Graphit-SD / app.py
Geonmo's picture
add queue=False
269e4e0
raw
history blame
48.6 kB
"""
Graphit
Copyright (c) 2023-present NAVER Corp.
Apache-2.0
"""
import os
import numpy as np
import base64
import requests
from io import BytesIO
import json
import time
import math
import argparse
import torch
import torch.nn.functional as F
import gradio as gr
import types
from typing import Union, List, Optional, Callable
import diffusers
import torch
from diffusers import AutoencoderKL, UNet2DConditionModel
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.models import AutoencoderKL
from transformers import CLIPTextModel
import datasets
from torchvision import transforms
from torchvision.transforms.functional import to_pil_image, pil_to_tensor
import PIL
from PIL import Image, ImageOps
import compodiff
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
from transparent_background import Remover
from huggingface_hub import hf_hub_url, cached_download
from RealESRGAN import RealESRGAN
import einops
import cv2
from skimage import segmentation, color, graph
import random
def preprocess(image, mode):
image = np.array(image)[None, :].astype(np.float32) / 255.0
image = image
image = image.transpose(0, 3, 1, 2)
image = 2.0 * image - 1.0
if mode == 'scr2i':
image[image > 0.0] = 0.0
image = torch.from_numpy(image)
return image
class GraphitPipeline(StableDiffusionInstructPix2PixPipeline):
'''
override:
/opt/conda/lib/python3.8/site-packages/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
'''
def prepare_image_latents(
self, image, mask, batch_size, num_images_per_prompt, dtype, device, do_classifier_free_guidance, generator=None
):
if not isinstance(image, (torch.Tensor, Image.Image, list)):
raise ValueError(
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
)
image = image.to(device=device, dtype=dtype)
mask = mask.to(device=device, dtype=dtype)
batch_size = batch_size * num_images_per_prompt
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if isinstance(generator, list):
image_latents = [self.vae.encode(image[i : i + 1]).latent_dist.mode() for i in range(batch_size)]
image_latents = torch.cat(image_latents, dim=0)
else:
image_latents = self.vae.encode(image).latent_dist.mode()
mask = torch.nn.functional.interpolate(
mask, #.unsqueeze(0).unsqueeze(0),
size=(image_latents.shape[-2], image_latents.shape[-1]),
mode='bicubic',
align_corners=False,
)
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
# expand image_latents for batch_size
deprecation_message = (
f"You have passed {batch_size} text prompts (`prompt`), but only {image_latents.shape[0]} initial"
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
" your script to pass as many initial images as text prompts to suppress this warning."
)
#deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
additional_image_per_prompt = batch_size // image_latents.shape[0]
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
mask = torch.cat([mask] * additional_image_per_prompt, dim=0)
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
raise ValueError(
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
)
else:
image_latents = torch.cat([image_latents], dim=0)
image_latents *= 0.18215
if do_classifier_free_guidance:
uncond_image_latents = torch.zeros_like(image_latents)
image_latents = torch.cat([image_latents, image_latents], dim=0)
mask = torch.cat([mask, mask], dim=0)
image_latents = torch.cat([image_latents, mask], dim=1)
return image_latents
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
image: Union[torch.FloatTensor, PIL.Image.Image] = None,
mask: Union[torch.FloatTensor, PIL.Image.Image] = None,
depth_map: Union[torch.FloatTensor, PIL.Image.Image] = None,
num_inference_steps: int = 100,
guidance_scale: float = 3.5,
use_depth_map_as_input: bool = False,
apply_mask_to_input: bool = True,
mode: str = None,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
image_cond_embeds: Optional[torch.FloatTensor] = None,
negative_image_cond_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
):
# 0. Check inputs
self.check_inputs(prompt, callback_steps)
if image is None:
raise ValueError("`image` input cannot be undefined.")
# 1. Define call parameters
batch_size = 1 if isinstance(prompt, str) else len(prompt)
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = True#guidance_scale >= 1.0 and image_guidance_scale >= 1.0
# check if scheduler is in sigmas space
scheduler_is_in_sigma_space = hasattr(self.scheduler, "sigmas")
# 2. Encode input prompt
cond_embeds = torch.cat([image_cond_embeds, negative_image_cond_embeds])
cond_embeds = einops.repeat(cond_embeds, 'b n d -> (b num) n d', num=num_images_per_prompt).to(model_dict['torch_dtype'])
prompt_embeds = cond_embeds
# 3. Preprocess image
image = preprocess(image, mode)
if len(mask.shape) > 2:
edge_map = mask[:,:,1:]
edge_map = preprocess(edge_map, mode)
mask = mask[:,:,0]
else:
edge_map = None
mask = mask.unsqueeze(0).unsqueeze(0)
if torch.sum(mask).item() == 0.0 and use_depth_map_as_input:
image = depth_map
if edge_map is None:
if apply_mask_to_input:
image = image * (1 - mask)
else:
image = image * (1 - mask) + edge_map * mask
height, width = image.shape[-2:]
# 4. set timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare Image latents
image_latents = self.prepare_image_latents(
image,
mask,
batch_size,
num_images_per_prompt,
prompt_embeds.dtype,
device,
do_classifier_free_guidance,
generator,
)
if mode == 't2i':
image_latents = torch.zeros_like(image_latents)
# 6. Prepare latent variables
num_channels_latents = self.vae.config.latent_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 7. Check that shapes of latents and image match the UNet channels
num_channels_image = image_latents.shape[1]
if num_channels_latents + num_channels_image != self.unet.config.in_channels:
raise ValueError(
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
f" `num_channels_image`: {num_channels_image} "
f" = {num_channels_latents+num_channels_image}. Please verify the config of"
" `pipeline.unet` or your `image` input."
