2024_decision_value / pitching_summary_graphic.py
nesticot's picture
Upload 34 files
efd6469 verified
print('Running')
import time
import requests
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib.pyplot import figure
from matplotlib.offsetbox import OffsetImage, AnnotationBbox
from scipy import stats
import matplotlib.lines as mlines
import matplotlib.transforms as mtransforms
import numpy as np
import time
#import plotly.express as px
#!pip install chart_studio
#import chart_studio.tools as tls
from bs4 import BeautifulSoup
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.font_manager as font_manager
from datetime import datetime
import pytz
from matplotlib.ticker import MaxNLocator
from matplotlib.patches import Ellipse
import matplotlib.transforms as transforms
from matplotlib.gridspec import GridSpec
datetime.now(pytz.timezone('US/Pacific')).strftime('%B %d, %Y')
# Configure Notebook
#%matplotlib inline
plt.style.use('fivethirtyeight')
sns.set_context("notebook")
import warnings
warnings.filterwarnings('ignore')
# import yfpy
# from yfpy.query import YahooFantasySportsQuery
# import yahoo_oauth
import json
import urllib
#import openpyxl
from sklearn import preprocessing
from datetime import timedelta
#import dataframe_image as dfi
# from google.colab import drive
def percentile(n):
def percentile_(x):
return np.percentile(x, n)
percentile_.__name__ = 'percentile_%s' % n
return percentile_
import os
import praw
import matplotlib.pyplot as plt
import matplotlib.colors
import matplotlib.colors as mcolors
cmap_sum = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#4285f4","#FFFFFF","#F0E442"])
#import pybaseball
import math
import matplotlib.ticker as mtick
import matplotlib.ticker as ticker
colour_palette = ['#FFB000','#648FFF','#785EF0',
'#DC267F','#FE6100','#3D1EB2','#894D80','#16AA02','#B5592B','#A3C1ED']
import matplotlib.colors as mcolors
from matplotlib.ticker import FuncFormatter
from matplotlib.font_manager import FontProperties
import matplotlib.patheffects as path_effects
def confidence_ellipse(x, y, ax, n_std=3.0, facecolor='none', **kwargs):
"""
Create a plot of the covariance confidence ellipse of *x* and *y*.
Parameters
----------
x, y : array-like, shape (n, )
Input data.
ax : matplotlib.axes.Axes
The axes object to draw the ellipse into.
n_std : float
The number of standard deviations to determine the ellipse's radiuses.
**kwargs
Forwarded to `~matplotlib.patches.Ellipse`
Returns
-------
matplotlib.patches.Ellipse
"""
if x.size != y.size:
raise ValueError("x and y must be the same size")
cov = np.cov(x, y)
pearson = cov[0, 1]/np.sqrt(cov[0, 0] * cov[1, 1])
# Using a special case to obtain the eigenvalues of this
# two-dimensional dataset.
ell_radius_x = np.sqrt(1 + pearson)
ell_radius_y = np.sqrt(1 - pearson)
ellipse = Ellipse((0, 0), width=ell_radius_x * 2, height=ell_radius_y * 2,
facecolor=facecolor, **kwargs)
# Calculating the standard deviation of x from
# the squareroot of the variance and multiplying
# with the given number of standard deviations.
scale_x = np.sqrt(cov[0, 0]) * n_std
mean_x = np.mean(x)
# calculating the standard deviation of y ...
scale_y = np.sqrt(cov[1, 1]) * n_std
mean_y = np.mean(y)
transf = transforms.Affine2D() \
.rotate_deg(45) \
.scale(scale_x, scale_y) \
.translate(mean_x, mean_y)
ellipse.set_transform(transf + ax.transData)
return ax.add_patch(ellipse)
statcast_df = pd.read_csv('2023_statcast_pybaseball_data.csv',index_col=[0])
#player_df = pd.read_csv('player_df_all.csv',index_col=[0])
#player_df = pd.concat([player_df,pd.DataFrame({'player_id':668909,'team_id':114.0,'abbreviation':'CLE'},index=[2000])])
sport_id=1
teams = requests.get(url='https://statsapi.mlb.com/api/v1/teams/').json()
#Select only teams that are at the MLB level
# mlb_teams_city = [x['franchiseName'] for x in teams['teams'] if x['sport']['name'] == 'Major League Baseball']
# mlb_teams_name = [x['teamName'] for x in teams['teams'] if x['sport']['name'] == 'Major League Baseball']
# mlb_teams_franchise = [x['name'] for x in teams['teams'] if x['sport']['name'] == 'Major League Baseball']
# mlb_teams_id = [x['id'] for x in teams['teams'] if x['sport']['name'] == 'Major League Baseball']
# mlb_teams_abb = [x['abbreviation'] for x in teams['teams'] if x['sport']['name'] == 'Major League Baseball']
mlb_teams_city = [x['franchiseName'] if 'franchiseName' in x else None for x in teams['teams']]
mlb_teams_name = [x['teamName'] if 'franchiseName' in x else None for x in teams['teams']]
mlb_teams_franchise = [x['name'] if 'franchiseName' in x else None for x in teams['teams']]
mlb_teams_id = [x['id'] if 'franchiseName' in x else None for x in teams['teams']]
mlb_teams_abb = [x['abbreviation'] if 'franchiseName' in x else None for x in teams['teams']]
mlb_teams_parent = [x['parentOrgName'] if 'parentOrgName' in x else None for x in teams['teams']]
#Create a dataframe of all the teams
mlb_teams_df = pd.DataFrame(data={'team_id':mlb_teams_id,'city':mlb_teams_franchise,'name':mlb_teams_name,'franchise':mlb_teams_franchise,'abbreviation':mlb_teams_abb,'parent_org':mlb_teams_parent}).drop_duplicates()
##Create a dataframe of all players in the database
#Make an api call to get a dictionary of all players
player_data = requests.get(url=f'https://statsapi.mlb.com/api/v1/sports/{sport_id}/players').json()
#Select relevant data that will help distinguish players from one another
fullName_list = [x['fullName'] for x in player_data['people']]
id_list = [x['id'] for x in player_data['people']]
position_list = [x['primaryPosition']['abbreviation'] for x in player_data['people']]
team_list = [x['currentTeam']['id']for x in player_data['people']]
player_list = pd.DataFrame(data={'player_id':id_list,'full_name':fullName_list,'position':position_list,'team_id':team_list})
player_list = player_list.drop_duplicates(subset=['player_id'],keep='last')
player_df_all = player_list.merge(right=mlb_teams_df[['team_id','abbreviation']],left_on = 'team_id',right_on='team_id',how='left').drop_duplicates(keep='last')
mlb_teams_df = mlb_teams_df.merge(right=mlb_teams_df[['abbreviation','franchise']],left_on='parent_org',right_on='franchise',how='left').drop_duplicates().reset_index(drop=True)
mlb_teams_df = mlb_teams_df[mlb_teams_df.columns[:-1]]
mlb_teams_df.columns = ['team_id', 'city', 'name', 'franchise', 'abbreviation',
'parent_org', 'parent_org_abb']
statcast_df = statcast_df.merge(right=player_df_all,left_on='batter',right_on='player_id',suffixes=['','_batter'])
statcast_df = statcast_df.merge(right=player_df_all,left_on='pitcher',right_on='player_id',suffixes=['','_pitcher'])
end_codes = ['single', 'strikeout', 'walk', 'field_out',
'grounded_into_double_play', 'fielders_choice', 'force_out',
'double', 'sac_fly', 'field_error', 'home_run', 'triple',
'hit_by_pitch', 'sac_bunt', 'double_play', 'intent_walk',
'fielders_choice_out', 'strikeout_double_play',
'sac_fly_double_play', 'catcher_interf',
'other_out','triple_play']
pa_df_full_na_codes = statcast_df[statcast_df.events.isin(end_codes)]
pa_df_full_na_codes['pa'] = 1
statcast_df = statcast_df.merge(pa_df_full_na_codes[['pa','play_id']],left_on='play_id',right_on='play_id',how='left')
test_df = statcast_df.sort_values(by='full_name_pitcher').drop_duplicates(subset='pitcher').reset_index(drop=True)[['pitcher','full_name_pitcher']]#['pitcher'].to_dict()
test_df = test_df.set_index('pitcher')
