Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import torch | |
import re | |
# Load the model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("nebiyu29/fintunned-v2-roberta_GA") | |
model = AutoModelForSequenceClassification.from_pretrained("nebiyu29/fintunned-v2-roberta_GA") | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = model.to(device) | |
# Define a function to split a text into segments of 512 tokens | |
def split_text(text): | |
text=re.sub(r'[^a-zA-Z\s]','',text) | |
text=str(text) | |
# Tokenize the text | |
tokens = tokenizer.tokenize(text) | |
# Initialize an empty list for segments | |
segments = [] | |
# Initialize an empty list for current segment | |
current_segment = [] | |
# Initialize a counter for tokens | |
token_count = 0 | |
# Loop through the tokens | |
for token in tokens: | |
# Add the token to the current segment | |
current_segment.append(token) | |
# Increment the token count | |
token_count += 1 | |
# If the token count reaches 512 or the end of the text, add the current segment to the segments list | |
if token_count == 512 or token == tokens[-1]: | |
# Convert the current segment to a string and add it to the segments list | |
segments.append(tokenizer.convert_tokens_to_string(current_segment)) | |
# Reset the current segment and the token count | |
current_segment = [] | |
token_count = 0 | |
# Return the segments list | |
return segments | |
def classify(text): | |
# Define the labels | |
labels = ["depression", "anxiety", "bipolar disorder", "schizophrenia", "PTSD", "OCD", "ADHD", "autism", "eating disorder", "personality disorder", "phobia"] | |
#labels=list(model.config.id2label) | |
# Encode the labels | |
label_encodings = tokenizer(labels, padding=True, return_tensors="pt") | |
# Split the text into segments | |
segments = split_text(text) | |
# Initialize an empty list for logits | |
logits_list = [] | |
# Loop through the segments | |
for segment in segments: | |
# Encode the segment and the labels | |
inputs = tokenizer([segment] + labels, padding=True, return_tensors="pt") | |
# Get the input ids and attention mask | |
input_ids = inputs["input_ids"] | |
attention_mask = inputs["attention_mask"] | |
# Move the input ids and attention mask to the device | |
input_ids = input_ids.to(device) | |
attention_mask = attention_mask.to(device) | |
# Get the model outputs for each segment | |
with torch.no_grad(): | |
outputs = model( | |
input_ids, | |
attention_mask=attention_mask, | |
) | |
# Get the logits for each segment and append them to the logits list | |
logits = outputs.logits | |
logits_list.append(logits) | |
# Average the logits across the segments | |
avg_logits = torch.mean(torch.stack(logits_list), dim=0) | |
# Apply softmax to convert logits to probabilities | |
probabilities = torch.softmax(avg_logits, dim=1) | |
# Get the probabilities for each label | |
label_probabilities = probabilities[:, :len(labels)].tolist() | |
# Get the top 3 most likely labels and their probabilities | |
# Get the top 3 most likely labels and their probabilities | |
top_labels = [] | |
top_probabilities = [] | |
label_probabilities = label_probabilities[0] # Extract the list of probabilities for the first (and only) example | |
for _ in range(3): | |
max_prob_index = label_probabilities.index(max(label_probabilities)) | |
top_labels.append(labels[max_prob_index]) | |
top_probabilities.append(max(label_probabilities)) | |
label_probabilities[max_prob_index] = 0 # Set the max probability to 0 to get the next highest probability | |
# Create a dictionary to store the results | |
results = { | |
"sequence": text, | |
"top_labels": top_labels, | |
"top_probabilities": top_probabilities | |
} | |
return results | |
# Streamlit app | |
st.title("Text Classification.") | |
st.write("Enter some text, and the model will classify it.") | |
text_input = st.text_input("Text Input") | |
#if st.button("Classify"): | |
predictions = classify(text_input) | |
labels_str=",".join(predictions["top_labels"]) | |
probs_ints=",".join(map(str,predictions["top_probabilities"])) | |
#for prediction in predictions: | |
# st.write(f"Segment Text: {prediction['segment_text']}") | |
st.write(f"Label: {labels_str}") | |
st.write(f"Probability: {probs_ints}") |