)
# 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 9. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# Expand the latents if we are doing classifier free guidance.
# The latents are expanded 3 times because for pix2pix the guidance\
# is applied for both the text and the input image.
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
# concat latents, image_latents in the channel dimension
scaled_latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
scaled_latent_model_input = torch.cat([scaled_latent_model_input, image_latents], dim=1)
# predict the noise residual
noise_pred = self.unet(scaled_latent_model_input, t, encoder_hidden_states=prompt_embeds).sample
# Hack:
# For karras style schedulers the model does classifer free guidance using the
# predicted_original_sample instead of the noise_pred. So we need to compute the
# predicted_original_sample here if we are using a karras style scheduler.
if scheduler_is_in_sigma_space:
step_index = (self.scheduler.timesteps == t).nonzero().item()
sigma = self.scheduler.sigmas[step_index]
noise_pred = latent_model_input - sigma * noise_pred
# perform guidance
if do_classifier_free_guidance:
noise_pred_full, noise_pred_uncond = noise_pred.chunk(2)
noise_pred = (
noise_pred_uncond
+ guidance_scale * (noise_pred_full - noise_pred_uncond)
)
# Hack:
# For karras style schedulers the model does classifer free guidance using the
# predicted_original_sample instead of the noise_pred. But the scheduler.step function
# expects the noise_pred and computes the predicted_original_sample internally. So we
# need to overwrite the noise_pred here such that the value of the computed
# predicted_original_sample is correct.
if scheduler_is_in_sigma_space:
noise_pred = (noise_pred - latents) / (-sigma)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
# 10. Post-processing
image = self.decode_latents(latents)
# 11. Run safety checker
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
# 12. Convert to PIL
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
class CustomRealESRGAN(RealESRGAN):
@torch.no_grad()
@torch.cuda.amp.autocast()
def predict(self, pil_lr_image_list):
device = self.device
# batchfy
batch_lr_images = (torch.stack([pil_to_tensor(pil_lr_image) for pil_lr_image in pil_lr_image_list]).float() / 255).to(device)
batch_outputs = self.model(batch_lr_images).clamp_(0, 1)
# to pil images
return [to_pil_image(output) for output in batch_outputs]
def build_models(args):
# Load scheduler, tokenizer and models.
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
torch_dtype = torch.float16 if 'cuda' in device else torch.float32
model_path = 'navervision/Graphit-SD'
unet = UNet2DConditionModel.from_pretrained(
model_path, torch_dtype=torch_dtype,
)
vae_name = 'stabilityai/sd-vae-ft-ema'
vae = AutoencoderKL.from_pretrained(vae_name, torch_dtype=torch_dtype)
model_name = 'timbrooks/instruct-pix2pix'
pipe = GraphitPipeline.from_pretrained(model_name, torch_dtype=torch_dtype, safety_checker=None,
unet = unet,
vae = vae,
)
pipe = pipe.to(device)
## load CompoDiff
compodiff_model, clip_model, clip_preprocess, clip_tokenizer = compodiff.build_model()
compodiff_model, clip_model = compodiff_model.to(device), clip_model.to(device)
if device != 'cpu':
clip_model = clip_model.half()
## load third-party models
model_name = 'Intel/dpt-large'
depth_preprocess = DPTFeatureExtractor.from_pretrained(model_name)
depth_predictor = DPTForDepthEstimation.from_pretrained(model_name, torch_dtype=torch_dtype)
depth_predictor = depth_predictor.to(device)
if not os.path.exists('./third_party/remover_fast.pth'):
model_file_url = hf_hub_url(repo_id='Geonmo/remover_fast', filename='remover_fast.pth')
cached_download(model_file_url, cache_dir='./third_party', force_filename='remover_fast.pth')
remover = Remover(fast=True, jit=False, device=device, ckpt='./third_party/remover_fast.pth')