# #test_df = test_df[test_df.pitcher == 'Chris Bassitt'].append(test_df[test_df.pitcher != 'Chris Bassitt'])
pitcher_dict = test_df['full_name_pitcher'].to_dict()
statcast_df['game_opp'] = statcast_df['game_date'].astype(str) + ' vs ' + statcast_df['abbreviation'].astype(str)
print(statcast_df['game_opp'])
date_dict = pd.concat([pd.DataFrame(data={'game_pk':0,'game_opp':'Season'},index=[0]),
statcast_df.drop_duplicates(subset=['pitcher','game_pk','game_opp'])[['game_pk','game_opp']]]).set_index('game_pk').to_dict()
chadwick_df_small = pd.read_csv('chadwick_df.csv')
statcast_df = statcast_df.merge(right=chadwick_df_small[['key_mlbam','key_fangraphs']],left_on = 'pitcher',right_on='key_mlbam',how='left')
statcast_df['home_away'] = 'h'
statcast_df.loc[statcast_df.abbreviation_pitcher == statcast_df.away_team,'home_away'] = 'a'
print('home_away')
print(statcast_df.home_away)
# stuff_plus_season_df = pd.read_csv('stuff_df_melt.csv',index_col=[0])
# loc_plus_season_df = pd.read_csv('loc_df_melt.csv',index_col=[0])
# pitching_plus_season_df = pd.read_csv('pitching_df_melt.csv',index_col=[0])
# stuff_plus_full_df = pd.read_csv('stuff_plus_full.csv',index_col=[0])
# loc_plus_full_df = pd.read_csv('loc_plus_full.csv',index_col=[0])
# pitching_plus_full_df = pd.read_csv('pitching_plus_full.csv',index_col=[0])
types_in = ['hit_into_play', 'ball', 'swinging_strike', 'foul', 'blocked_ball',
'called_strike', 'foul_tip', 'swinging_strike_blocked',
'hit_by_pitch', 'foul_bunt', 'pitchout', 'missed_bunt',
'bunt_foul_tip']
whiffs_in = ['swinging_strike', 'foul_tip', 'swinging_strike_blocked','missed_bunt','bunt_foul_tip']
swing_in = ['foul_bunt','foul','hit_into_play','swinging_strike', 'foul_tip', 'swinging_strike_blocked','missed_bunt','bunt_foul_tip']
csw_in = ['swinging_strike', 'called_strike', 'foul_tip', 'swinging_strike_blocked','missed_bunt','bunt_foul_tip']
conditions_pitch = [
(statcast_df['description'].isin(types_in)),
]
choices_pitch = [True]
statcast_df['pitch'] = np.select(conditions_pitch, choices_pitch,default=np.nan)
conditions_swings = [
(statcast_df['description'].isin(swing_in)),
]
choices_swings = [True]
statcast_df['swing'] = np.select(conditions_swings, choices_swings, default=np.nan)
conditions_whiff = [
(statcast_df['description'].isin(whiffs_in)),
]
choices_whiff = [True]
statcast_df['whiff'] = np.select(conditions_whiff, choices_whiff, default=np.nan)
conditions_csw = [
(statcast_df['description'].isin(csw_in)),
]
choices_csw = [True]
statcast_df['csw'] = np.select(conditions_csw, choices_csw, default=np.nan)
# conditions_out = [
# (statcast_df['zone']>9),
# ]
# choices_out = [True]
# statcast_df['outside'] = np.select(conditions_out, choices_out, default=np.nan)
statcast_df['in_zone'] = statcast_df.zone < 10
statcast_df['out_zone'] = statcast_df.zone >= 10
conditions_chase = [
((statcast_df['description'].isin(swing_in))&(statcast_df.out_zone)),
]
choices_chase = [True]
statcast_df['chase'] = np.select(conditions_chase, choices_chase, default=np.nan)
statcast_df = statcast_df[statcast_df.pitch==1].reset_index(drop=True)
statcast_df.loc[(statcast_df.swing==1)&(statcast_df.whiff!=1),'whiff'] = 0
statcast_df.loc[(statcast_df.pitch==1)&(statcast_df.csw!=1),'csw'] = 0
statcast_df['cs'] = 0
statcast_df.loc[(statcast_df.csw==1)&(statcast_df.whiff!=1),'cs'] = 1
bip_in = ['field_out', 'double', 'single',
'sac_fly', 'home_run', 'grounded_into_double_play', 'triple',
'force_out', 'field_error', 'double_play',
'fielders_choice_out', 'sac_bunt', 'fielders_choice',
'sac_fly_double_play', 'other_out']
strikeout_in = ['strikeout','strikeout_double_play']
walk_in = ['walk']
conditions_bip = [
(statcast_df['events'].isin(bip_in)),
]
choices_bip = [True]
statcast_df['bip'] = np.select(conditions_bip, choices_bip, default=np.nan)
conditions_k = [
(statcast_df['events'].isin(strikeout_in)),
]
choices_k = [True]
statcast_df['k'] = np.select(conditions_k, choices_k, default=np.nan)
conditions_bb = [
(statcast_df['events'].isin(walk_in)),
]
choices_bb = [True]
statcast_df['bb'] = np.select(conditions_bb, choices_bb, default=np.nan)
statcast_df.game_date = pd.to_datetime(statcast_df.game_date).dt.date
statcast_df_df_pitch = statcast_df[statcast_df['pitch']==1].groupby(['pitch_name']).agg(
pitches = ('pitch','sum'),
swings = ('swing','sum'),
whiff = ('whiff','sum'),
csw = ('csw','sum'),
out_zone = ('out_zone','sum'),
chase = ('chase','sum'),
pitch_velocity = ('release_speed','mean'),
spin_rate = ('release_spin_rate','mean'),
exit_velocity = ('launch_speed','mean'),
pitch_velocity_std = ('release_speed','std'),
spin_rate_std = ('release_spin_rate','std'),
exit_velocity_std = ('launch_speed','std'),
pfx_x = ('pfx_x','mean'),
pfx_z = ('pfx_z','mean'),
extension = ('release_extension','mean'),
release_x = ('release_pos_x','mean'),
release_z = ('release_pos_z','mean'),
zone_percent = ('in_zone','mean') ,
xwOBA = ('estimated_woba_using_speedangle','mean')
#pitch_velocity = ('pitch_velocity','mean'),
# pitch_velocity = ('launch_speed',percentile(95)),
# launch_speed = ('launch_speed','mean'),
# launch_angle = ('launch_angle','mean'),
).sort_values(by='pitches',ascending=False).reset_index()
pitches_all_df = statcast_df[statcast_df['pitch']==1].groupby('pitch').agg(
pitches = ('pitch','sum'),
swings = ('swing','sum'),
whiff = ('whiff','sum'),
csw = ('csw','sum'),
chase = ('chase','sum'),
out_zone = ('out_zone','sum'),
pitch_velocity = ('release_speed','mean'),
spin_rate = ('release_spin_rate','mean'),
exit_velocity = ('launch_speed','mean'),
pitch_velocity_std = ('release_speed','std'),
spin_rate_std = ('release_spin_rate','std'),
exit_velocity_std = ('launch_speed','std'),
pfx_x = ('pfx_x','mean'),
pfx_z = ('pfx_z','mean'),
extension = ('release_extension','mean'),
release_x = ('release_pos_x','mean'),
release_z = ('release_pos_z','mean'),
zone_percent = ('in_zone','mean') ,
xwOBA = ('estimated_woba_using_speedangle','mean')
#pitch_velocity = ('pitch_velocity','mean'),
# pitch_velocity = ('launch_speed',percentile(95)),
# launch_speed = ('launch_speed','mean'),
# launch_angle = ('launch_angle','mean'),
).sort_values(by='pitches',ascending=False).reset_index()
pitches_all_df['pitch_name'] = 'All'
statcast_df_df_pitch = pd.concat([statcast_df_df_pitch,pitches_all_df]).reset_index(drop=True)
statcast_df_df_pitch['whiff_rate'] = statcast_df_df_pitch['whiff']/statcast_df_df_pitch['swings']
statcast_df_df_pitch['csw_rate'] = statcast_df_df_pitch['csw']/statcast_df_df_pitch['pitches']
statcast_df_df_pitch['chase_percent'] = statcast_df_df_pitch['chase']/statcast_df_df_pitch['out_zone']
statcast_df_df_pitch['pitch_percent'] = statcast_df_df_pitch['pitches']/statcast_df_df_pitch['pitches'].sum()
statcast_df = statcast_df.merge(statcast_df_df_pitch[['pitch_name','whiff_rate','csw_rate','xwOBA']],left_on='pitch_name',right_on='pitch_name')
statcast_df = statcast_df.rename(columns={'whiff_rate':'whiff_rate_league','csw_rate':'csw_rate_league'})
statcast_df['whiff_rate_diff'] = statcast_df.whiff - statcast_df.whiff_rate_league
statcast_df['csw_rate_diff'] = statcast_df.csw - statcast_df.csw_rate_league
statcast_df['xwobacon_diff'] = statcast_df.estimated_woba_using_speedangle - statcast_df.xwOBA
statcast_df['whiff_rate_diff_100'] = (statcast_df.whiff/statcast_df.whiff_rate_league)*100
statcast_df['csw_rate_diff_100'] = (statcast_df.csw/statcast_df.csw_rate_league)*100
statcast_df['xwobacon_diff_100'] = (statcast_df.estimated_woba_using_speedangle/statcast_df.xwOBA)*100
