MedicalGPT-main / merge_tokenizers.py
nengrenjie83's picture
Upload 28 files
b78b52f
# -*- coding: utf-8 -*-
"""
@author:XuMing([email protected])
@description:
"""
import os
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
from transformers import LlamaTokenizer
from sentencepiece import sentencepiece_model_pb2 as sp_pb2_model
import sentencepiece as spm
import argparse
def is_chinese(uchar):
"""判断一个unicode是否是汉字"""
return '\u4e00' <= uchar <= '\u9fa5'
def is_chinese_string(string):
"""判断是否全为汉字"""
return all(is_chinese(c) for c in string)
def load_baichuan_vocab(vocab_file):
words = set()
with open(vocab_file, "r", encoding="utf-8") as f:
for line in f:
if line.strip():
words.add(line.strip().split()[0])
return words
def load_jieba_vocab(jieba_vocab_file):
# Read jieba vocab and sort by freq
with open(jieba_vocab_file, "r", encoding="utf-8") as f:
lines = f.readlines()
word_freqs = [line.strip().split() for line in lines]
word_freqs.sort(key=lambda x: int(x[1]), reverse=True)
return word_freqs
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--base_tokenizer_dir', default=None, type=str, required=True)
parser.add_argument('--domain_sp_model_file', default='./domain_sp.model', type=str)
parser.add_argument('--baichuan_vocab_file', default="data/vocab/baichuan_vocab.txt", type=str)
parser.add_argument('--add_jieba', action='store_true', help='Whether to add jieba vocab.')
parser.add_argument('--jieba_word_freq_file', default='data/vocab/word_freq.txt', type=str)
parser.add_argument('--jieba_word_size', default=20000, type=int)
args = parser.parse_args()
print(args)
# load
llama_tokenizer = LlamaTokenizer.from_pretrained(args.base_tokenizer_dir)
chinese_sp_model = spm.SentencePieceProcessor()
chinese_sp_model.Load(args.domain_sp_model_file)
llama_spm = sp_pb2_model.ModelProto()
llama_spm.ParseFromString(llama_tokenizer.sp_model.serialized_model_proto())
chinese_spm = sp_pb2_model.ModelProto()
chinese_spm.ParseFromString(chinese_sp_model.serialized_model_proto())
# print number of tokens
print(len(llama_tokenizer), len(chinese_sp_model))
print(llama_tokenizer.all_special_tokens)
print(llama_tokenizer.all_special_ids)
print(llama_tokenizer.special_tokens_map)
# Add Chinese tokens to LLaMA tokenizer
llama_spm_tokens_set = set(p.piece for p in llama_spm.pieces)
print(len(llama_spm_tokens_set))
print(f"Before:{len(llama_spm_tokens_set)}")
added_set = set()
for p in chinese_spm.pieces:
piece = p.piece
if piece not in llama_spm_tokens_set:
# print('picec', piece)
new_p = sp_pb2_model.ModelProto().SentencePiece()
new_p.piece = piece
new_p.score = 0
llama_spm.pieces.append(new_p)
added_set.add(piece)
print(f"[add domain tokens]New model pieces: {len(llama_spm.pieces)}")
vocab = load_baichuan_vocab(args.baichuan_vocab_file)
print('baichuan vocab len:', len(vocab))
baichuan_vocab_set = set([i for i in vocab if is_chinese_string(i)])
print('baichuan chinese vocab size:', len(baichuan_vocab_set))
print('baichuan vocab head:', list(baichuan_vocab_set)[:10])
for p in baichuan_vocab_set:
piece = p
if piece not in llama_spm_tokens_set and piece not in added_set:
# print('baichuan picec', piece)
new_p = sp_pb2_model.ModelProto().SentencePiece()
new_p.piece = piece
new_p.score = 0
llama_spm.pieces.append(new_p)
added_set.add(piece)
print(f"[add baichuan tokens]New model pieces: {len(llama_spm.pieces)}")
if args.add_jieba:
word_freqs = load_jieba_vocab(args.jieba_word_freq_file)
top_words = word_freqs[:args.jieba_word_size]
print('jieba top10 freq words:', top_words[:10])
jieba_vocab_set = set([i[0] for i in top_words if i])
print('jieba_vocab_set size:', len(jieba_vocab_set))
print('jieba_vocab head:', list(jieba_vocab_set)[:3])
for p in jieba_vocab_set:
piece = p
if piece not in llama_spm_tokens_set and piece not in added_set:
# print('jieba picec', piece)
new_p = sp_pb2_model.ModelProto().SentencePiece()
new_p.piece = piece
new_p.score = 0
llama_spm.pieces.append(new_p)
print(f"[add jieba tokens]New model pieces: {len(llama_spm.pieces)}")
# Save
output_sp_dir = 'merged_tokenizer_sp'
output_hf_dir = 'merged_tokenizer_hf' # the path to save Chinese-LLaMA tokenizer
os.makedirs(output_sp_dir, exist_ok=True)
with open(output_sp_dir + '/chinese_llama.model', 'wb') as f:
f.write(llama_spm.SerializeToString())
tokenizer = LlamaTokenizer(vocab_file=output_sp_dir + '/chinese_llama.model')
tokenizer.save_pretrained(output_hf_dir)
print(f"Chinese-LLaMA tokenizer has been saved to {output_hf_dir}")
# Test
llama_tokenizer = LlamaTokenizer.from_pretrained(args.base_tokenizer_dir)
chinese_llama_tokenizer = LlamaTokenizer.from_pretrained(output_hf_dir)
print(chinese_llama_tokenizer.all_special_tokens)
print(chinese_llama_tokenizer.all_special_ids)
print(chinese_llama_tokenizer.special_tokens_map)
print('old len:', len(llama_tokenizer), ' new len:', len(chinese_llama_tokenizer))
text = '''this is a test, hello world. thisisatesthelloworld,
慕容复来到河边,姑苏慕容氏在外面丢了人。
1号店一周岁了,我们一古脑儿买了10斤零食。
巴塞罗那足球俱乐部简称巴萨(Barça),是一家位于西班牙加泰罗尼亚巴塞罗那的足球俱乐部,于1899年由瑞士企业家胡安·甘伯所创立,世界球坛顶级足球俱乐部之一。俱乐部主场可容纳接近十万名观众,是全欧洲最大及世界第二大的足球场。
白日依山尽,黄河入海流。欲穷千里目,更上一层楼。'''
print("Test text:\n", text)
print(f"Tokenized by LLaMA tokenizer:{llama_tokenizer.tokenize(text)}")
print(f"Tokenized by Chinese-LLaMA tokenizer:{chinese_llama_tokenizer.tokenize(text)}")
if __name__ == '__main__':
main()