sr_model = CustomRealESRGAN(device, scale=2)
sr_model.load_weights('./third_party/RealESRGAN_x2.pth', download=True)
dataset = datasets.load_dataset("FredZhang7/stable-diffusion-prompts-2.47M")
train = dataset["train"]
prompts = train["text"]
model_dict = {'pipe': pipe,
'compodiff': compodiff_model,
'clip_preprocess': clip_preprocess,
'clip_tokenizer': clip_tokenizer,
'clip_model': clip_model,
'depth_preprocess': depth_preprocess,
'depth_predictor': depth_predictor,
'remover': remover,
'sr_model': sr_model,
'prompt_candidates': prompts,
'device': device,
'torch_dtype': torch_dtype,
}
return model_dict
def predict_compodiff(image, text_input, negative_text, cfg_image_scale, cfg_text_scale, mask, random_seed):
device = model_dict['device']
text_token_dict = model_dict['clip_tokenizer'](text=text_input, return_tensors='pt', padding='max_length', truncation=True)
text_tokens, text_attention_mask = text_token_dict['input_ids'].to(device), text_token_dict['attention_mask'].to(device)
negative_text_token_dict = model_dict['clip_tokenizer'](text=negative_text, return_tensors='pt', padding='max_length', truncation=True)
negative_text_tokens, negative_text_attention_mask = negative_text_token_dict['input_ids'].to(device), text_token_dict['attention_mask'].to(device)
with torch.no_grad():
if image is None:
image_cond = torch.zeros([1,1,768]).to(device)
mask = torch.tensor(np.zeros([64, 64], dtype='float32')).to(device).unsqueeze(0)
else:
image_source = image.resize((512, 512))
image_source = model_dict['clip_preprocess'](image_source, return_tensors='pt')['pixel_values'].to(device)
mask = mask.resize((512, 512))
mask = model_dict['clip_preprocess'](mask, do_normalize=False, return_tensors='pt')['pixel_values']
mask = mask[:,:1,:,:]
mask = (mask > 0.5).float().to(device)
image_source = image_source * (1 - mask)
image_cond = model_dict['clip_model'].encode_images(image_source)
mask = transforms.Resize([64, 64])(mask)[:,0,:,:]
mask = (mask > 0.5).float()
text_cond = model_dict['clip_model'].encode_texts(text_tokens, text_attention_mask)
negative_text_cond = model_dict['clip_model'].encode_texts(negative_text_tokens, negative_text_attention_mask)
sampled_image_features = model_dict['compodiff'].sample(image_cond, text_cond, negative_text_cond, mask, timesteps=25, cond_scale=(1.0 if image is None else 1.3, cfg_text_scale), num_samples_per_batch=4, random_seed=random_seed).unsqueeze(1)
return sampled_image_features, image_cond
def generate_depth_map(image, height, width):
device = model_dict['device']
torch_dtype = model_dict['torch_dtype']
depth_inputs = {k: v.to(device, dtype=torch_dtype) for k, v in model_dict['depth_preprocess'](images=image, return_tensors='pt').items()}
depth_map = model_dict['depth_predictor'](**depth_inputs).predicted_depth.unsqueeze(1)
depth_min = torch.amin(depth_map, dim=[1,2,3], keepdim=True)
depth_max = torch.amax(depth_map, dim=[1,2,3], keepdim=True)
depth_map = 2.0 * ((depth_map - depth_min) / (depth_max - depth_min)) - 1.0
depth_map = torch.nn.functional.interpolate(
depth_map,
size=(height, width),
mode='bicubic',
align_corners=False,
)
return depth_map
def generate_color(image, compactness=30, n_segments=100, thresh=35, blur_kernel=3, blur_std=0):
img = image # 0 ~ 255 uint8
labels = segmentation.slic(img, compactness=compactness, n_segments=n_segments)#, start_label=1)
g = graph.rag_mean_color(img, labels)
labels2 = graph.cut_threshold(labels, g, thresh=thresh)
out = color.label2rgb(labels2, img, kind='avg', bg_label=-1)
return out
@torch.no_grad()
def generate(image_source, image_reference, text_input, negative_prompt, steps, random_seed, cfg_image_scale, cfg_text_scale, cfg_image_space_scale, cfg_image_reference_mix_weight, cfg_image_source_mix_weight, mask_scale, use_edge, t2i_height, t2i_width, do_sr, mode):
device = model_dict['device']
torch_dtype = model_dict['torch_dtype']
text_input = text_input.lower()
