import gradio as gr import pandas as pd import json from constants import BANNER, INTRODUCTION_TEXT, CITATION_TEXT, METRICS_TAB_TEXT, DIR_OUTPUT_REQUESTS from init import is_model_on_hub, load_all_info_from_dataset_hub from utils_display import AutoEvalColumn, fields, make_clickable_model, styled_error, styled_message from datetime import datetime, timezone import torch LAST_UPDATED = "OCT 21st 2024" column_names = { "MODEL": "Model", "WER": "Common Voice WER ⬇️", "CER": "Common Voice CER ⬇️", "WER2": "persian-asr-test-set WER" , "CER2": "persian-asr-test-set CER", "WER3": "asr-farsi-youtube WER", "CER3": "asr-farsi-youtube CER" } # Load evaluation results eval_queue_repo, requested_models, csv_results = load_all_info_from_dataset_hub() if not csv_results.exists(): raise Exception(f"CSV file {csv_results} does not exist locally") # Read CSV with data and parse columns original_df = pd.read_csv(csv_results) # Format the columns def formatter(x): if type(x) is str: return x else: return round(x, 2) # Apply formatting to other columns for col in original_df.columns: if col in ['Model']: continue # Skip the 'model' and 'Model' columns else: original_df[col] = original_df[col].apply(formatter) original_df.rename(columns=column_names, inplace=True) original_df.sort_values(by='asr-farsi-youtube WER', inplace=True) COLS = [c.name for c in fields(AutoEvalColumn)] TYPES = [c.type for c in fields(AutoEvalColumn)] def request_model(model_text): global original_df # Check if the model exists on the Hub base_model_on_hub, error_msg = is_model_on_hub(model_text) if not base_model_on_hub: return styled_error(f"Base model '{model_text}' {error_msg}") # Check if the model has already been evaluated using the raw 'model' column if model_text in original_df['Model'].values: return styled_error(f"The model '{model_text}' is already in the leaderboard.") try: # Run the evaluation code from transformers import pipeline from datasets import load_dataset from tqdm import tqdm from transformers.pipelines.pt_utils import KeyDataset from evaluate import load # Load a subset of the Common Voice test dataset for evaluation common_voice_test = load_dataset( "mozilla-foundation/common_voice_17_0", "fa", split="test" ).shuffle(seed=42).select(range(len(load_dataset( "mozilla-foundation/common_voice_17_0", "fa", split="test")) // 150)) # Initialize the pipeline with the requested model pipe = pipeline( "automatic-speech-recognition", model=model_text, torch_dtype=torch.float16, device=0 if torch.cuda.is_available() else -1, # Use GPU if available ) all_predictions = [] # Run inference for prediction in tqdm( pipe( KeyDataset(common_voice_test, "audio"), max_new_tokens=128, chunk_length_s=30, generate_kwargs={"task": "transcribe"}, batch_size=32, ), total=len(common_voice_test), ): all_predictions.append(prediction["text"]) wer_metric = load("wer") cer_metric = load("cer") wer_result = 100 * wer_metric.compute( references=common_voice_test["sentence"], predictions=all_predictions ) cer_result = 100 * cer_metric.compute( references=common_voice_test["sentence"], predictions=all_predictions ) # Update the results CSV new_row = {'model': model_text, 'Common Voice WER ⬇️': wer_result, 'Common Voice CER ⬇️': cer_result} df_results = pd.read_csv(csv_results) df_results = df_results.append(new_row, ignore_index=True) df_results.to_csv(csv_results, index=False) # Update the leaderboard DataFrame original_df = df_results.copy() original_df['Model'] = original_df['Model'].apply(make_clickable_model) for col in original_df.columns: if col in ['Model']: continue # Skip the 'model' and 'Model' columns else: original_df[col] = original_df[col].apply(formatter) original_df.rename(columns=column_names, inplace=True) original_df.sort_values(by='asr-farsi-youtube WER', inplace=True) # Update the leaderboard table in the UI leaderboard_table.update(value=original_df) # Return success message return styled_message("🤗 Your model has been evaluated and added to the leaderboard!") except Exception as e: return styled_error(f"Error during evaluation: {e}") with gr.Blocks() as demo: gr.HTML(BANNER, elem_id="banner") gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") with gr.Tabs(elem_classes="tab-buttons") as tabs: with gr.TabItem("🏅 Leaderboard", elem_id="od-benchmark-tab-table", id=0): leaderboard_table = gr.Dataframe( value=original_df, datatype=TYPES, elem_id="leaderboard-table", interactive=False, visible=True, ) with gr.TabItem("📈 Metrics", elem_id="od-benchmark-tab-table", id=1): gr.Markdown(METRICS_TAB_TEXT, elem_classes="markdown-text") with gr.TabItem("✉️✨ Request a model here!", elem_id="od-benchmark-tab-table", id=2): with gr.Column(): gr.Markdown("# ✉️✨ Request results for a new model here!", elem_classes="markdown-text") model_name_textbox = gr.Textbox(label="Model name (user_name/model_name)") mdw_submission_result = gr.Markdown() btn_submit = gr.Button(value="🚀 Request") btn_submit.click(request_model, [model_name_textbox], mdw_submission_result) gr.Markdown(f"Last updated on **{LAST_UPDATED}**", elem_classes="markdown-text") with gr.Row(): with gr.Accordion("📙 Citation", open=False): gr.Textbox( value=CITATION_TEXT, lines=7, label="Copy the BibTeX snippet to cite this source", elem_id="citation-button", show_copy_button=True, ) demo.launch()