from transformers import AutoModelForSequenceClassification,AutoTokenizer from torch.nn.functional import softmax import torch import gradio as gr import json model_name="nebiyu29/hate_classifier" tokenizer=AutoTokenizer.from_pretrained(model_name) model=AutoModelForSequenceClassification.from_pretrained(model_name) #this where the model is active and we need to make the gradiends in active def model_classifier(text): model.eval() with torch.no_grad(): if len(text)==0: return f"the input text is {text}" else: encoded_input=tokenizer(text,return_tensors="pt",truncation=True,padding=True) #this is where the encoding happens input_ids=encoded_input["input_ids"] attention_mask=encoded_input["attention_mask"] logits=model(input_ids,attention_mask).logits #this is the logits of the labels probs_label=softmax(logits,dim=-1) #turning the probability distribution into normalize form id2label=model.config.id2label return_probs={id2label[i]:probs.item() for i,probs in enumerate(probs_label[0])} return json.dumps(list(return_probs.items())) #lets define how the output looks like #output_format=gr.Dataframe(row_count=(3,"dynamic"),col_count=(2,"dynamic"),label="label probabilities",headers=["label","probabilities"]) #the output looks like a json format output_format=gr.outputs.Textbox(label="label probabilities") #lets write something that accepts input as text and returns the most likely out come out of 3 demo=gr.Interface( fn=model_classifier, inputs=gr.Textbox(lines=5,label="Enter you text"), outputs=output_format, title="Hate Classifier Demo App" ) demo.launch(share=True)