if negative_prompt == '':
print('running without a negative prompt')
# prepare an input image
use_mask = False
mask = None
is_null_image_source = False
if type(image_source) == dict:
image_source, mask = image_source['image'], image_source['mask']
elif image_source is None:
image_source = Image.fromarray(np.zeros([t2i_height, t2i_width, 3]).astype('uint8'))
is_null_image_source = True
try:
image_source = ImageOps.exif_transpose(image_source)
except:
pass
width, height = image_source.size
factor = 512 / max(width, height)
factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
width = int((width * factor) // 64) * 64
height = int((height * factor) // 64) * 64
image_source = org_image_source = ImageOps.fit(image_source, (width, height), method=Image.Resampling.LANCZOS)
if mask is not None:
mask_pil = mask = ImageOps.fit(mask, (width, height), method=Image.Resampling.LANCZOS)
mask = ((torch.tensor(np.array(mask.convert('L'))).float() / 255.0) > 0.5).float()
if torch.sum(mask).item() > 0.0:
print('now using mask')
use_mask = True
else:
mask = torch.zeros([height, width])
mask_pil = to_pil_image(mask)
use_depth_map_as_input = False
if mode == 's2i' or mode == 'scr2i': # sketch to image
image_source = mask
image_source = einops.repeat(image_source, 'h w -> r h w', r=3)
mask = image_source[0,:,:]
image_source = org_image_source = to_pil_image(image_source)
mask_pil = to_pil_image(mask)
mask *= mask_scale
use_mask = False
elif mode == 'cs2i':
mask = torch.tensor((np.array(image_source)[:,:,0] != 255)).float() * mask_scale
mask_pil = Image.fromarray(((np.array(image_source)[:,:,0] != 255) * 255).astype('uint8'))
use_mask = False #True
elif mode == 'd2i': # depth to image
use_depth_map_as_input = True
elif mode == 'e2i': # edge to image
image_source = einops.repeat(cv2.Canny(cv2.cvtColor(np.array(image_source)[:,:,::-1], cv2.COLOR_BGR2GRAY), threshold1=100, threshold2=200), 'h w -> h w r', r=3)
image_source = Image.fromarray(image_source) #to_pil_image(image_source)
org_image_source = image_source
elif mode == 'inped':
# mask = torch.Size([512, 512])
mask_np = (einops.repeat(mask.numpy(), 'h w -> h w r', r=1) * 255).astype('uint8')
gray = mask_np #cv2.cvtColor(mask_np, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
x, y, w, h = cv2.boundingRect(contours[0])
cv2.rectangle(mask_np, (x, y), (x+w, y+h), 255, -1)
mask_np = mask_np.astype('float32') / 255
if image_reference is not None:
edge_reference = image_reference.resize((w, h))
color_map = generate_color(np.array(edge_reference)).astype('float32')
reference_map = (model_dict['remover'].process(edge_reference, type='map') > 16).astype('float32')
edge_reference = einops.repeat(cv2.Canny(cv2.cvtColor(np.array(edge_reference)[:,:,::-1], cv2.COLOR_BGR2GRAY), threshold1=100, threshold2=200), 'h w -> h w r', r=3).astype('float32')
edge_np = np.zeros_like(np.array(image_source)).astype('float32')
if text_input != '':
edge_np[y:y+h,x:x+w] = edge_reference * reference_map
elif use_edge and mask_scale > 0.0:
print('mode: color inped with with_edge')
edge_np[y:y+h,x:x+w] = (255 - edge_reference) / 255 * color_map * reference_map + (1 - mask_scale) * edge_reference / 255 * reference_map
else:
print('mode: color inped with no_edge')
edge_np[y:y+h,x:x+w] = color_map * reference_map
mask_np = np.zeros_like(np.array(image_source)).astype('float32')
mask_np[y:y+h,x:x+w] = reference_map #edge_reference
mask_np = mask_np[:,:,:1]
else:
edge_np = einops.repeat(cv2.Canny(cv2.cvtColor(np.array(image_source)[:,:,::-1], cv2.COLOR_BGR2GRAY), threshold1=100, threshold2=200), 'h w -> h w r', r=3).astype('float32')
# concat edge to mask_np
mask = torch.tensor(np.concatenate([mask_np, edge_np], axis=-1))
mask_pil = to_pil_image(mask_np[:,:,0].astype('uint8') * 255)
#mask_pil = to_pil_image((mask_np[:,:,0] * 255).astype('uint8'))
with torch.no_grad():
# do reference first
if image_reference is not None:
