproceedings{multi-hmr2024,
    title={Multi-HMR: Single-Shot Multi-Person Expressive Human Mesh Recovery},
    author={Baradel*, Fabien and 
            Armando, Matthieu and 
            Galaaoui, Salma and 
            Br{\'e}gier, Romain and 
            Weinzaepfel, Philippe and 
            Rogez, Gr{\'e}gory and
            Lucas*, Thomas
            },
    booktitle={ECCV},
    year={2024}
}
```