import gradio as gr from PIL import Image, ImageFilter import numpy as np import cv2 import torch from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation, DPTFeatureExtractor, DPTForDepthEstimation # Load models segformer_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b1-finetuned-ade-512-512") segformer_model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b1-finetuned-ade-512-512") dpt_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large") dpt_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large") # Gaussian Blur Background Function def gaussian_blur_background(image): # Preprocess image for segmentation inputs = segformer_extractor(images=image, return_tensors="pt") outputs = segformer_model(**inputs) logits = outputs.logits segmentation = torch.argmax(logits, dim=1)[0].numpy() # Create a binary mask for 'person' class (class index 12) human_mask = (segmentation == 12).astype(np.uint8) * 255 human_mask_image = Image.fromarray(human_mask).resize(image.size) # Apply Gaussian blur to the entire image blurred_background = image.filter(ImageFilter.GaussianBlur(15)) # Composite the original image with blurred background using the mask composite_image = Image.composite(image, blurred_background, human_mask_image) return composite_image # Depth-Based Lens Blur Function def lens_blur(image): # Preprocess image for depth estimation inputs = dpt_extractor(images=image, return_tensors="pt") with torch.no_grad(): outputs = dpt_model(**inputs) depth_map = outputs.predicted_depth.squeeze().cpu().numpy() # Normalize depth map to range [0, 15] and invert for blur intensity depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min()) * 15 depth_map = 15 - depth_map depth_map_resized = cv2.resize(depth_map, (image.width, image.height)) # Convert image to OpenCV format image_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) blurred_image = np.zeros_like(image_cv, dtype=np.float32) # Apply variable blur based on depth for blur_radius in range(1, 16): blurred_layer = cv2.GaussianBlur(image_cv, (0, 0), sigmaX=blur_radius) mask = ((depth_map_resized >= (blur_radius - 1)) & (depth_map_resized < blur_radius)).astype(np.float32) mask = cv2.merge([mask] * 3) blurred_image += blurred_layer * mask blurred_image = np.clip(blurred_image, 0, 255).astype(np.uint8) blurred_image_pil = Image.fromarray(cv2.cvtColor(blurred_image, cv2.COLOR_BGR2RGB)) return blurred_image_pil # Gradio Interface def process_image(image, effect): if effect == "Gaussian Blur Background": return gaussian_blur_background(image) elif effect == "Lens Blur": return lens_blur(image) with gr.Blocks() as demo: gr.Markdown("# BokehBot: Gaussian and Lens Blur Effects") with gr.Row(): with gr.Column(): uploaded_image = gr.Image(type="pil", label="Upload an Image") effect = gr.Radio(["Gaussian Blur Background", "Lens Blur"], label="Choose Effect") process_button = gr.Button("Apply Effect") with gr.Column(): output_image = gr.Image(type="pil", label="Processed Image") process_button.click(process_image, inputs=[uploaded_image, effect], outputs=output_image) demo.launch()