image_cond_reference = ImageOps.exif_transpose(image_reference)
image_cond_reference = model_dict['clip_preprocess'](image_cond_reference, return_tensors='pt')['pixel_values'].to(device)
image_cond_reference = model_dict['clip_model'].encode_images(image_cond_reference)
else:
image_cond_reference = torch.zeros([1, 1, 768]).to(torch_dtype).to(device)
# do source or knn
image_cond_source = None
if text_input != '':
if mode in ['t2i', 'd2i', 'e2i', 's2i', 'scr2i', 'cs2i']:
if mode == 'cs2i':
image_cond, image_cond_source = predict_compodiff(None, text_input, negative_prompt, cfg_image_scale, cfg_text_scale, mask=mask_pil, random_seed=random_seed)
image_cond_color_compensation, _ = predict_compodiff(image_source, text_input, negative_prompt, cfg_image_scale, cfg_text_scale, mask=mask_pil, random_seed=random_seed)
image_cond = 0.9 * image_cond + 0.1 * image_cond_color_compensation
else:
image_cond, image_cond_source = predict_compodiff(None, text_input, negative_prompt, cfg_image_scale, cfg_text_scale, mask=mask_pil, random_seed=random_seed)
else:
image_cond, image_cond_source = predict_compodiff(image_source, text_input, negative_prompt, cfg_image_scale, cfg_text_scale, mask=mask_pil, random_seed=random_seed)
image_cond = image_cond.to(torch_dtype).to(device)
image_cond_source = image_cond_source.to(torch_dtype).to(device)
else:
image_cond = torch.zeros([1, 1, 768]).to(torch_dtype).to(device)
if image_cond_source is None and mode != 't2i':
image_cond_source = image_source.resize((512, 512))
image_cond_source = model_dict['clip_preprocess'](image_cond_source, return_tensors='pt')['pixel_values'].to(device)
image_cond_source = model_dict['clip_model'].encode_images(image_cond_source)
if cfg_image_reference_mix_weight > 0.0 and torch.sum(image_cond_reference).item() != 0.0:
if torch.sum(image_cond).item() == 0.0:
image_cond = image_cond_reference
else:
image_cond = (1.0 - cfg_image_reference_mix_weight) * image_cond + cfg_image_reference_mix_weight * image_cond_reference
if cfg_image_source_mix_weight > 0.0:
image_cond = (1.0 - cfg_image_source_mix_weight) * image_cond + cfg_image_source_mix_weight * image_cond_source
if negative_prompt != '':
negative_image_cond, _ = predict_compodiff(None, negative_prompt, '', cfg_image_scale, cfg_text_scale, mask=mask_pil, random_seed=random_seed)
negative_image_cond = negative_image_cond.to(torch_dtype).to(device)
else:
negative_image_cond = torch.zeros_like(image_cond)
# negative_prompt_embeds
image_source = torch.tensor(np.array(image_source))
depth_map = einops.repeat(generate_depth_map(image_source, height, width), 'n c h w -> n (c r) h w', r=3).float().cpu()
images = model_dict['pipe'](text_input,
image=image_source,
mask=mask,
depth_map=depth_map,
num_inference_steps=int(steps),
image_cond_embeds=image_cond,
negative_image_cond_embeds=negative_image_cond,
guidance_scale=cfg_image_space_scale,
use_depth_map_as_input=use_depth_map_as_input,
apply_mask_to_input=use_mask,
mode=mode,
generator=torch.manual_seed(random_seed),
num_images_per_prompt=2).images
if do_sr:
images = model_dict['sr_model'].predict(images)
return images, [org_image_source, mask_pil, to_pil_image(0.5 * (depth_map[0] + 1.0))]
def generate_canvas(image):
return Image.fromarray((np.ones([512, 512, 3]) * 255).astype('uint8'))
def surprise_me():
return random.sample(model_dict['prompt_candidates'], k=1)[0]
if __name__ == "__main__":
parser = argparse.ArgumentParser('Demo')
parser.add_argument('--model_folder', default=None, type=str, help='path to model_folder')
args = parser.parse_args()
global model_dict
model_dict = build_models(args)
### define gradio demo
title = 'Graphit demo'
md_title = f'''# {title}
Diffusion on {model_dict["device"]}. [https://github.com/navervision/Graphit](https://github.com/navervision/Graphit)
If you want to use Graphit in a private GPU environment, please press the "Duplicate" button below.
