good_acc_v2 / app.py
nebiyu29's picture
added regex expression
6042393 verified
raw
history blame
3.44 kB
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import re
tokenizer = AutoTokenizer.from_pretrained("nebiyu29/fintunned-v2-roberta_GA")
model = AutoModelForSequenceClassification.from_pretrained("nebiyu29/fintunned-v2-roberta_GA")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
# Define a function to split a text into segments of 512 tokens
def split_text(text):
#remove unnessary charachters
text=re.sub(r'[^a-zA-Z\s]','',text)
# Tokenize the text
tokens = tokenizer.tokenize(text)
# Initialize an empty list for segments
segments = []
# Initialize an empty list for current segment
current_segment = []
# Initialize a counter for tokens
token_count = 0
# Loop through the tokens
for token in tokens:
# Add the token to the current segment
current_segment.append(token)
# Increment the token count
token_count += 1
# If the token count reaches 512 or the end of the text, add the current segment to the segments list
if token_count == 512 or token == tokens[-1]:
# Convert the current segment to a string and add it to the segments list
segments.append(tokenizer.convert_tokens_to_string(current_segment))
# Reset the current segment and the token count
current_segment = []
token_count = 0
# Return the segments list
return segments
# Define a function to extract predictions from model output (adjust as needed)
def extract_predictions(outputs):
# Assuming outputs contain logits and labels (adapt based on your model's output format)
logits = outputs.logits
probs = logits.softmax(dim=1)
preds = torch.argmax(probs, dim=1)
return probs, preds # Return all probabilities and predicted labels
# a function that classifies text
def classify_text(text):
# Split text into segments using split_text
segments = split_text(text)
# Initialize empty list for predictions
predictions = []
# Loop through segments, process, and store predictions
for segment in segments:
inputs = tokenizer([segment], padding=True, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
attention_mask = inputs["attention_mask"].to(device)
with torch.no_grad():
outputs = model(input_ids, attention_mask=attention_mask)
# Extract predictions for each segment
probs, preds = extract_predictions(outputs) # Define this function based on your model's output
pred_label = model.config.id2label[preds[0].item()]
# Append predictions for this segment
predictions.append({
"segment_text": segment,
"label": pred_label, # Assuming single label prediction
"probability": probs[0][preds[0]].item() # Access probability for the predicted label
})
return predictions
# Streamlit app
st.title("Text Classification Demo")
st.write("Enter some text, and the model will classify it.")
text_input = st.text_input("Text Input")
if st.button("Classify"):
predictions = classify_text(text_input)
for prediction in predictions:
st.write(f"Segment Text: {prediction['segment_text']}")
st.write(f"Label: {prediction['label']}")
st.write(f"Probability: {prediction['probability']}")