print('all df')
print(statcast_df_df_pitch)
pitch_colours = {
'4-Seam Fastball':'#648FFF',
'Slider':'#785EF0',
'Sinker':'#49A71E',
'Changeup':'#FE6100',
'Cutter':'#FFB000',
'Curveball':'#D9E54B',
'Sweeper':'#904039',
'Split-Finger':'#79B3FC',
'Knuckle Curve':'#450C37',
'Slurve':'#BEABD8',
'Other':'#9C8975',
'Forkball':'#F98A6C',
'Eephus':'#5CD0D2',
'Screwball':'#D64012',
'Slow Curve':'#601CF9',
'Pitch Out':'#6F2F5C',
'Knuckleball':'#534B26'}
home_away_dict = {
'a':'Away',
'h':'Home '}
dict_plots = {
'pitch_heat':{'title':'Pitch Distribution','note':'Pitches'},
'whiff_rate':{'stat':'whiff','decimal_format':'percent_1','title':'Whiff%','plus':'whiff_rate_diff_100','note':'Swings'},
'csw_rate':{'stat':'csw','decimal_format':'percent_1','title':'CSW%','plus':'csw_rate_diff_100','note':'Pitches'},
'xwOBA':{'stat':'estimated_woba_using_speedangle','decimal_format':'string_3','title':'xwOBACON','plus':'xwobacon_diff_100','title':'xwOBACON','note':'Balls In Play'}
}
dict_plots_name = {
'pitch_heat':'Pitch Locations',
'whiff_rate':'Whiff%',
'csw_rate':'CSW%',
'xwOBA':'xwOBACON',
}
#stand_list = ['L','R']
cbar_dict = {
'stat':[0,1],
}
# def decimal_format_assign(x):
# if dict_plots[stat_pick]['decimal_format'] == 'percent_1':
# return mtick.PercentFormatter(1,decimals=1)
# if dict_plots[stat_pick]['decimal_format'] == 'string_3':
# return mtick.FormatStrFormatter('%.3f')
# if dict_plotsp[stat_pick]['decimal_format'] == 'string_0':
# return mtick.FormatStrFormatter('%.0f')
# if dict_plots[stat_pick]['decimal_format'] == 'string_1':
# return mtick.FormatStrFormatter('%.1f')
# headers = {'User-agent': 'your bot 0.1'}
headers = {'User-agent': 'your bot 0.1'}
fangraphs_table = 7
from shiny import ui, render, App
import matplotlib.image as mpimg
app_ui = ui.page_navbar(
ui.nav(
"Pitcher Summary",
#ui.panel_title("Simulate a normal distribution"),
ui.layout_sidebar(
ui.panel_sidebar(
ui.input_select("id", "Select Pitcher",pitcher_dict,width=1),
ui.input_select("date_id", "Select Date",date_dict,width=1),
ui.input_date_range("date_range_id", "Date range input (Set 'Select Date' to 'Season')",start = statcast_df.game_date.min(), end = statcast_df.game_date.max()),
ui.input_radio_buttons("radio_id", "Handedness", {"a": "All", "R": "Right","L": "Left"}),
ui.input_radio_buttons("home_id", "Setting", {"all": "All", "h": "Home","a": "Away"}),
ui.input_radio_buttons("heat_id", "Heat Map Plot (On 2nd Tab)", dict_plots_name
),width=2
),
ui.panel_main(
ui.navset_tab(
ui.nav('Pitching Summary',
ui.output_plot("plot",height = "1400px",width="1400px"),),
ui.nav('Heat Maps',
ui.output_plot("plot_heat",height = "1400px",width="1400px"),)
),
),
),
))
from urllib.request import Request, urlopen
from shiny import App, reactive, ui
from shiny.ui import h2, tags
# importing OpenCV(cv2) module
#print(app_ui)
def server(input, output, session):
@reactive.Effect
def _():
print('this guy')
print(type(list(statcast_df.pitcher.unique())[0]))
print(input.id())
print(statcast_df.pitcher)
opts_dict = pd.concat([pd.DataFrame(data={'game_pk':0,'game_opp':'Season'},index=[0]),
statcast_df[statcast_df.pitcher == int(input.id())].drop_duplicates(subset=['pitcher','game_pk','game_opp'])[['game_pk','game_opp']].sort_values(
by='game_opp')]).set_index('game_pk')['game_opp'].astype(str).to_dict()
ui.update_select(
"date_id",
label="Select Date",
choices=opts_dict,
)
#@output
# @render.text
# def txt():
# return f'pitcher_id: "{input.pitcher_id()}"'
@output
@render.plot(alt="A histogram")
def plot():
input_id = input.id()
input_date_range_id = input.date_range_id()
input_date_id = input.date_id()
eury_df = statcast_df[statcast_df.pitcher.astype(int) == int(input_id)].sort_values(by=['game_date','play_id'])
#print(input.id())
print(input_date_range_id == '0')
print(len(eury_df))
print(str(input_date_id[0]))
if input_date_id == '0':
if input_date_range_id[0] == statcast_df.game_date.min() and input_date_range_id[1] == statcast_df.game_date.max():
data_df = eury_df.copy()
data_df = data_df.reset_index(drop=True)
data_df = data_df.dropna(subset=['pitch_name'])
else:
data_df = eury_df[(eury_df.game_date >= input_date_range_id[0]) & (eury_df.game_date <= input_date_range_id[1])].reset_index(drop=True)
data_df = data_df.reset_index(drop=True)
data_df = data_df.dropna(subset=['pitch_name'])
else:
data_df = eury_df[eury_df.game_pk == int(input_date_id)].reset_index(drop=True)
data_df = data_df.dropna(subset=['pitch_name'])
if len(data_df) < 1:
fig, ax = plt.subplots(1, 1, figsize=(16, 16))
ax.text(x=0.5,y=0.5,s='Plot Is Generating',fontsize=32,ha='center')
###return #
if input.radio_id() != 'a':
data_df = data_df[data_df.stand == input.radio_id()]
if input.home_id() != 'all':
data_df = data_df[data_df.home_away == input.home_id()]
#data_df = data_df.reset_index(drop=True)
print('NOWWWW')
print(type(eury_df.game_pk.reset_index(drop=True)[0]))
print(type(input_date_id))
#time.sleep(5)
if input_date_id != '0':
time.sleep(5)
# stuff_plus_full_df_cut = stuff_plus_full_df[pd.to_datetime(stuff_plus_full_df.date).dt.date == pd.to_datetime(data_df.game_date)[0]]
# loc_plus_full_df_cut = loc_plus_full_df[pd.to_datetime(loc_plus_full_df.date).dt.date == pd.to_datetime(data_df.game_date)[0]]
# pitching_plus_full_df_cut = pitching_plus_full_df[pd.to_datetime(pitching_plus_full_df.date).dt.date == pd.to_datetime(data_df.game_date)[0]]
print('Game Log')
try:
url = f'https://www.fangraphs.com/leaders-legacy.aspx?pos=all&stats=pit&lg=all&type=36&season=2023&month=1000&season1=2023&ind=0&startdate={str(data_df.game_date[0])}&enddate={str(data_df.game_date[0])}&team=0&qual=0&pagenum=1&pageitems=5000'
data = requests.get(url, headers = {'User-agent': 'your bot 0.1'}).text
soup = BeautifulSoup(data, 'html.parser')
stuff_df = pd.read_html(data)[fangraphs_table]#.droplevel(1)
stuff_df.columns = stuff_df.columns.droplevel(0)
stuff_df = stuff_df.iloc[:-1]
stuff_df = stuff_df[stuff_df.columns[1:]]
stuff_df.columns = [x.replace('Stf+ ','') for x in stuff_df.columns]
stuff_df = stuff_df.rename(columns = {'FA':'FF'})
stuff_df['ST'] = stuff_df.SL
stuff_df['SV'] = stuff_df.CU
# except (KeyError, requests.exceptions.HTTPError) as e:
# fig, ax = plt.subplots(1, 1, figsize=(16, 16))
# ax.text(x=0.5,y=0.5,s='Plot Is Generating',fontsize=32,ha='center')
# return
tables = soup.find_all('table')
# Looking for the table with the classes 'wikitable' and 'sortable'
table = soup.find('table', class_='rgMasterTable')
import re
stuff_df['fg_id'] = [re.findall(r'\d+', x[:10])[0] for x in str(table).split('playerid=')[1:]]
stuff_plus_full_df_cut = stuff_df.melt(id_vars=['fg_id','Name','Team','IP']).dropna().sort_values(by='IP',ascending=False).reset_index(drop=True)
stuff_plus_full_df_cut.fg_id = stuff_plus_full_df_cut.fg_id.astype(int)
except (KeyError, requests.exceptions.HTTPError,ValueError,requests.exceptions.RequestException,urllib.error.HTTPError) as e:
stuff_plus_full_df_cut = pd.DataFrame()
# except:
# print('lol')
time.sleep(5)
try:
url = f'https://www.fangraphs.com/leaders-legacy.aspx?pos=all&stats=pit&lg=all&type=37&season=2023&month=1000&season1=2023&ind=0&startdate={str(data_df.game_date[0])}&enddate={str(data_df.game_date[0])}&team=0&qual=0&pagenum=1&pageitems=5000'
data = requests.get(url,headers=headers).text
soup = BeautifulSoup(data, 'html.parser')
loc_df = pd.read_html(data)[fangraphs_table]#.droplevel(1)
