Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,17 @@
|
|
1 |
-
|
2 |
!pip install huggingface_hub
|
3 |
!pip install transformers
|
4 |
import gradio as gr
|
5 |
from huggingface_hub import InferenceClient
|
|
|
6 |
|
|
|
7 |
|
8 |
-
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
messages = [
|
11 |
-
{"role": "user", "content": "Who are you?"},
|
12 |
-
]
|
13 |
-
pipe = pipeline("text-generation", model="ibm-granite/granite-8b-code-instruct")
|
14 |
-
pipe(messages)
|
15 |
-
message,
|
16 |
-
history: list[tuple[str, str]],
|
17 |
-
system_message,
|
18 |
-
max_tokens,
|
19 |
-
temperature,
|
20 |
-
top_p,
|
21 |
-
):
|
22 |
messages = [{"role": "system", "content": system_message}]
|
23 |
|
24 |
for val in history:
|
@@ -31,21 +24,19 @@ pipe(messages)
|
|
31 |
|
32 |
response = ""
|
33 |
|
|
|
|
|
34 |
for message in client.chat_completion(
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
):
|
41 |
token = message.choices[0].delta.content
|
42 |
-
|
43 |
response += token
|
44 |
yield response
|
45 |
|
46 |
-
"""
|
47 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
48 |
-
"""
|
49 |
demo = gr.ChatInterface(
|
50 |
respond,
|
51 |
additional_inputs=[
|
@@ -62,6 +53,5 @@ demo = gr.ChatInterface(
|
|
62 |
],
|
63 |
)
|
64 |
|
65 |
-
|
66 |
if __name__ == "__main__":
|
67 |
demo.launch()
|
|
|
|
|
1 |
!pip install huggingface_hub
|
2 |
!pip install transformers
|
3 |
import gradio as gr
|
4 |
from huggingface_hub import InferenceClient
|
5 |
+
from transformers import pipeline
|
6 |
|
7 |
+
system_message = "You are a friendly chatbot."
|
8 |
|
9 |
+
def respond(message, history=None, system_message=system_message, max_tokens=512, temperature=0.7, top_p=0.95):
|
10 |
+
if history is None:
|
11 |
+
history = []
|
12 |
+
if isinstance(history, str):
|
13 |
+
history = json.loads(history)
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
messages = [{"role": "system", "content": system_message}]
|
16 |
|
17 |
for val in history:
|
|
|
24 |
|
25 |
response = ""
|
26 |
|
27 |
+
client = InferenceClient(pipeline("text-generation", model="ibm-granite/granite-8b-code-instruct"))
|
28 |
+
|
29 |
for message in client.chat_completion(
|
30 |
+
messages,
|
31 |
+
max_tokens=max_tokens,
|
32 |
+
stream=True,
|
33 |
+
temperature=temperature,
|
34 |
+
top_p=top_p,
|
35 |
):
|
36 |
token = message.choices[0].delta.content
|
|
|
37 |
response += token
|
38 |
yield response
|
39 |
|
|
|
|
|
|
|
40 |
demo = gr.ChatInterface(
|
41 |
respond,
|
42 |
additional_inputs=[
|
|
|
53 |
],
|
54 |
)
|
55 |
|
|
|
56 |
if __name__ == "__main__":
|
57 |
demo.launch()
|