Spaces:
Configuration error
Configuration error
# -*- coding: utf-8 -*- | |
""" | |
@author:XuMing([email protected]) | |
@description: | |
pip install gradio | |
pip install mdtex2html | |
""" | |
import argparse | |
import os | |
from threading import Thread | |
import gradio as gr | |
import mdtex2html | |
import torch | |
from peft import PeftModel | |
from transformers import ( | |
AutoModel, | |
AutoTokenizer, | |
AutoModelForCausalLM, | |
BloomForCausalLM, | |
BloomTokenizerFast, | |
LlamaTokenizer, | |
LlamaForCausalLM, | |
GenerationConfig, | |
TextIteratorStreamer, | |
) | |
from supervised_finetuning import get_conv_template | |
MODEL_CLASSES = { | |
"bloom": (BloomForCausalLM, BloomTokenizerFast), | |
"chatglm": (AutoModel, AutoTokenizer), | |
"llama": (LlamaForCausalLM, LlamaTokenizer), | |
"baichuan": (AutoModelForCausalLM, AutoTokenizer), | |
"auto": (AutoModelForCausalLM, AutoTokenizer), | |
} | |
def stream_generate_answer( | |
model, | |
tokenizer, | |
prompt, | |
device, | |
max_new_tokens=512, | |
temperature=0.7, | |
top_p=0.8, | |
repetition_penalty=1.0, | |
context_len=2048, | |
): | |
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=False) | |
input_ids = tokenizer(prompt).input_ids | |
max_src_len = context_len - max_new_tokens - 8 | |
input_ids = input_ids[-max_src_len:] | |
generation_kwargs = dict( | |
input_ids=torch.as_tensor([input_ids]).to(device), | |
max_new_tokens=max_new_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
streamer=streamer, | |
) | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
yield from streamer | |
def main(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--model_type', default=None, type=str, required=True) | |
parser.add_argument('--base_model', default=None, type=str, required=True) | |
parser.add_argument('--lora_model', default="", type=str, help="If None, perform inference on the base model") | |
parser.add_argument('--tokenizer_path', default=None, type=str) | |
parser.add_argument('--template_name', default="vicuna", type=str, | |
help="Prompt template name, eg: alpaca, vicuna, baichuan-chat, chatglm2 etc.") | |
parser.add_argument('--gpus', default="0", type=str) | |
parser.add_argument('--only_cpu', action='store_true', help='only use CPU for inference') | |
parser.add_argument('--resize_emb', action='store_true', help='Whether to resize model token embeddings') | |
args = parser.parse_args() | |
if args.only_cpu is True: | |
args.gpus = "" | |
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus | |
def postprocess(self, y): | |
if y is None: | |
return [] | |
for i, (message, response) in enumerate(y): | |
y[i] = ( | |
None if message is None else mdtex2html.convert((message)), | |
None if response is None else mdtex2html.convert(response), | |
) | |
return y | |
gr.Chatbot.postprocess = postprocess | |
load_type = torch.float16 | |
if torch.cuda.is_available(): | |
device = torch.device(0) | |
else: | |
device = torch.device('cpu') | |
if args.tokenizer_path is None: | |
args.tokenizer_path = args.base_model | |
model_class, tokenizer_class = MODEL_CLASSES[args.model_type] | |
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_path, trust_remote_code=True) | |
base_model = model_class.from_pretrained( | |
args.base_model, | |
load_in_8bit=False, | |
torch_dtype=load_type, | |
low_cpu_mem_usage=True, | |
device_map='auto', | |
trust_remote_code=True, | |
) | |
try: | |
base_model.generation_config = GenerationConfig.from_pretrained(args.base_model, trust_remote_code=True) | |
except OSError: | |
print("Failed to load generation config, use default.") | |
if args.resize_emb: | |
model_vocab_size = base_model.get_input_embeddings().weight.size(0) | |
tokenzier_vocab_size = len(tokenizer) | |
print(f"Vocab of the base model: {model_vocab_size}") | |
print(f"Vocab of the tokenizer: {tokenzier_vocab_size}") | |
if model_vocab_size != tokenzier_vocab_size: | |
print("Resize model embeddings to fit tokenizer") | |
base_model.resize_token_embeddings(tokenzier_vocab_size) | |
if args.lora_model: | |
model = PeftModel.from_pretrained(base_model, args.lora_model, torch_dtype=load_type, device_map='auto') | |
print("loaded lora model") | |
else: | |
model = base_model | |
if device == torch.device('cpu'): | |
model.float() | |
model.eval() | |
def reset_user_input(): | |
return gr.update(value='') | |
def reset_state(): | |
return [], [] | |
prompt_template = get_conv_template(args.template_name) | |
stop_str = tokenizer.eos_token if tokenizer.eos_token else prompt_template.stop_str | |
history = [] | |
def predict( | |
input, | |
chatbot, | |
history, | |
max_new_tokens, | |
temperature, | |
top_p | |
): | |
now_input = input | |
chatbot.append((input, "")) | |
history = history or [] | |
history.append([now_input, '']) | |
prompt = prompt_template.get_prompt(messages=history) | |
response = "" | |
for new_text in stream_generate_answer( | |
model, | |
tokenizer, | |
prompt, | |
device, | |
max_new_tokens=max_new_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
stop = False | |
pos = new_text.find(stop_str) | |
if pos != -1: | |
new_text = new_text[:pos] | |
stop = True | |
response += new_text | |
new_history = history + [(now_input, response)] | |
chatbot[-1] = (now_input, response) | |
yield chatbot, new_history | |
if stop: | |
break | |
with gr.Blocks() as demo: | |
gr.HTML("""<h1 align="center">MedicalGPT</h1>""") | |
gr.Markdown( | |
"> 为了促进医疗行业大模型的开放研究,本项目开源了MedicalGPT医疗大模型") | |
chatbot = gr.Chatbot() | |
with gr.Row(): | |
with gr.Column(scale=4): | |
with gr.Column(scale=12): | |
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style( | |
container=False) | |
with gr.Column(min_width=32, scale=1): | |
submitBtn = gr.Button("Submit", variant="primary") | |
with gr.Column(scale=1): | |
emptyBtn = gr.Button("Clear History") | |
max_length = gr.Slider( | |
0, 4096, value=512, step=1.0, label="Maximum length", interactive=True) | |
top_p = gr.Slider(0, 1, value=0.8, step=0.01, | |
label="Top P", interactive=True) | |
temperature = gr.Slider( | |
0, 1, value=0.7, step=0.01, label="Temperature", interactive=True) | |
history = gr.State([]) | |
submitBtn.click(predict, [user_input, chatbot, history, max_length, temperature, top_p], [chatbot, history], | |
show_progress=True) | |
submitBtn.click(reset_user_input, [], [user_input]) | |
emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True) | |
demo.queue().launch(share=False, inbrowser=True, server_name='0.0.0.0', server_port=8082) | |
if __name__ == '__main__': | |
main() | |