loc_df.columns = loc_df.columns.droplevel(0)
loc_df = loc_df.iloc[:-1]
loc_df = loc_df[loc_df.columns[1:]]
loc_df.columns = [x.replace('Loc+ ','') for x in loc_df.columns]
loc_df = loc_df.rename(columns = {'FA':'FF'})
loc_df['ST'] = loc_df.SL
loc_df['SV'] = loc_df.CU
tables = soup.find_all('table')
# Looking for the table with the classes 'wikitable' and 'sortable'
table = soup.find('table', class_='rgMasterTable')
import re
loc_df['fg_id'] = [re.findall(r'\d+', x[:10])[0] for x in str(table).split('playerid=')[1:]]
loc_plus_full_df_cut = loc_df.melt(id_vars=['fg_id','Name','Team','IP']).dropna().sort_values(by='IP',ascending=False).reset_index(drop=True)
loc_plus_full_df_cut.fg_id = loc_plus_full_df_cut.fg_id.astype(int)
except (KeyError, requests.exceptions.HTTPError,ValueError,requests.exceptions.RequestException,urllib.error.HTTPError) as e:
loc_plus_full_df_cut = pd.DataFrame()
time.sleep(5)
try:
url = f'https://www.fangraphs.com/leaders-legacy.aspx?pos=all&stats=pit&lg=all&type=38&season=2023&month=1000&season1=2023&ind=0&startdate={str(data_df.game_date[0])}&enddate={str(data_df.game_date[0])}&team=0&qual=0&pagenum=1&pageitems=5000'
data = requests.get(url,headers=headers).text
soup = BeautifulSoup(data, 'html.parser')
pitching_df = pd.read_html(data)[fangraphs_table]#.droplevel(1)
pitching_df.columns = pitching_df.columns.droplevel(0)
pitching_df = pitching_df.iloc[:-1]
pitching_df = pitching_df[pitching_df.columns[1:]]
pitching_df.columns = [x.replace('Pit+ ','') for x in pitching_df.columns]
pitching_df = pitching_df.rename(columns = {'FA':'FF'})
pitching_df['ST'] = pitching_df.SL
pitching_df['SV'] = pitching_df.CU
tables = soup.find_all('table')
# Looking for the table with the classes 'wikitable' and 'sortable'
table = soup.find('table', class_='rgMasterTable')
import re
pitching_df['fg_id'] = [re.findall(r'\d+', x[:10])[0] for x in str(table).split('playerid=')[1:]]
pitching_plus_full_df_cut = pitching_df.melt(id_vars=['fg_id','Name','Team','IP']).dropna().sort_values(by='IP',ascending=False).reset_index(drop=True)
pitching_plus_full_df_cut.fg_id = pitching_plus_full_df_cut.fg_id.astype(int)
except (KeyError, requests.exceptions.HTTPError,ValueError,requests.exceptions.RequestException,urllib.error.HTTPError) as e:
pitching_plus_full_df_cut = pd.DataFrame()
else:
if input_date_range_id[0] <= statcast_df.game_date.min() and input_date_range_id[1] >= statcast_df.game_date.max():
#time.sleep(5)
# stuff_plus_full_df_cut = stuff_plus_season_df.copy()
# loc_plus_full_df_cut = loc_plus_season_df.copy()
# pitching_plus_full_df_cut = pitching_plus_season_df.copy()
print('Running')
try:
url = f'https://www.fangraphs.com/leaders-legacy.aspx?pos=all&stats=pit&lg=all&qual=0&type=36&season=2023&month=0&season1=2023&ind=0&team=0&rost=0&age=0&filter=&players=0&startdate=2023-03-30&enddate=2023-12-31&page=1_5000'
data = requests.get(url,headers=headers).text
soup = BeautifulSoup(data, 'html.parser')
stuff_df = pd.read_html(data)[fangraphs_table]#.droplevel(1)
stuff_df.columns = stuff_df.columns.droplevel(0)
stuff_df = stuff_df.iloc[:-1]
stuff_df = stuff_df[stuff_df.columns[1:]]
stuff_df.columns = [x.replace('Stf+ ','') for x in stuff_df.columns]
stuff_df = stuff_df.rename(columns = {'FA':'FF'})
stuff_df['ST'] = stuff_df.SL
stuff_df['SV'] = stuff_df.CU
tables = soup.find_all('table')
# Looking for the table with the classes 'wikitable' and 'sortable'
table = soup.find('table', class_='rgMasterTable')
import re
stuff_df['fg_id'] = [re.findall(r'\d+', x[:10])[0] for x in str(table).split('playerid=')[1:]]
stuff_plus_full_df_cut = stuff_df.melt(id_vars=['fg_id','Name','Team','IP']).dropna().sort_values(by='IP',ascending=False).reset_index(drop=True)
stuff_plus_full_df_cut.fg_id = stuff_plus_full_df_cut.fg_id.astype(int)
except (KeyError, requests.exceptions.HTTPError,ValueError,requests.exceptions.RequestException,urllib.error.HTTPError) as e:
stuff_plus_full_df_cut = pd.DataFrame()
try:
#time.sleep(5)
url = f'https://www.fangraphs.com/leaders-legacy.aspx?pos=all&stats=pit&lg=all&qual=0&type=37&season=2023&month=0&season1=2023&ind=0&team=0&rost=0&age=0&filter=&players=0&startdate=2023-03-30&enddate=2023-12-31&page=1_5000'
data = requests.get(url,headers=headers).text
soup = BeautifulSoup(data, 'html.parser')
loc_df = pd.read_html(data)[fangraphs_table]#.droplevel(1)
loc_df.columns = loc_df.columns.droplevel(0)
loc_df = loc_df.iloc[:-1]
loc_df = loc_df[loc_df.columns[1:]]
loc_df.columns = [x.replace('Loc+ ','') for x in loc_df.columns]
loc_df = loc_df.rename(columns = {'FA':'FF'})
loc_df['ST'] = loc_df.SL
loc_df['SV'] = loc_df.CU
tables = soup.find_all('table')
# Looking for the table with the classes 'wikitable' and 'sortable'
table = soup.find('table', class_='rgMasterTable')
import re
loc_df['fg_id'] = [re.findall(r'\d+', x[:10])[0] for x in str(table).split('playerid=')[1:]]
loc_plus_full_df_cut = loc_df.melt(id_vars=['fg_id','Name','Team','IP']).dropna().sort_values(by='IP',ascending=False).reset_index(drop=True)
loc_plus_full_df_cut.fg_id = loc_plus_full_df_cut.fg_id.astype(int)
except (KeyError, requests.exceptions.HTTPError,ValueError,requests.exceptions.RequestException,urllib.error.HTTPError) as e:
loc_plus_full_df_cut = pd.DataFrame()
try:
#time.sleep(5)
url = f'https://www.fangraphs.com/leaders-legacy.aspx?pos=all&stats=pit&lg=all&qual=0&type=38&season=2023&month=0&season1=2023&ind=0&team=0&rost=0&age=0&filter=&players=0&startdate=2023-03-30&enddate=2023-12-31&page=1_5000'
data = requests.get(url,headers=headers).text
soup = BeautifulSoup(data, 'html.parser')
pitching_df = pd.read_html(data)[fangraphs_table]#.droplevel(1)
pitching_df.columns = pitching_df.columns.droplevel(0)
pitching_df = pitching_df.iloc[:-1]
pitching_df = pitching_df[pitching_df.columns[1:]]
pitching_df.columns = [x.replace('Pit+ ','') for x in pitching_df.columns]
pitching_df = pitching_df.rename(columns = {'FA':'FF'})
pitching_df['ST'] = pitching_df.SL
pitching_df['SV'] = pitching_df.CU
tables = soup.find_all('table')
# Looking for the table with the classes 'wikitable' and 'sortable'
table = soup.find('table', class_='rgMasterTable')
import re
pitching_df['fg_id'] = [re.findall(r'\d+', x[:10])[0] for x in str(table).split('playerid=')[1:]]
pitching_plus_full_df_cut = pitching_df.melt(id_vars=['fg_id','Name','Team','IP']).dropna().sort_values(by='IP',ascending=False).reset_index(drop=True)
pitching_plus_full_df_cut.fg_id = pitching_plus_full_df_cut.fg_id.astype(int)
except (KeyError, requests.exceptions.HTTPError,ValueError,requests.exceptions.RequestException,urllib.error.HTTPError) as e:
pitching_plus_full_df_cut = pd.DataFrame()
else:
print('Running')
try:
#time.sleep(5)
url = f'https://www.fangraphs.com/leaders-legacy.aspx?pos=all&stats=pit&lg=all&type=36&season=2023&month=1000&season1=2023&ind=0&startdate={str(input.date_range_id()[0])}&enddate={str(input.date_range_id()[1])}&team=0&qual=0&pagenum=1&pageitems=5000&page=1_5000'
print(url)
data = requests.get(url,headers=headers).text
stuff_df = pd.read_html(data)[fangraphs_table]#.droplevel(1)
stuff_df.columns = stuff_df.columns.droplevel(0)
stuff_df = stuff_df.iloc[:-1]
stuff_df = stuff_df[stuff_df.columns[1:]]
stuff_df.columns = [x.replace('Stf+ ','') for x in stuff_df.columns]
stuff_df = stuff_df.rename(columns = {'FA':'FF'})
stuff_df['ST'] = stuff_df.SL
stuff_df['SV'] = stuff_df.CU
stuff_df = stuff_df[stuff_df.Name!='No records to display.']
