|
|
|
|
|
|
|
|
|
import torch |
|
|
|
def rebatch(idx_0, idx_det): |
|
|
|
|
|
values, counts = torch.unique(idx_0, sorted=True, return_counts=True) |
|
|
|
if not len(values) == values.max() + 1: |
|
|
|
jumps = (values - torch.concat([torch.Tensor([-1]).to(values.device), values])[:-1]) - 1 |
|
offsets = torch.cumsum(jumps.int(), dim=0) |
|
|
|
|
|
|
|
|
|
offsets = [c * [o] for o, c in [(offsets[i], counts[i]) for i in range(offsets.shape[0])]] |
|
offsets = torch.Tensor([e for o in offsets for e in o]).to(jumps.device).int() |
|
idx_0 = idx_0 - offsets |
|
idx_det_0 = idx_det[0] - offsets |
|
else: |
|
idx_det_0 = idx_det[0] |
|
return counts, idx_det_0 |
|
|
|
def pad(x, padlen, dim): |
|
assert x.shape[dim] <= padlen, "Incoherent dimensions" |
|
if not dim == 1: |
|
raise NotImplementedError("Not implemented for this dim.") |
|
padded = torch.concat([x, x.new_zeros((x.shape[0], padlen - x.shape[dim],) + x.shape[2:])], dim=dim) |
|
mask = torch.concat([x.new_ones((x.shape[0], x.shape[dim])), x.new_zeros((x.shape[0], padlen - x.shape[dim]))], dim=dim) |
|
return padded, mask |
|
|
|
def pad_to_max(x_central, counts): |
|
"""Pad so that each batch images has the same number of x_central queries. |
|
Mask is used in attention to remove the fact queries. """ |
|
max_count = counts.max() |
|
xlist = torch.split(x_central, tuple(counts), dim=0) |
|
xlist2 = [x.unsqueeze(0) for x in xlist] |
|
xlist3 = [pad(x, max_count, dim=1) for x in xlist2] |
|
xlist4, mask = [x[0] for x in xlist3], [x[1] for x in xlist3] |
|
x_central, mask = torch.concat(xlist4, dim=0), torch.concat(mask, dim=0) |
|
return x_central, mask |
|
|