Spaces:
Runtime error
Runtime error
File size: 996 Bytes
8ec0711 a8c9879 eeac5cc a8c9879 8ec0711 959ecc7 a8c9879 8ec0711 2dab15b 8ec0711 082d447 8ec0711 a8c9879 082d447 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
from transformers import AutoModelForSequenceClassification,AutoTokenizer
import gradio as gr
import torch
model_name="nebiyu29/hate_classifier"
tokenizer=AutoTokenizer.from_pretrained(model_name)
model=AutoModelForSequenceClassification.from_pretrained(model_name)
#this where the model is active and we need to make the gradiends in active
def model_classifier(text):
model.eval()
with torch.no_grad():
if len(text)==0:
return f"the input text is {text}"
else:
encoded_input=tokenizer(text) #this is where the encoding happens
scores=model(encoded)[0] #this is is the score for rach values
return scores
#lets write something that accepts input as text and returns the most likely out come out of 3
demo=gr.Interface(
fn=model_classifier,
inputs=gr.Textbox(lines=5,label="Enter you text"),
outputs=gr.Textbox(lines=5,label="Label scores"),
title="Hate Classifier Demo App"
)
demo.launch(share=True) |