soup = BeautifulSoup(data, 'html.parser')
tables = soup.find_all('table')
# Looking for the table with the classes 'wikitable' and 'sortable'
table = soup.find('table', class_='rgMasterTable')
import re
stuff_df['fg_id'] = [re.findall(r'\d+', x[:10])[0] for x in str(table).split('playerid=')[1:]]
stuff_plus_full_df_cut = stuff_df.melt(id_vars=['fg_id','Name','Team','IP']).dropna().sort_values(by='IP',ascending=False).reset_index(drop=True)
stuff_plus_full_df_cut.fg_id = stuff_plus_full_df_cut.fg_id.astype(int)
except (KeyError, requests.exceptions.HTTPError,ValueError,requests.exceptions.RequestException,urllib.error.HTTPError) as e:
stuff_plus_full_df_cut = pd.DataFrame()
try:
#time.sleep(5)
url = f'https://www.fangraphs.com/leaders-legacy.aspx?pos=all&stats=pit&lg=all&type=37&season=2023&month=1000&season1=2023&ind=0&startdate={str(input.date_range_id()[0])}&enddate={str(input.date_range_id()[1])}&team=0&qual=0&pagenum=1&pageitems=5000&page=1_5000'
data = requests.get(url,headers=headers).text
soup = BeautifulSoup(data, 'html.parser')
loc_df = pd.read_html(data)[fangraphs_table]#.droplevel(1)
loc_df.columns = loc_df.columns.droplevel(0)
loc_df = loc_df.iloc[:-1]
loc_df = loc_df[loc_df.columns[1:]]
loc_df.columns = [x.replace('Loc+ ','') for x in loc_df.columns]
loc_df = loc_df.rename(columns = {'FA':'FF'})
loc_df['ST'] = loc_df.SL
loc_df['SV'] = loc_df.CU
loc_df = loc_df[loc_df.Name!='No records to display.']
# url = f'https://www.fangraphs.com/leaders-legacy.aspx?pos=all&stats=pit&lg=all&type=37&season=2023&month=1000&season1=2023&ind=0&startdate={str(input.date_range_id()[0])}&enddate={str(input.date_range_id()[1])}&team=0&qual=0&pagenum=1&pageitems=5000&page=1_5000'
# data = requests.get(url).text
# soup = BeautifulSoup(data, 'html.parser')
tables = soup.find_all('table')
# Looking for the table with the classes 'wikitable' and 'sortable'
table = soup.find('table', class_='rgMasterTable')
import re
loc_df['fg_id'] = [re.findall(r'\d+', x[:10])[0] for x in str(table).split('playerid=')[1:]]
loc_plus_full_df_cut = loc_df.melt(id_vars=['fg_id','Name','Team','IP']).dropna().sort_values(by='IP',ascending=False).reset_index(drop=True)
loc_plus_full_df_cut.fg_id = loc_plus_full_df_cut.fg_id.astype(int)
except (KeyError, requests.exceptions.HTTPError,ValueError,requests.exceptions.RequestException,urllib.error.HTTPError) as e:
loc_plus_full_df_cut = pd.DataFrame()
try:
#time.sleep(5)
url = f'https://www.fangraphs.com/leaders-legacy.aspx?pos=all&stats=pit&lg=all&type=38&season=2023&month=1000&season1=2023&ind=0&startdate={str(input.date_range_id()[0])}&enddate={str(input.date_range_id()[1])}&team=0&qual=0&pagenum=1&pageitems=5000&page=1_5000'
data = requests.get(url,headers=headers).text
soup = BeautifulSoup(data, 'html.parser')
pitching_df = pd.read_html(data)[fangraphs_table]#.droplevel(1)
pitching_df.columns = pitching_df.columns.droplevel(0)
pitching_df = pitching_df.iloc[:-1]
pitching_df = pitching_df[pitching_df.columns[1:]]
pitching_df.columns = [x.replace('Pit+ ','') for x in pitching_df.columns]
pitching_df = pitching_df.rename(columns = {'FA':'FF'})
pitching_df['ST'] = pitching_df.SL
pitching_df['SV'] = pitching_df.CU
pitching_df = pitching_df[pitching_df.Name!='No records to display.']
tables = soup.find_all('table')
# Looking for the table with the classes 'wikitable' and 'sortable'
table = soup.find('table', class_='rgMasterTable')
import re
pitching_df['fg_id'] = [re.findall(r'\d+', x[:10])[0] for x in str(table).split('playerid=')[1:]]
pitching_plus_full_df_cut = pitching_df.melt(id_vars=['fg_id','Name','Team','IP']).dropna().sort_values(by='IP',ascending=False).reset_index(drop=True)
pitching_plus_full_df_cut.fg_id = pitching_plus_full_df_cut.fg_id.astype(int)
except (KeyError, requests.exceptions.HTTPError,ValueError,requests.exceptions.RequestException,urllib.error.HTTPError) as e:
pitching_plus_full_df_cut = pd.DataFrame()
if len(stuff_plus_full_df_cut) < 1:
stuff_plus_full_df_cut = pd.DataFrame(columns=['fg_id', 'Name', 'Team', 'IP', 'variable', 'value'])
if len(loc_plus_full_df_cut) < 1:
loc_plus_full_df_cut = pd.DataFrame(columns=['fg_id', 'Name', 'Team', 'IP', 'variable', 'value'])
if len(pitching_plus_full_df_cut) < 1:
pitching_plus_full_df_cut = pd.DataFrame(columns=['fg_id', 'Name', 'Team', 'IP', 'variable', 'value'])
print(stuff_plus_full_df_cut)
data_df = data_df.merge(right=stuff_plus_full_df_cut,left_on=['key_fangraphs','pitch_type'],right_on=['fg_id','variable'],how='left')
data_df = data_df.merge(right=loc_plus_full_df_cut,left_on=['key_fangraphs','pitch_type'],right_on=['fg_id','variable'],how='left',suffixes=['','_loc'])
data_df = data_df.merge(right=pitching_plus_full_df_cut,left_on=['key_fangraphs','pitch_type'],right_on=['fg_id','variable'],how='left',suffixes=['','_pitching'])
data_df['value'] = data_df['value'].astype(float)
data_df['value_loc'] = data_df['value_loc'].astype(float)
data_df['value_pitching'] = data_df['value_pitching'].astype(float)
data_df['prop'] = data_df.groupby("pitch_name")["pitch"].transform("sum")
data_df = data_df.sort_values(by=['prop','value','pitch_name'],ascending=[False,False,True])
if input_date_id == '0':
if input_date_range_id[0] == statcast_df.game_date.min() and input_date_range_id[1] == statcast_df.game_date.max():
season_sum = requests.get(url=f"https://statsapi.mlb.com/api/v1/people?personIds={str((int(data_df.pitcher.reset_index(drop=True)[0])))}&appContext=majorLeague&"
"hydrate=currentTeam,awards,"
"stats(group=[pitching],type=[yearByYear])").json()
print(f"https://statsapi.mlb.com/api/v1/people?personIds={str((int(data_df.pitcher.reset_index(drop=True)[0])))}&appContext=majorLeague&"
"hydrate=currentTeam,awards,"
"stats(group=[pitching],type=[yearByYear])")
p_ip = season_sum['people'][0]['stats'][0]['splits'][-1]['stat']['inningsPitched']
p_hits = season_sum['people'][0]['stats'][0]['splits'][-1]['stat']['whip']
p_er = season_sum['people'][0]['stats'][0]['splits'][-1]['stat']['era']
p_pa = season_sum['people'][0]['stats'][0]['splits'][-1]['stat']['battersFaced']
p_k = season_sum['people'][0]['stats'][0]['splits'][-1]['stat']['strikeOuts']
p_bb = season_sum['people'][0]['stats'][0]['splits'][-1]['stat']['baseOnBalls']
summary_df_pitch = pd.DataFrame(data={'ip':p_ip,'hits':p_hits,'er':p_er,'k':p_k,'bb':p_bb,'pitches':p_pa}, index=[0])
summary_df_pitch['k'] = summary_df_pitch['k']/summary_df_pitch['pitches']
summary_df_pitch['bb'] = summary_df_pitch['bb']/summary_df_pitch['pitches']
else:
start_date = pd.to_datetime(input_date_range_id[0]).strftime('%m/%d/%Y')
end_date = pd.to_datetime(input_date_range_id[1]).strftime('%m/%d/%Y')
print(str((int(data_df.pitcher.reset_index(drop=True)[0]))),start_date,end_date)
season_sum = requests.get(f"https://statsapi.mlb.com/api/v1/people?personIds={str((int(data_df.pitcher.reset_index(drop=True)[0])))}&hydrate=stats(group=[pitching],type=[byDateRange],startDate={start_date},endDate={end_date},season=2023)").json()
