good_acc / app.py
nebiyu29's picture
Update app.py
c4dd8e7 verified
raw
history blame
5.12 kB
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import gradio as gr
# Load model directly
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import transformers
tokenizer = AutoTokenizer.from_pretrained("nebiyu29/fintunned-v2-roberta_GA")
model = AutoModelForSequenceClassification.from_pretrained("nebiyu29/fintunned-v2-roberta_GA")
# Load the model and tokenizer
# model = transformers.AutoModelForSequenceClassification.from_pretrained("facebook/bart-large-mnli")
# tokenizer = transformers.AutoTokenizer.from_pretrained("facebook/bart-large-mnli")
# Define a function to split a text into segments of 512 tokens
def split_text(text):
# Tokenize the text
tokens = tokenizer.tokenize(text)
# Initialize an empty list for segments
segments = []
# Initialize an empty list for current segment
current_segment = []
# Initialize a counter for tokens
token_count = 0
# Loop through the tokens
for token in tokens:
# Add the token to the current segment
current_segment.append(token)
# Increment the token count
token_count += 1
# If the token count reaches 512 or the end of the text, add the current segment to the segments list
if token_count == 512 or token == tokens[-1]:
# Convert the current segment to a string and add it to the segments list
segments.append(tokenizer.convert_tokens_to_string(current_segment))
# Reset the current segment and the token count
current_segment = []
token_count = 0
# Return the segments list
return segments
def classify(text, model):
# Define the labels
labels = ["depression", "anxiety", "bipolar disorder", "schizophrenia", "PTSD", "OCD", "ADHD", "autism", "eating disorder", "personality disorder", "phobia"]
# Encode the labels
label_encodings = tokenizer(labels, padding=True, return_tensors="pt")
# Split the text into segments
segments = split_text(text)
# Initialize an empty list for logits
logits_list = []
# Move device to GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device) # Move the model to the device
# Loop through the segments
for segment in segments:
# Encode the segment and the labels
inputs = tokenizer([segment] + labels, padding=True, return_tensors="pt")
# Get the input ids and attention mask
input_ids = inputs["input_ids"]
attention_mask = inputs["attention_mask"]
# Move the input ids and attention mask to the device
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
# Get the model outputs for each segment
with torch.no_grad():
outputs = model(
input_ids,
attention_mask=attention_mask,
)
# Get the logits for each segment and append them to the logits list
logits = outputs.logits
logits_list.append(logits)
# Average the logits across the segments
avg_logits = torch.mean(torch.stack(logits_list), dim=0)
# Apply softmax to convert logits to probabilities
probabilities = torch.softmax(avg_logits, dim=1)
# Get the probabilities for each label
label_probabilities = probabilities[:, :len(labels)].tolist()
# Get the top 3 most likely labels and their probabilities
# Get the top 3 most likely labels and their probabilities
top_labels = []
top_probabilities = []
label_probabilities = label_probabilities[0] # Extract the list of probabilities for the first (and only) example
for _ in range(3):
max_prob_index = label_probabilities.index(max(label_probabilities))
top_labels.append(labels[max_prob_index])
top_probabilities.append(max(label_probabilities))
label_probabilities[max_prob_index] = 0 # Set the max probability to 0 to get the next highest probability
# Create a dictionary to store the results
results = {
"sequence": text,
"top_labels": top_labels,
"top_probabilities": top_probabilities
}
return results
# def classify_text(text):
# """
# This function preprocesses, feeds text to the model, and outputs the predicted class.
# """
# inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
# outputs = model(**inputs)
# logits = outputs.logits # Access logits instead of pipeline output
# predictions = torch.argmax(logits, dim=-1) # Apply argmax for prediction
# return model.config.id2label[predictions.item()] # Map index to class label
interface = gr.Interface(
fn=classify_text,
inputs="text",
outputs="text",
title="Text Classification Demo",
description="Enter some text, and the model will classify it.",
choices=["depression", "anxiety", "bipolar disorder", "schizophrenia", "PTSD", "OCD", "ADHD", "autism", "eating disorder", "personality disorder", "phobia"] # Adjust class names
)
interface.launch()