<a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/navervision/Graphit-SD?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-xl-dark.svg" alt="Duplicate Space"></a>
'''
neg_default = '' #'watermark, longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
with gr.Blocks(title=title) as demo:
gr.Markdown(md_title)
mode_t2i = gr.Textbox(value='t2i', label='mode selection', visible=False)
mode_i2i = gr.Textbox(value='i2i', label='mode selection', visible=False)
mode_inpaint = gr.Textbox(value='inpaint', label='mode selection', visible=False)
mode_s2i = gr.Textbox(value='s2i', label='mode selection', visible=False)
mode_scr2i = gr.Textbox(value='scr2i', label='mode selection', visible=False)
mode_d2i = gr.Textbox(value='d2i', label='mode selection', visible=False)
mode_e2i = gr.Textbox(value='e2i', label='mode selection', visible=False)
mode_inped = gr.Textbox(value='inped', label='mode selection', visible=False)
mode_cs2i = gr.Textbox(value='cs2i', label='mode selection', visible=False)
mask_scale_default = gr.Number(value=1.0, label='mask scale', visible=False)
use_edge_default = gr.Checkbox(value=True, label='use color map with edge map', visible=False)
height_default = gr.Number(value=512, precision=0, label='height', visible=False)
width_default = gr.Number(value=512, precision=0, label='width', visible=False)
with gr.Row():
with gr.Column():
with gr.Tabs():
'''
image to image
inpainting
depth to image
saliency map to image
'''
with gr.TabItem("Text to Image"):
image_source_t2i = gr.Image(type='pil', label='Source image', visible=False)
with gr.Row():
steps_input_t2i = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps')
random_seed_t2i = gr.Number(value=12345, precision=0, label='Seed')
with gr.Accordion('Advanced options', open=False):
with gr.Row():
cfg_image_scale_t2i = gr.Number(value=1.1, label='attn source image scale', visible=False)
cfg_image_space_scale_t2i = gr.Number(value=7.5, label='attn image space scale')
cfg_text_scale_t2i = gr.Number(value=7.5, label='attn text scale')
with gr.Row():
cfg_image_source_mix_weight_t2i = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False)
cfg_image_reference_mix_weight_t2i = gr.Number(value=0.65, label='weight for mixing reference image (0.0~1.0)')
with gr.Row():
height_t2i = gr.Number(value=512, precision=0, label='height (~512)')
width_t2i = gr.Number(value=512, precision=0, label='width (~512)')
submit_button_t2i = gr.Button('Generate images')
with gr.TabItem("Image to Image"):
image_source_i2i = gr.Image(type='pil', label='Source image')
with gr.Row():
steps_input_i2i = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps')
random_seed_i2i = gr.Number(value=12345, precision=0, label='Seed')
with gr.Accordion('Advanced options', open=False):
with gr.Row():
cfg_image_scale_i2i = gr.Number(value=1.1, label='attn source image scale', visible=False)
cfg_image_space_scale_i2i = gr.Number(value=7.5, label='attn image space scale')
cfg_text_scale_i2i = gr.Number(value=7.5, label='attn text scale')
with gr.Row():
cfg_image_source_mix_weight_i2i = gr.Number(value=0.05, label='weight for mixing source image (0.0~1.0)')
cfg_image_reference_mix_weight_i2i = gr.Number(value=0.65, label='weight for mixing reference image (0.0~1.0)')
submit_button_i2i = gr.Button('Generate images')
with gr.TabItem("Depth to Image"):
image_source_d2i = gr.Image(type='pil', label='Source image')
with gr.Row():
steps_input_d2i = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps')
random_seed_d2i = gr.Number(value=12345, precision=0, label='Seed')
with gr.Accordion('Advanced options', open=False):
with gr.Row():
cfg_image_scale_d2i = gr.Number(value=1.1, label='attn source image scale', visible=False)
cfg_image_space_scale_d2i = gr.Number(value=7.5, label='attn image space scale')
cfg_text_scale_d2i = gr.Number(value=7.5, label='attn text scale')
with gr.Row():
cfg_image_source_mix_weight_d2i = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False)
cfg_image_reference_mix_weight_d2i = gr.Number(value=1.0, label='weight for mixing reference image (0.0~1.0)')
submit_button_d2i = gr.Button('Generate images')
with gr.TabItem("Edge to Image"):
image_source_e2i = gr.Image(type='pil', label='Source image')
with gr.Row():
steps_input_e2i = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps')
random_seed_e2i = gr.Number(value=12345, precision=0, label='Seed')
with gr.Accordion('Advanced options', open=False):
with gr.Row():
cfg_image_scale_e2i = gr.Number(value=1.1, label='attn source image scale', visible=False)
cfg_image_space_scale_e2i = gr.Number(value=7.5, label='attn image space scale')
cfg_text_scale_e2i = gr.Number(value=7.5, label='attn text scale')
with gr.Row():
cfg_image_source_mix_weight_e2i = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False)
cfg_image_reference_mix_weight_e2i = gr.Number(value=1.0, label='weight for mixing reference image (0.0~1.0)')