print(f"https://statsapi.mlb.com/api/v1/people?personIds={str((int(data_df.pitcher.reset_index(drop=True)[0])))}&hydrate=stats(group=[pitching],type=[byDateRange],startDate={start_date},endDate={end_date},season=2023)")
#season_sum = requests.get(f'https://statsapi.mlb.com/api/v1/people?personIds={str((int(data_df.pitcher.reset_index(drop=True)[0])))}&hydrate=stats(group=[hitting],type=[byDateRange],startDate={start_date},endDate={end_date},season=2023)').json()
print(season_sum)
#test_json['people'][0]['stats'][0]['splits'][0]['stat']
p_ip = season_sum['people'][0]['stats'][0]['splits'][-1]['stat']['inningsPitched']
p_hits = season_sum['people'][0]['stats'][0]['splits'][-1]['stat']['whip']
p_er = season_sum['people'][0]['stats'][0]['splits'][-1]['stat']['era']
p_pa = season_sum['people'][0]['stats'][0]['splits'][-1]['stat']['battersFaced']
p_k = season_sum['people'][0]['stats'][0]['splits'][-1]['stat']['strikeOuts']
p_bb = season_sum['people'][0]['stats'][0]['splits'][-1]['stat']['baseOnBalls']
summary_df_pitch = pd.DataFrame(data={'ip':p_ip,'hits':p_hits,'er':p_er,'k':p_k,'bb':p_bb,'pitches':p_pa}, index=[0])
summary_df_pitch['k'] = summary_df_pitch['k']/summary_df_pitch['pitches']
summary_df_pitch['bb'] = summary_df_pitch['bb']/summary_df_pitch['pitches']
else:
game_sum = requests.get(url='https://statsapi.mlb.com/api/v1.1/game/'+str((int(input_date_id)))+'/feed/live').json()
if int(data_df.pitcher.unique()[0]) in game_sum['liveData']['boxscore']['teams']['away']['pitchers']:
p_ip = game_sum['liveData']['boxscore']['teams']['away']['players']['ID'+str(int(data_df.pitcher.unique()[0]))]['stats']['pitching']['inningsPitched']
p_hits = game_sum['liveData']['boxscore']['teams']['away']['players']['ID'+str(int(data_df.pitcher.unique()[0]))]['stats']['pitching']['hits']
p_er = game_sum['liveData']['boxscore']['teams']['away']['players']['ID'+str(int(data_df.pitcher.unique()[0]))]['stats']['pitching']['earnedRuns']
p_k = game_sum['liveData']['boxscore']['teams']['away']['players']['ID'+str(int(data_df.pitcher.unique()[0]))]['stats']['pitching']['strikeOuts']
p_bb = game_sum['liveData']['boxscore']['teams']['away']['players']['ID'+str(int(data_df.pitcher.unique()[0]))]['stats']['pitching']['baseOnBalls']
if int(data_df.pitcher.unique()[0]) in game_sum['liveData']['boxscore']['teams']['home']['pitchers']:
p_ip = game_sum['liveData']['boxscore']['teams']['home']['players']['ID'+str(int(data_df.pitcher.unique()[0]))]['stats']['pitching']['inningsPitched']
p_hits = game_sum['liveData']['boxscore']['teams']['home']['players']['ID'+str(int(data_df.pitcher.unique()[0]))]['stats']['pitching']['hits']
p_er = game_sum['liveData']['boxscore']['teams']['home']['players']['ID'+str(int(data_df.pitcher.unique()[0]))]['stats']['pitching']['earnedRuns']
p_k = game_sum['liveData']['boxscore']['teams']['home']['players']['ID'+str(int(data_df.pitcher.unique()[0]))]['stats']['pitching']['strikeOuts']
p_bb = game_sum['liveData']['boxscore']['teams']['home']['players']['ID'+str(int(data_df.pitcher.unique()[0]))]['stats']['pitching']['baseOnBalls']
summary_df_pitch = pd.DataFrame(data={'ip':p_ip,'hits':p_hits,'er':p_er,'k':p_k,'bb':p_bb}, index=[0])
types_in = ['hit_into_play', 'ball', 'swinging_strike', 'foul', 'blocked_ball',
'called_strike', 'foul_tip', 'swinging_strike_blocked',
'hit_by_pitch', 'foul_bunt', 'pitchout', 'missed_bunt',
'bunt_foul_tip']
whiffs_in = ['swinging_strike', 'foul_tip', 'swinging_strike_blocked','missed_bunt','bunt_foul_tip']
swing_in = ['foul_bunt','foul','hit_into_play','swinging_strike', 'foul_tip', 'swinging_strike_blocked','missed_bunt','bunt_foul_tip']
csw_in = ['swinging_strike', 'called_strike', 'foul_tip', 'swinging_strike_blocked','missed_bunt','bunt_foul_tip']
conditions_pitch = [
(data_df['description'].isin(types_in)),
]
choices_pitch = [True]
data_df['pitch'] = np.select(conditions_pitch, choices_pitch, default=np.nan)
conditions_swings = [
(data_df['description'].isin(swing_in)),
]
choices_swings = [True]
data_df['swing'] = np.select(conditions_swings, choices_swings, default=np.nan)
conditions_whiff = [
(data_df['description'].isin(whiffs_in)),
]
choices_whiff = [True]
data_df['whiff'] = np.select(conditions_whiff, choices_whiff, default=np.nan)
conditions_csw = [
(data_df['description'].isin(csw_in)),
]
choices_csw = [True]
data_df['csw'] = np.select(conditions_csw, choices_csw, default=np.nan)
bip_in = ['field_out', 'double', 'single',
'sac_fly', 'home_run', 'grounded_into_double_play', 'triple',
'force_out', 'field_error', 'double_play',
'fielders_choice_out', 'sac_bunt', 'fielders_choice',
'sac_fly_double_play', 'other_out']
strikeout_in = ['strikeout','strikeout_double_play']
walk_in = ['walk']
conditions_bip = [
(data_df['events'].isin(bip_in)),
]
choices_bip = [True]
data_df['bip'] = np.select(conditions_bip, choices_bip, default=np.nan)
conditions_k = [
(data_df['events'].isin(strikeout_in)),
]
choices_k = [True]
data_df['k'] = np.select(conditions_k, choices_k, default=np.nan)
conditions_bb = [
(data_df['events'].isin(walk_in)),
]
choices_bb = [True]
data_df['bb'] = np.select(conditions_bb, choices_bb, default=np.nan)
data_df.game_date = pd.to_datetime(data_df.game_date).dt.date
data_df['in_zone'] = data_df['zone'] < 10
data_df['out_zone'] = data_df['zone'] >= 10
print('OUT OF THE ZONE')
print(data_df['chase'].sum())
print(data_df['out_zone'].sum())
conditions_chase = [
((data_df['description'].isin(swing_in))&(data_df.out_zone)),
]
choices_chase = [True]
data_df['chase'] = np.select(conditions_chase, choices_chase, default=np.nan)
pitch_df_pitch = data_df[data_df['pitch']==1].groupby(['pitch_name']).agg(
pitches = ('pitch','sum'),
swings = ('swing','sum'),
whiff = ('whiff','sum'),
csw = ('csw','sum'),
out_zone = ('out_zone','sum'),
chase = ('chase','sum'),
pitch_velocity = ('release_speed','mean'),
spin_rate = ('release_spin_rate','mean'),
exit_velocity = ('launch_speed','mean'),
pfx_x = ('pfx_x','mean'),
pfx_z = ('pfx_z','mean'),
extension = ('release_extension','mean'),
release_x = ('release_pos_x','mean'),
release_z = ('release_pos_z','mean'),
zone_percent = ('in_zone','mean') ,
xwOBA = ('estimated_woba_using_speedangle','mean') ,
stuff_plus = ('value','mean'),
loc_plus = ('value_loc','mean'),
pitching_plus = ('value_pitching','mean'),
#pitch_velocity = ('pitch_velocity','mean'),
# pitch_velocity = ('launch_speed',percentile(95)),
# launch_speed = ('launch_speed','mean'),
# launch_angle = ('launch_angle','mean'),
).sort_values(by='pitches',ascending=False).reset_index()
print('plot df')
print(pitch_df_pitch)
stuff_plus_all_day_df = stuff_plus_full_df_cut.copy()
data_df['spin_axis_pitch'] = [(x + 180) for x in data_df.spin_axis]
(((data_df.groupby('pitch_name').mean()[['spin_axis_pitch']] %360 % 30 / 30 /100 *60).round(2) *10).round(0)//1.5/4 )
