# Multi-HMR # Copyright (c) 2024-present NAVER Corp. # CC BY-NC-SA 4.0 license import torch import numpy as np import pyrender import trimesh import math from scipy.spatial.transform import Rotation from PIL import ImageFont, ImageDraw, Image OPENCV_TO_OPENGL_CAMERA_CONVENTION = np.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]) def geotrf( Trf, pts, ncol=None, norm=False): """ Apply a geometric transformation to a list of 3-D points. H: 3x3 or 4x4 projection matrix (typically a Homography) p: numpy/torch/tuple of coordinates. Shape must be (...,2) or (...,3) ncol: int. number of columns of the result (2 or 3) norm: float. if != 0, the resut is projected on the z=norm plane. Returns an array of projected 2d points. """ assert Trf.ndim in (2,3) if isinstance(Trf, np.ndarray): pts = np.asarray(pts) elif isinstance(Trf, torch.Tensor): pts = torch.as_tensor(pts, dtype=Trf.dtype) ncol = ncol or pts.shape[-1] # adapt shape if necessary output_reshape = pts.shape[:-1] if Trf.ndim == 3: assert len(Trf) == len(pts), 'batch size does not match' if Trf.ndim == 3 and pts.ndim > 3: # Trf == (B,d,d) & pts == (B,H,W,d) --> (B, H*W, d) pts = pts.reshape(pts.shape[0], -1, pts.shape[-1]) elif Trf.ndim == 3 and pts.ndim == 2: # Trf == (B,d,d) & pts == (B,d) --> (B, 1, d) pts = pts[:, None, :] if pts.shape[-1]+1 == Trf.shape[-1]: Trf = Trf.swapaxes(-1,-2) # transpose Trf pts = pts @ Trf[...,:-1,:] + Trf[...,-1:,:] elif pts.shape[-1] == Trf.shape[-1]: Trf = Trf.swapaxes(-1,-2) # transpose Trf pts = pts @ Trf else: pts = Trf @ pts.T if pts.ndim >= 2: pts = pts.swapaxes(-1,-2) if norm: pts = pts / pts[...,-1:] # DONT DO /= BECAUSE OF WEIRD PYTORCH BUG if norm != 1: pts *= norm return pts[...,:ncol].reshape(*output_reshape, ncol) def create_scene(img_pil, l_mesh, l_face, color=None, metallicFactor=0., roughnessFactor=0.5, focal=600): scene = trimesh.Scene( lights=trimesh.scene.lighting.Light(intensity=3.0) ) # Human meshes for i, mesh in enumerate(l_mesh): if color is None: _color = (np.random.choice(range(1,225))/255, np.random.choice(range(1,225))/255, np.random.choice(range(1,225))/255) else: if isinstance(color,list): _color = color[i] elif isinstance(color,tuple): _color = color else: raise NotImplementedError mesh = trimesh.Trimesh(mesh, l_face[i]) mesh.visual = trimesh.visual.TextureVisuals( uv=None, material=trimesh.visual.material.PBRMaterial( metallicFactor=metallicFactor, roughnessFactor=roughnessFactor, alphaMode='OPAQUE', baseColorFactor=(_color[0], _color[1], _color[2], 1.0) ), image=None, face_materials=None ) scene.add_geometry(mesh) # Image H, W = img_pil.size[0], img_pil.size[1] screen_width = 0.3 height = focal * screen_width / H width = screen_width * 0.5**0.5 rot45 = np.eye(4) rot45[:3,:3] = Rotation.from_euler('z',np.deg2rad(45)).as_matrix() rot45[2,3] = -height # set the tip of the cone = optical center aspect_ratio = np.eye(4) aspect_ratio[0,0] = W/H transform = OPENCV_TO_OPENGL_CAMERA_CONVENTION @ aspect_ratio @ rot45 cam = trimesh.creation.cone(width, height, sections=4, transform=transform) # cam.apply_transform(transform) # import ipdb # ipdb.set_trace() # vertices = geotrf(transform, cam.vertices[[4,5,1,3]]) vertices = cam.vertices[[4,5,1,3]] faces = np.array([[0, 1, 2], [0, 2, 3], [2, 1, 0], [3, 2, 0]]) img = trimesh.Trimesh(vertices=vertices, faces=faces) uv_coords = np.float32([[0, 0], [1, 0], [1, 1], [0, 1]]) # img_pil = Image.fromarray((255. * np.ones((20,20,3))).astype(np.uint8)) # white only! material = trimesh.visual.texture.SimpleMaterial(image=img_pil, diffuse=[255,255,255,0], ambient=[255,255,255,0], specular=[255,255,255,0], glossiness=1.0) img.visual = trimesh.visual.TextureVisuals(uv=uv_coords, image=img_pil) #, material=material) # _main_color = [255,255,255,0] # print(img.visual.material.ambient) # print(img.visual.material.diffuse) # print(img.visual.material.specular) # print(img.visual.material.main_color) # img.visual.material.ambient = _main_color # img.visual.material.diffuse = _main_color # img.visual.material.specular = _main_color # img.visual.material.main_color = _main_color # img.visual.material.glossiness = _main_color scene.add_geometry(img) # this is the camera mesh rot2 = np.eye(4) rot2[:3,:3] = Rotation.from_euler('z',np.deg2rad(2)).as_matrix() # import ipdb # ipdb.set_trace() # vertices = cam.vertices # print(rot2) vertices = np.r_[cam.vertices, 0.95*cam.vertices, geotrf(rot2, cam.vertices)] # vertices = np.r_[cam.vertices, 0.95*cam.vertices, 1.05*cam.vertices] faces = [] for face in cam.faces: if 0 in face: continue a,b,c = face a2,b2,c2 = face + len(cam.vertices) a3,b3,c3 = face + 2*len(cam.vertices) # add 3 pseudo-edges faces.append((a,b,b2)) faces.append((a,a2,c)) faces.append((c2,b,c)) faces.append((a,b,b3)) faces.append((a,a3,c)) faces.append((c3,b,c)) # no culling faces += [(c,b,a) for a,b,c in faces] cam = trimesh.Trimesh(vertices=vertices, faces=faces) cam.visual.face_colors[:,:3] = (255, 0, 0) scene.add_geometry(cam) # OpenCV to OpenGL rot = np.eye(4) cams2world = np.eye(4) rot[:3,:3] = Rotation.from_euler('y',np.deg2rad(180)).as_matrix() scene.apply_transform(np.linalg.inv(cams2world @ OPENCV_TO_OPENGL_CAMERA_CONVENTION @ rot)) return scene def render_meshes(img, l_mesh, l_face, cam_param, color=None, alpha=1.0, show_camera=False, intensity=3.0, metallicFactor=0., roughnessFactor=0.5, smooth=True, ): """ Rendering multiple mesh and project then in the initial image. Args: - img: np.array [w,h,3] - l_mesh: np.array list of [v,3] - l_face: np.array list of [f,3] - cam_param: info about the camera intrinsics (focal, princpt) and (R,t) is possible Return: - img: np.array [w,h,3] """ # scene scene = pyrender.Scene(ambient_light=(0.3, 0.3, 0.3)) # mesh for i, mesh in enumerate(l_mesh): if color is None: _color = (np.random.choice(range(1,225))/255, np.random.choice(range(1,225))/255, np.random.choice(range(1,225))/255) else: if isinstance(color,list): _color = color[i] elif isinstance(color,tuple): _color = color else: raise NotImplementedError mesh = trimesh.Trimesh(mesh, l_face[i]) # import ipdb # ipdb.set_trace() # mesh.visual = trimesh.visual.TextureVisuals( # uv=None, # material=trimesh.visual.material.PBRMaterial( # metallicFactor=metallicFactor, # roughnessFactor=roughnessFactor, # alphaMode='OPAQUE', # baseColorFactor=(_color[0], _color[1], _color[2], 1.0) # ), # image=None, # face_materials=None # ) # print('saving') # mesh.export('human.obj') # mesh = trimesh.load('human.obj') # print('loading') # mesh = pyrender.Mesh.from_trimesh(mesh, smooth=smooth) material = pyrender.MetallicRoughnessMaterial( metallicFactor=metallicFactor, roughnessFactor=roughnessFactor, alphaMode='OPAQUE', baseColorFactor=(_color[0], _color[1], _color[2], 1.0)) mesh = pyrender.Mesh.from_trimesh(mesh, material=material, smooth=smooth) scene.add(mesh, f"mesh_{i}") # Adding coordinate system at (0,0,2) for the moment # Using lines defined in pyramid https://docs.pyvista.org/version/stable/api/utilities/_autosummary/pyvista.Pyramid.html if show_camera: import pyvista def get_faces(x): return x.faces.astype(np.uint32).reshape((x.n_faces, 4))[:, 1:] # Camera = Box + Cone (or Cylinder?) material_cam = pyrender.MetallicRoughnessMaterial(metallicFactor=metallicFactor, roughnessFactor=roughnessFactor, alphaMode='OPAQUE', baseColorFactor=(0.5,0.5,0.5)) height = 0.2 radius = 0.1 cone = pyvista.Cone(center=(0.0, 0.0, -height/2), direction=(0.0, 0.0, -1.0), height=height, radius=radius).extract_surface().triangulate() verts = cone.points mesh = pyrender.Mesh.from_trimesh(trimesh.Trimesh(verts, get_faces(cone)), material=material_cam, smooth=smooth) scene.add(mesh, f"cone") size = 0.1 box = pyvista.Box(bounds=(-size, size, -size, size, verts[:,-1].min() - 3*size, verts[:,-1].min())).extract_surface().triangulate() verts = box.points mesh = pyrender.Mesh.from_trimesh(trimesh.Trimesh(verts, get_faces(box)), material=material_cam, smooth=smooth) scene.add(mesh, f"box") # Coordinate system # https://docs.pyvista.org/version/stable/api/utilities/_autosummary/pyvista.Arrow.html l_color = [(1,0,0,1.0), (0,1,0,1.0), (0,0,1,1.0)] l_direction = [(1,0,0), (0,1,0), (0,0,1)] scale = 0.2 pose3d = [2*scale, 0.0, -scale] for i in range(len(l_color)): arrow = pyvista.Arrow(direction=l_direction[i], scale=scale) arrow = arrow.extract_surface().triangulate() verts = arrow.points + np.asarray([pose3d]) faces = arrow.faces.astype(np.uint32).reshape((arrow.n_faces, 4))[:, 1:] mesh = trimesh.Trimesh(verts, faces) material = pyrender.MetallicRoughnessMaterial(metallicFactor=metallicFactor, roughnessFactor=roughnessFactor, alphaMode='OPAQUE', baseColorFactor=l_color[i]) mesh = pyrender.Mesh.from_trimesh(mesh, material=material, smooth=smooth) scene.add(mesh, f"arrow_{i}") focal, princpt = cam_param['focal'], cam_param['princpt'] camera_pose = np.eye(4) if 'R' in cam_param.keys(): camera_pose[:3, :3] = cam_param['R'] if 't' in cam_param.keys(): camera_pose[:3, 3] = cam_param['t'] camera = pyrender.IntrinsicsCamera(fx=focal[0], fy=focal[1], cx=princpt[0], cy=princpt[1]) # camera camera_pose = OPENCV_TO_OPENGL_CAMERA_CONVENTION @ camera_pose camera_pose = np.linalg.inv(camera_pose) scene.add(camera, pose=camera_pose) # renderer renderer = pyrender.OffscreenRenderer(viewport_width=img.shape[1], viewport_height=img.shape[0], point_size=1.0) # light light = pyrender.DirectionalLight(intensity=intensity) scene.add(light, pose=camera_pose) # render rgb, depth = renderer.render(scene, flags=pyrender.RenderFlags.RGBA) rgb = rgb[:,:,:3].astype(np.float32) fg = (depth > 0)[:,:,None].astype(np.float32) # Simple smoothing of the mask bg_blending_radius = 1 bg_blending_kernel = 2.0 * torch.ones((1, 1, 2 * bg_blending_radius + 1, 2 * bg_blending_radius + 1)) / (2 * bg_blending_radius + 1) ** 2 bg_blending_bias = -torch.ones(1) fg = fg.reshape((fg.shape[0],fg.shape[1])) fg = torch.from_numpy(fg).unsqueeze(0) fg = torch.clamp_min(torch.nn.functional.conv2d(fg, weight=bg_blending_kernel, bias=bg_blending_bias, padding=bg_blending_radius) * fg, 0.0) fg = fg.permute(1,2,0).numpy() # Alpha-blending img = (fg * (alpha * rgb + (1.0-alpha) * img) + (1-fg) * img).astype(np.uint8) renderer.delete() return img.astype(np.uint8) def length(v): return math.sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2]) def cross(v0, v1): return [ v0[1]*v1[2]-v1[1]*v0[2], v0[2]*v1[0]-v1[2]*v0[0], v0[0]*v1[1]-v1[0]*v0[1]] def dot(v0, v1): return v0[0]*v1[0]+v0[1]*v1[1]+v0[2]*v1[2] def normalize(v, eps=1e-13): l = length(v) return [v[0]/(l+eps), v[1]/(l+eps), v[2]/(l+eps)] def lookAt(eye, target, *args, **kwargs): """ eye is the point of view, target is the point which is looked at and up is the upwards direction. Input should be in OpenCV format - we transform arguments to OpenGL Do compute in OpenGL and then transform back to OpenCV """ # Transform from OpenCV to OpenGL format # eye = [eye[0], -eye[1], -eye[2]] # target = [target[0], -target[1], -target[2]] up = [0,-1,0] eye, at, up = eye, target, up zaxis = normalize((at[0]-eye[0], at[1]-eye[1], at[2]-eye[2])) xaxis = normalize(cross(zaxis, up)) yaxis = cross(xaxis, zaxis) zaxis = [-zaxis[0],-zaxis[1],-zaxis[2]] viewMatrix = np.asarray([ [xaxis[0], xaxis[1], xaxis[2], -dot(xaxis, eye)], [yaxis[0], yaxis[1], yaxis[2], -dot(yaxis, eye)], [zaxis[0], zaxis[1], zaxis[2], -dot(zaxis, eye)], [0, 0, 0, 1]] ).reshape(4,4) # OpenGL to OpenCV viewMatrix = OPENCV_TO_OPENGL_CAMERA_CONVENTION @ viewMatrix return viewMatrix def print_distance_on_image(pred_rend_array, humans, _color): # Add distance to the image. font = ImageFont.load_default() rend_pil = Image.fromarray(pred_rend_array) draw = ImageDraw.Draw(rend_pil) for i_hum, hum in enumerate(humans): # distance transl = hum['transl_pelvis'].cpu().numpy().reshape(3) dist_cam = np.sqrt(((transl[[0,2]])**2).sum()) # discarding Y axis # 2d - bbox bbox = get_bbox(hum['j2d_smplx'].cpu().numpy(), factor=1.35, output_format='x1y1x2y2') loc = [(bbox[0] + bbox[2]) / 2., bbox[1]] txt = f"{dist_cam:.2f}m" length = font.getlength(txt) loc[0] = loc[0] - length // 2 fill = tuple((np.asarray(_color[i_hum]) * 255).astype(np.int32).tolist()) draw.text((loc[0], loc[1]), txt, fill=fill, font=font) return np.asarray(rend_pil) def get_bbox(points, factor=1., output_format='xywh'): """ Args: - y: [k,2] Return: - bbox: [4] in a specific format """ assert len(points.shape) == 2, f"Wrong shape, expected two-dimensional array. Got shape {points.shape}" assert points.shape[1] == 2 x1, x2 = points[:,0].min(), points[:,0].max() y1, y2 = points[:,1].min(), points[:,1].max() cx, cy = (x2 + x1) / 2., (y2 + y1) / 2. sx, sy = np.abs(x2 - x1), np.abs(y2 - y1) sx, sy = int(factor * sx), int(factor * sy) x1, y1 = int(cx - sx / 2.), int(cy - sy / 2.) x2, y2 = int(cx + sx / 2.), int(cy + sy / 2.) if output_format == 'xywh': return [x1,y1,sx,sy] elif output_format == 'x1y1x2y2': return [x1,y1,x2,y2] else: raise NotImplementedError def render_side_views(img_array, _color, humans, model, K): _bg = 255. # white # camera focal = np.asarray([K[0,0,0].cpu().numpy(),K[0,1,1].cpu().numpy()]) princpt = np.asarray([K[0,0,-1].cpu().numpy(),K[0,1,-1].cpu().numpy()]) # Get the vertices produced by the model. l_verts = [humans[j]['verts_smplx'].cpu().numpy() for j in range(len(humans))] l_faces = [model.smpl_layer['neutral'].bm_x.faces for j in range(len(humans))] bg_array = 1 + 0.*img_array.copy() if len(humans) == 0: pred_rend_array_bis = _bg * bg_array.copy() pred_rend_array_sideview = _bg * bg_array.copy() pred_rend_array_bev = _bg * bg_array.copy() else: # Small displacement H_bis = lookAt(eye=[2.,-1,-2], target=[0,0,3]) pred_rend_array_bis = render_meshes(_bg* bg_array.copy(), l_verts, l_faces, {'focal': focal, 'princpt': princpt, 'R': H_bis[:3,:3], 't': H_bis[:3,3]}, alpha=1.0, color=_color, show_camera=True) # Where to look at l_z = [] for hum in humans: l_z.append(hum['transl_pelvis'].cpu().numpy().reshape(-1)[-1]) target_z = np.median(np.asarray(l_z)) # Sideview H_sideview = lookAt(eye=[2.2*target_z,0,target_z], target=[0,0,target_z]) pred_rend_array_sideview = render_meshes(_bg*bg_array.copy(), l_verts, l_faces, {'focal': focal, 'princpt': princpt, 'R': H_sideview[:3,:3], 't': H_sideview[:3,3]}, alpha=1.0, color=_color, show_camera=True) # Bird-Eye-View H_bev = lookAt(eye=[0.,-2*target_z,target_z-0.001], target=[0,0,target_z]) pred_rend_array_bev = render_meshes(_bg* bg_array.copy(), l_verts, l_faces, {'focal': focal, 'princpt': princpt, 'R': H_bev[:3,:3], 't': H_bev[:3,3]}, alpha=1.0, color=_color, show_camera=True) return pred_rend_array_bis, pred_rend_array_sideview, pred_rend_array_bev