submit_button_e2i = gr.Button('Generate images')
with gr.TabItem("Inpaint"):
image_source_inp = gr.Image(type='pil', label='Source image', tool='sketch')
with gr.Row():
steps_input_inp = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps')
random_seed_inp = gr.Number(value=12345, precision=0, label='Seed')
with gr.Accordion('Advanced options', open=False):
with gr.Row():
cfg_image_scale_inp = gr.Number(value=1.1, label='attn source image scale', visible=False)
cfg_image_space_scale_inp = gr.Number(value=7.5, label='attn image space scale')
cfg_text_scale_inp = gr.Number(value=7.5, label='attn text scale')
with gr.Row():
cfg_image_source_mix_weight_inp = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False)
cfg_image_reference_mix_weight_inp = gr.Number(value=0.65, label='weight for mixing reference image (0.0~1.0)')
submit_button_inp = gr.Button('Generate images')
with gr.TabItem("Blending"):
image_source_inped = gr.Image(type='pil', label='Source image', tool='sketch')
with gr.Row():
steps_input_inped = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps')
random_seed_inped = gr.Number(value=12345, precision=0, label='Seed')
with gr.Accordion('Advanced options', open=False):
with gr.Row():
cfg_image_scale_inped = gr.Number(value=1.1, label='attn source image scale', visible=False)
cfg_image_space_scale_inped = gr.Number(value=7.5, label='attn image space scale')
cfg_text_scale_inped = gr.Number(value=7.5, label='attn text scale')
with gr.Row():
cfg_image_source_mix_weight_inped = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False)
cfg_image_reference_mix_weight_inped = gr.Number(value=0.35, label='weight for mixing reference image (0.0~1.0)')
with gr.Row():
mask_scale_inped = gr.Number(value=1.0, label='edge scale')
use_edge_inped = gr.Checkbox(value=False, label='use a color map with an edge map')
submit_button_inped = gr.Button('Generate images')
with gr.TabItem("Sketch (Rough) to Image"):
with gr.Column():
image_source_s2i = gr.Image(type='pil', label='Source image', tool='sketch', brush_radius=100).style(height=256, width=256)
build_canvas_s2i = gr.Button('Build canvas')
with gr.Row():
steps_input_s2i = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps')
random_seed_s2i = gr.Number(value=12345, precision=0, label='Seed')
with gr.Accordion('Advanced options', open=False):
with gr.Row():
cfg_image_scale_s2i = gr.Number(value=1.1, label='attn source image scale', visible=False)
cfg_image_space_scale_s2i = gr.Number(value=7.5, label='attn image space scale')
cfg_text_scale_s2i = gr.Number(value=7.5, label='attn text scale')
with gr.Row():
cfg_image_source_mix_weight_s2i = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False)
cfg_image_reference_mix_weight_s2i = gr.Number(value=0.65, label='weight for mixing reference image (0.0~1.0)')
mask_scale_s2i = gr.Number(value=0.5, label='sketch weight (0.0~1.0)')
submit_button_s2i = gr.Button('Generate images')
with gr.TabItem("Sketch (Detail) to Image"):
with gr.Column():
image_source_scr2i = gr.Image(type='pil', label='Source image', tool='sketch', brush_radius=10).style(height=256, width=256)
build_canvas_scr2i = gr.Button('Build canvas')
with gr.Row():
steps_input_scr2i = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps')
random_seed_scr2i = gr.Number(value=12345, precision=0, label='Seed')
with gr.Accordion('Advanced options', open=False):
with gr.Row():
cfg_image_scale_scr2i = gr.Number(value=1.1, label='attn source image scale', visible=False)
cfg_image_space_scale_scr2i = gr.Number(value=7.5, label='attn image space scale')
cfg_text_scale_scr2i = gr.Number(value=7.5, label='attn text scale')
with gr.Row():
cfg_image_source_mix_weight_scr2i = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False)
cfg_image_reference_mix_weight_scr2i = gr.Number(value=0.65, label='weight for mixing reference image (0.0~1.0)')
mask_scale_scr2i = gr.Number(value=0.5, label='sketch weight (0.0~1.0)')
submit_button_scr2i = gr.Button('Generate images')
with gr.TabItem("Color Sketch to Image"):
with gr.Column():
image_source_cs2i = gr.Image(type='pil', source='canvas', label='Source image', tool='color-sketch').style(height=256, width=256)
#build_canvas_cs2i = gr.Button('Build canvas')
with gr.Row():
steps_input_cs2i = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps')
random_seed_cs2i = gr.Number(value=12345, precision=0, label='Seed')
with gr.Accordion('Advanced options', open=False):
with gr.Row():
cfg_image_scale_cs2i = gr.Number(value=1.1, label='attn source image scale', visible=False)
cfg_image_space_scale_cs2i = gr.Number(value=7.5, label='attn image space scale')
cfg_text_scale_cs2i = gr.Number(value=7.5, label='attn text scale')
with gr.Row():
cfg_image_source_mix_weight_cs2i = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False)