clock_time = ((data_df.groupby('pitch_name').mean()['spin_axis_pitch']) %360 // 30 )+ (((data_df.groupby('pitch_name').mean()['spin_axis_pitch'] %360 % 30 / 30 /100 *60).round(2) *10).round(0)//1.5/4 )
print('Clocks')
print(clock_time)
clock_time = (clock_time.astype(int) + clock_time%1*60/100).round(2).astype(str).str.replace('.',':').str.replace(':0',':00').str.replace(':3',':30').to_frame()
#print()
pitch_df_pitch = pitch_df_pitch.merge(right=clock_time,left_on='pitch_name',right_index=True)
#print(pitch_df_pitch['clock_time'])
# if len(stuff_plus_all_day_df) < 1:
# stuff_plus_all_day_df = pd.DataFrame(columns=['fg_id', 'Name', 'Team', 'IP', 'variable', 'value'])
# # loc_plus_full_df_cut = pd.DataFrame(columns=['fg_id', 'Name', 'Team', 'IP', 'variable', 'value'])
# # pitching_plus_full_df_cut = pd.DataFrame(columns=['fg_id', 'Name', 'Team', 'IP', 'variable', 'value'])
# if input_date_id != '0':
# stuff_plus_all_day_df = stuff_plus_full_df[(stuff_plus_full_df.fg_id == data_df.reset_index(drop=True).key_fangraphs[0]) &
# (stuff_plus_full_df.date == str(data_df.reset_index(drop=True).game_date[0]))]
# else:
# if input_date_range_id[0] == statcast_df.game_date.min() and input_date_range_id[1] == statcast_df.game_date.max():
# stuff_plus_all_day_df = stuff_plus_season_df[(stuff_plus_season_df.fg_id == data_df.reset_index(drop=True).key_fangraphs[0])]
# else:
# stuff_plus_all_day_df = stuff_plus_full_df_cut[(stuff_plus_full_df_cut.fg_id == data_df.reset_index(drop=True).key_fangraphs[0])]
pitch_df_pitch_all = data_df[data_df['pitch']==1].groupby(['pitcher']).agg(
pitches = ('pitch','sum'),
swings = ('swing','sum'),
whiff = ('whiff','sum'),
csw = ('csw','sum'),
out_zone = ('out_zone','sum'),
chase = ('chase','sum'),
pitch_velocity = ('release_speed','mean'),
spin_rate = ('release_spin_rate','mean'),
exit_velocity = ('launch_speed','mean'),
pfx_x = ('pfx_x','mean'),
pfx_z = ('pfx_z','mean'),
extension = ('release_extension','mean'),
release_x = ('release_pos_x','mean'),
release_z = ('release_pos_z','mean'),
zone_percent = ('in_zone','mean') ,
xwOBA = ('estimated_woba_using_speedangle','mean') ,
stuff_plus = ('value','mean'),
loc_plus = ('value_loc','mean'),
pitching_plus = ('value_pitching','mean'),
).sort_values(by='pitches',ascending=False).reset_index()
#print('stff df')
#print(stuff_plus_all_day_df)
print('Pitch Sum')
print(pitch_df_pitch_all)
if len(stuff_plus_all_day_df) > 0:
stuff_plus_all_day_df = stuff_plus_all_day_df[stuff_plus_all_day_df.fg_id == data_df.key_fangraphs[0]]
else:
stuff_plus_all_day_df = pd.DataFrame(columns=['fg_id', 'Name', 'Team', 'IP', 'variable', 'value'])
pitch_df_pitch_all['pitch_name'] = 'All'
if len(stuff_plus_all_day_df) > 0:
pitch_df_pitch_all['stuff_plus'] = int(stuff_plus_all_day_df[stuff_plus_all_day_df.variable == 'Stuff+'].reset_index(drop=True)['value'][0])
pitch_df_pitch_all['loc_plus'] = int(stuff_plus_all_day_df[stuff_plus_all_day_df.variable == 'Location+'].reset_index(drop=True)['value'][0])
pitch_df_pitch_all['pitching_plus'] = int(stuff_plus_all_day_df[stuff_plus_all_day_df.variable == 'Pitching+'].reset_index(drop=True)['value'][0])
else:
pitch_df_pitch_all['stuff_plus'] = np.nan
pitch_df_pitch_all['loc_plus'] = np.nan
pitch_df_pitch_all['pitching_plus'] = np.nan
print('Pitch Sum')
print(pitch_df_pitch_all)
if input_date_id != '0':
summary_df_pitch['pitcher'] = data_df.full_name_pitcher.unique()[0]
summary_df_pitch['pitches'] = pitch_df_pitch.pitches.sum()
summary_df_pitch['pitches'] = summary_df_pitch['pitches'].astype(int)
summary_df_pitch= summary_df_pitch[['pitcher', 'pitches','ip', 'hits', 'er', 'k', 'bb']]
#summary_df_pitch_new.columns = ['Pitcher', 'Pitches','IP', 'Hits', 'ER', 'K', 'BB']
else:
summary_df_pitch['pitcher'] = data_df.full_name_pitcher.unique()[0]
summary_df_pitch = summary_df_pitch[['pitcher', 'pitches','ip', 'hits', 'er', 'k', 'bb']]
pitch_df_pitch['whiff_rate'] = pitch_df_pitch['whiff']/pitch_df_pitch['swings']
pitch_df_pitch['csw_rate'] = pitch_df_pitch['csw']/pitch_df_pitch['pitches']
pitch_df_pitch['chase_percent'] = pitch_df_pitch['chase']/pitch_df_pitch['out_zone']
pitch_df_pitch['pitch_percent'] = pitch_df_pitch['pitches']/pitch_df_pitch['pitches'].sum()
pitch_df_pitch_all['whiff_rate'] = pitch_df_pitch_all['whiff']/pitch_df_pitch_all['swings']
pitch_df_pitch_all['csw_rate'] = pitch_df_pitch_all['csw']/pitch_df_pitch_all['pitches']
pitch_df_pitch_all['chase_percent'] = pitch_df_pitch_all['chase']/pitch_df_pitch_all['out_zone']
pitch_df_pitch_all['pitch_percent'] = pitch_df_pitch_all['pitches']/pitch_df_pitch_all['pitches'].sum()
pitch_df_pitch_all['spin_axis_pitch'] = '—'
pitch_df_pitch = pd.concat([pitch_df_pitch,pitch_df_pitch_all]).reset_index(drop=True)
#fig, ax = plt.subplots(3, 2, figsize=(9, 9))
label_labels = data_df.sort_values(by=['prop','value','pitch_name'],ascending=[False,False,True]).pitch_name.unique()
#plt.rcParams["figure.figsize"] = [10,10]
fig = plt.figure(figsize=(15, 15),dpi=600)
plt.rcParams.update({'figure.autolayout': True})
fig.set_facecolor('white')
sns.set_theme(style="whitegrid", palette="pastel")
# gs = GridSpec(7, 2, width_ratios=[1,1], height_ratios=[1.5,1,1,1,1,1,2.5])
gs = GridSpec(4, 1, width_ratios=[1], height_ratios=[1,0.75,5.5,2.5])
#gs = GridSpec(4, 1, width_ratios=[1], height_ratios=[1,0.75,7-len(label_labels)/4,1+len(label_labels)/4])
gs.update(hspace=0.1, wspace=0.2)
#gs.update(hspace=0.1/(len(label_labels)/4), wspace=0.2)
# gs.update(left=0.1,right=0.9,top=0.97,bottom=0.03,wspace=0.3,hspace=0.09)
# ax1 = plt.subplot(4,1,1)
# ax2 = plt.subplot(2,2,2)
# ax3 = plt.subplot(2,2,3)
# ax4 = plt.subplot(4,1,4)
#ax2 = plt.subplot(3,3,2)
# Add subplots to the grid
ax0 = fig.add_subplot(gs[0, :])
#ax1 = fig.add_subplot(gs[2, 0])
ax2 = fig.add_subplot(gs[2, :]) # Subplot at the top-right position
ax3 = fig.add_subplot(gs[-1, :])
ax4 = fig.add_subplot(gs[1, :]) # Subplot spanning the entire bottom row
# a = {}
# k = 0
# while k < len(label_labels):
# # dynamically create key
# key = f'{k}_plot' # Subplot at the top-left position
# # calculate value
# value = fig.add_subplot(gs[1+k, 0]) # Subplot at the top-left position
# a[key] = value
# k += 1
# ax1 = fig.add_subplot(gs[1, 0]) # Subplot at the top-left position
# ax3.yaxis.set_visible(False)
# ax4.yaxis.set_visible(False)
# Customize subplots
ax3.tick_params(left = False, right = False , labelleft = False ,
labelbottom = False, bottom = False)
ax4.tick_params(left = False, right = False , labelleft = False ,
labelbottom = False, bottom = False)
ax3.axis('off')
ax4.axis('off')
ax0.axis('off')
# Calculate and set the position of the subplot
ax3.set_anchor('C')
ax4.set_anchor('C')
sns.set_theme(style="whitegrid", palette="pastel")
fig.set_facecolor('white')
