Spaces:
Sleeping
Sleeping
import gradio as gr | |
from PIL import Image, ImageFilter | |
import numpy as np | |
import cv2 | |
import torch | |
from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation, DPTFeatureExtractor, DPTForDepthEstimation | |
# Load models | |
segformer_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b1-finetuned-ade-512-512") | |
segformer_model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b1-finetuned-ade-512-512") | |
dpt_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large") | |
dpt_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large") | |
# Gaussian Blur Background Function | |
def gaussian_blur_background(image): | |
# Preprocess image for segmentation | |
inputs = segformer_extractor(images=image, return_tensors="pt") | |
outputs = segformer_model(**inputs) | |
logits = outputs.logits | |
segmentation = torch.argmax(logits, dim=1)[0].numpy() | |
# Create a binary mask for 'person' class (class index 12) | |
human_mask = (segmentation == 12).astype(np.uint8) * 255 | |
human_mask_image = Image.fromarray(human_mask).resize(image.size) | |
# Apply Gaussian blur to the entire image | |
blurred_background = image.filter(ImageFilter.GaussianBlur(15)) | |
# Composite the original image with blurred background using the mask | |
composite_image = Image.composite(image, blurred_background, human_mask_image) | |
return composite_image | |
# Depth-Based Lens Blur Function | |
def lens_blur(image): | |
# Preprocess image for depth estimation | |
inputs = dpt_extractor(images=image, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = dpt_model(**inputs) | |
depth_map = outputs.predicted_depth.squeeze().cpu().numpy() | |
# Normalize depth map to range [0, 15] and invert for blur intensity | |
depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min()) * 15 | |
depth_map = 15 - depth_map | |
depth_map_resized = cv2.resize(depth_map, (image.width, image.height)) | |
# Convert image to OpenCV format | |
image_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) | |
blurred_image = np.zeros_like(image_cv, dtype=np.float32) | |
# Apply variable blur based on depth | |
for blur_radius in range(1, 16): | |
blurred_layer = cv2.GaussianBlur(image_cv, (0, 0), sigmaX=blur_radius) | |
mask = ((depth_map_resized >= (blur_radius - 1)) & (depth_map_resized < blur_radius)).astype(np.float32) | |
mask = cv2.merge([mask] * 3) | |
blurred_image += blurred_layer * mask | |
blurred_image = np.clip(blurred_image, 0, 255).astype(np.uint8) | |
blurred_image_pil = Image.fromarray(cv2.cvtColor(blurred_image, cv2.COLOR_BGR2RGB)) | |
return blurred_image_pil | |
# Gradio Interface | |
def process_image(image, effect): | |
if effect == "Gaussian Blur Background": | |
return gaussian_blur_background(image) | |
elif effect == "Lens Blur": | |
return lens_blur(image) | |
with gr.Blocks() as demo: | |
gr.Markdown("# BokehBot: Gaussian and Lens Blur Effects") | |
with gr.Row(): | |
with gr.Column(): | |
uploaded_image = gr.Image(type="pil", label="Upload an Image") | |
effect = gr.Radio(["Gaussian Blur Background", "Lens Blur"], label="Choose Effect") | |
process_button = gr.Button("Apply Effect") | |
with gr.Column(): | |
output_image = gr.Image(type="pil", label="Processed Image") | |
process_button.click(process_image, inputs=[uploaded_image, effect], outputs=output_image) | |
demo.launch() | |