cfg_image_reference_mix_weight_cs2i = gr.Number(value=0.65, label='weight for mixing reference image (0.0~1.0)')
mask_scale_cs2i = gr.Number(value=0.5, label='sketch weight (0.0~1.0)')
submit_button_cs2i = gr.Button('Generate images')
text_input = gr.Textbox(value='', label='Input text')
negative_text_input = gr.Textbox(value=neg_default, label='Negative text')
submit_surprise_me = gr.Button('Surprise me')
#swap_button = gr.Button('Swap source with reference', visible=False)
with gr.Column():
with gr.Row():
do_sr = gr.Checkbox(value=False, label='Super-resolution')
image_reference = gr.Image(type='pil', label='Reference image')
gallery_outputs = gr.Gallery(label='Generated outputs').style(grid=[2], height='auto')
gallery_inputs = gr.Gallery(label='Processed inputs').style(grid=[2], height='auto')
submit_button_t2i.click(generate, inputs=[image_source_t2i, image_reference, text_input, negative_text_input, steps_input_t2i, random_seed_t2i, cfg_image_scale_t2i, cfg_text_scale_t2i, cfg_image_space_scale_t2i, cfg_image_reference_mix_weight_t2i, cfg_image_source_mix_weight_t2i, mask_scale_default, use_edge_default, height_t2i, width_t2i, do_sr, mode_t2i], outputs=[gallery_outputs, gallery_inputs])
submit_button_i2i.click(generate, inputs=[image_source_i2i, image_reference, text_input, negative_text_input, steps_input_i2i, random_seed_i2i, cfg_image_scale_i2i, cfg_text_scale_i2i, cfg_image_space_scale_i2i, cfg_image_reference_mix_weight_i2i, cfg_image_source_mix_weight_i2i, mask_scale_default, use_edge_default, height_default, width_default, do_sr, mode_i2i], outputs=[gallery_outputs, gallery_inputs])
submit_button_d2i.click(generate, inputs=[image_source_d2i, image_reference, text_input, negative_text_input, steps_input_d2i, random_seed_d2i, cfg_image_scale_d2i, cfg_text_scale_d2i, cfg_image_space_scale_d2i, cfg_image_reference_mix_weight_d2i, cfg_image_source_mix_weight_d2i, mask_scale_default, use_edge_default, height_default, width_default, do_sr, mode_d2i], outputs=[gallery_outputs, gallery_inputs])
submit_button_e2i.click(generate, inputs=[image_source_e2i, image_reference, text_input, negative_text_input, steps_input_e2i, random_seed_e2i, cfg_image_scale_e2i, cfg_text_scale_e2i, cfg_image_space_scale_e2i, cfg_image_reference_mix_weight_e2i, cfg_image_source_mix_weight_e2i, mask_scale_default, use_edge_default, height_default, width_default, do_sr, mode_e2i], outputs=[gallery_outputs, gallery_inputs])
submit_button_inp.click(generate, inputs=[image_source_inp, image_reference, text_input, negative_text_input, steps_input_inp, random_seed_inp, cfg_image_scale_inp, cfg_text_scale_inp, cfg_image_space_scale_inp, cfg_image_reference_mix_weight_inp, cfg_image_source_mix_weight_inp, mask_scale_default, use_edge_default, height_default, width_default, do_sr, mode_inpaint], outputs=[gallery_outputs, gallery_inputs])
submit_button_inped.click(generate, inputs=[image_source_inped, image_reference, text_input, negative_text_input, steps_input_inped, random_seed_inped, cfg_image_scale_inped, cfg_text_scale_inped, cfg_image_space_scale_inped, cfg_image_reference_mix_weight_inped, cfg_image_source_mix_weight_inped, mask_scale_inped, use_edge_inped, height_default, width_default, do_sr, mode_inped], outputs=[gallery_outputs, gallery_inputs])
submit_button_s2i.click(generate, inputs=[image_source_s2i, image_reference, text_input, negative_text_input, steps_input_s2i, random_seed_s2i, cfg_image_scale_s2i, cfg_text_scale_s2i, cfg_image_space_scale_s2i, cfg_image_reference_mix_weight_s2i, cfg_image_source_mix_weight_s2i, mask_scale_s2i, use_edge_default, height_default, width_default, do_sr, mode_s2i], outputs=[gallery_outputs, gallery_inputs])
submit_button_scr2i.click(generate, inputs=[image_source_scr2i, image_reference, text_input, negative_text_input, steps_input_scr2i, random_seed_scr2i, cfg_image_scale_scr2i, cfg_text_scale_scr2i, cfg_image_space_scale_scr2i, cfg_image_reference_mix_weight_scr2i, cfg_image_source_mix_weight_scr2i, mask_scale_scr2i, use_edge_default, height_default, width_default, do_sr, mode_scr2i], outputs=[gallery_outputs, gallery_inputs])
submit_button_cs2i.click(generate, inputs=[image_source_cs2i, image_reference, text_input, negative_text_input, steps_input_cs2i, random_seed_cs2i, cfg_image_scale_cs2i, cfg_text_scale_cs2i, cfg_image_space_scale_cs2i, cfg_image_reference_mix_weight_cs2i, cfg_image_source_mix_weight_cs2i, mask_scale_cs2i, use_edge_default, height_default, width_default, do_sr, mode_cs2i], outputs=[gallery_outputs, gallery_inputs])
build_canvas_s2i.click(generate_canvas, inputs=[image_source_s2i], outputs=[image_source_s2i], queue=False)
build_canvas_scr2i.click(generate_canvas, inputs=[image_source_scr2i], outputs=[image_source_scr2i], queue=False)
submit_surprise_me.click(surprise_me, outputs=[text_input], queue=False)
demo.queue()
demo.launch()