# ax2.set_facecolor('white')
## Legend Plot
# sns.scatterplot(ax=ax4,x=data_df.plate_x,y=data_df.plate_z,hue=data_df.pitch_name,palette=colour_palette[:len(data_df.pitch_name.unique())],s=1)
# ax4.legend(loc='center',bbox_to_anchor=(0, -0.1, 1, 0.1),
# ncol=len(data_df['pitch_name'].unique()), fancybox=True, fontsize=16,facecolor='white',handleheight=2, framealpha=1.0)
# # Show the plot
# ax4.axis('off')
## Pitch Plot
# label_labels = data_df['pitch_name'].unique()
# j = 0
# for label in label_labels:
# subset = data_df[data_df['pitch_name'] == label]
# confidence_ellipse(subset['plate_x'], subset['plate_z'], ax=ax1,edgecolor= colour_palette[j],n_std=1,facecolor= colour_palette[j],alpha=0.2)
# j=j+1
font_properties = {'family': 'century gothic', 'size': 16}
# n = 0
# ax1.xaxis.set_major_locator(MaxNLocator(integer=True))
# # ax1.set_xlim(1,max(data_df['pitch_count']))
# j = 0
# for label in label_labels:
# subset = data_df[data_df['pitch_name'] == label]
# if len(subset) >= 1:
# print('test',label, len(subset),colour_palette[j])
# confidence_ellipse(subset['release_speed'], subset['release_spin_rate'], ax=ax1,edgecolor= pitch_colours[label],n_std=2,facecolor = pitch_colours[label],alpha=0.2)
# j=j+1
# else:
# j=j+1
# #sns.kdeplot(data=data_df[data_df.pitch_name == label_labels[n]].release_speed,ax=a[x],color=colour_palette[n],fill=True)
# #sns.lineplot(data=data_df[data_df.pitch_name==x],x='pitch_count',y='release_speed',color=colour_palette[n],ax=ax1,zorder=1)
# sns.scatterplot(data=data_df,x='release_speed',y='release_spin_rate',hue='pitch_name',palette=pitch_colours,ax=ax1,marker='o',size=50,ec='black',zorder=100,alpha=1)
# # ax1.hlines(y=data_df[data_df.pitch_name == label_labels[n]].release_speed.mean(),xmin=-1,xmax=max(data_df['pitch_count']),color=colour_palette[n],linestyles='--',linewidth=1)
# # ax1.hlines(y=statcast_df[statcast_df.pitch_name == label_labels[n]].release_speed.mean(),xmin=-1,xmax=max(data_df['pitch_count']),color=colour_palette[n],linestyles='dotted',linewidth=1)
# # ax1.text(1.5,statcast_df[statcast_df.pitch_name == label_labels[n]].release_speed.mean(),'League Average', rotation=0, verticalalignment='bottom',ha='left',
# # bbox=dict(facecolor='white',alpha=0.5, edgecolor=colour_palette[n], pad=1),fontsize=4)
# n = n+1
# ax1.set_xticklabels(ax1.get_xticks(), fontdict=font_properties)
# ax1.set_yticklabels(ax1.get_yticks(), fontdict=font_properties)
# #a[x].set_ylim(0,1)
# ax1.set_xlabel('Velocity (mph)', fontdict=font_properties)
# ax1.set_ylabel('Spin Rate (rpm)', fontdict=font_properties)
# ax1.set_title('Spin Rate vs Velocity',fontdict={'family': 'century gothic', 'size': 12})
# a[x].set_yticks([])
# a[x].vlines(x=data_df[data_df.pitch_name == label_labels[n]].release_speed.mean(),ymin=0,ymax=1,color=colour_palette[n],linestyles='--')
# a[x].vlines(x=statcast_df[statcast_df.pitch_name == label_labels[n]].release_speed.mean(),ymin=0,ymax=1,color=colour_palette[n],linestyles='dotted')
# sns.scatterplot(ax=ax1,x=data_df.release_pos_x,y=data_df.release_pos_z,hue=data_df.pitch_name,palette=colour_palette[:len(data_df.pitch_name.unique())],s=50,ec='black',alpha=0.7)
# ax1.set_xlim(-3.5,3.5)
# ax1.set_ylim(0,7)
# ax1.hlines(y=statcast_df[statcast_df.zone.isin([1,2,3])].plate_z.quantile(0.95),xmin=-17/12/2,xmax=17/12/2,color=colour_palette[8],alpha=0.5,linestyles='-')
# ax1.hlines(y=statcast_df[statcast_df.zone.isin([7,8,9])].plate_z.quantile(0.05),xmin=-17/12/2,xmax=17/12/2,color=colour_palette[8],alpha=0.5,linestyles='-')
# ax1.hlines(y=(-statcast_df[statcast_df.zone.isin([7,8,9])].plate_z.quantile(0.05)+
# statcast_df[statcast_df.zone.isin([1,2,3])].plate_z.quantile(0.95))/3+statcast_df[statcast_df.zone.isin([7,8,9])].plate_z.quantile(0.05),xmin=-17/12/2,xmax=17/12/2,color=colour_palette[8],alpha=0.5,linestyles='dotted')
# ax1.hlines(y=(-statcast_df[statcast_df.zone.isin([7,8,9])].plate_z.quantile(0.05)+
# statcast_df[statcast_df.zone.isin([1,2,3])].plate_z.quantile(0.95))/3*2+statcast_df[statcast_df.zone.isin([7,8,9])].plate_z.quantile(0.05),xmin=-17/12/2,xmax=17/12/2,color=colour_palette[8],alpha=0.5,linestyles='dotted')
# ax1.vlines(x=-17/12/2,ymin=statcast_df[statcast_df.zone.isin([7,8,9])].plate_z.quantile(0.05),ymax=statcast_df[statcast_df.zone.isin([1,2,3])].plate_z.quantile(0.95),color=colour_palette[8],alpha=0.5,linestyles='-')
# ax1.vlines(x=17/12/2,ymin=statcast_df[statcast_df.zone.isin([7,8,9])].plate_z.quantile(0.05),ymax=statcast_df[statcast_df.zone.isin([1,2,3])].plate_z.quantile(0.95),color=colour_palette[8],alpha=0.5,linestyles='-')
# ax1.vlines(x=(-17/12/2)+17/12/3,ymin=statcast_df[statcast_df.zone.isin([7,8,9])].plate_z.quantile(0.05),ymax=statcast_df[statcast_df.zone.isin([1,2,3])].plate_z.quantile(0.95),color=colour_palette[8],alpha=0.5,linestyles='dotted')
# ax1.vlines(x=(-17/12/2)+17/12*2/3,ymin=statcast_df[statcast_df.zone.isin([7,8,9])].plate_z.quantile(0.05),ymax=statcast_df[statcast_df.zone.isin([1,2,3])].plate_z.quantile(0.95),color=colour_palette[8],alpha=0.5,linestyles='dotted')
# ax1.set_xlabel("Catcher's Presepctive (ft)", fontsize=10,fontname='Century Gothic')
# ax1.set_ylabel('Vertical Distance From Plate (ft)', fontsize=10,fontname='Century Gothic')
## Break Plot
j = 0
for label in label_labels:
subset = data_df[data_df['pitch_name'] == label]
print(label)
if len(subset) > 1:
subset['pfx_x'] = subset['pfx_x']*12
subset['pfx_z'] = subset['pfx_z']*12
confidence_ellipse(subset['pfx_x'], subset['pfx_z'], ax=ax2,edgecolor = pitch_colours[label],n_std=2,facecolor= pitch_colours[label],alpha=0.2)
j=j+1
else:
j=j+1
#data_df = data_df.sort_values(by='prop',ascending=False)
sns.scatterplot(ax=ax2,x=data_df.pfx_x*12,y=data_df.pfx_z*12,hue=data_df.pitch_name,palette=pitch_colours,ec='black',alpha=0.7)
# ax2.set_xlim(min(-25,-abs(math.floor((data_df['pfx_x'].min()*12-0.01)/5)*5),
# -abs(math.floor((data_df['pfx_z'].min()*12-0.01)/5)*5),
# -abs(math.ceil((data_df['pfx_x'].max()*12+0.01)/5)*5),
# -abs(math.ceil((data_df['pfx_z'].max()*12+0.01)/5)*5)),
# max(25,abs(math.floor((data_df['pfx_x'].min()*12-0.01)/5)*5),
# abs(math.floor((data_df['pfx_z'].min()*12-0.01)/5)*5),
# abs(math.ceil((data_df['pfx_x'].max()*12+0.01)/5)*5),
# abs(math.ceil((data_df['pfx_z'].max()*12+0.01)/5)*5)))
# ax2.set_ylim(min(-25,-abs(math.floor((data_df['pfx_x'].min()*12-0.01)/5)*5),
# -abs(math.floor((data_df['pfx_z'].min()*12-0.01)/5)*5),
# -abs(math.ceil((data_df['pfx_x'].max()*12+0.01)/5)*5),
# -abs(math.ceil((data_df['pfx_z'].max()*12+0.01)/5)*5)),
# max(25,abs(math.floor((data_df['pfx_x'].min()*12-0.01)/5)*5),
# abs(math.floor((data_df['pfx_z'].min()*12-0.01)/5)*5),
# abs(math.ceil((data_df['pfx_x'].max()*12+0.01)/5)*5),
# abs(math.ceil((data_df['pfx_z'].max()*12+0.01)/5)*5)))
ax2.set_xlim((-25,25))
ax2.set_ylim((-25,25))
ax2.set_title('Pitch Breaks',fontdict={'family': 'century gothic', 'size': 20})
# ax2.set_xlim(math.floor((data_df['pfx_x'].min()*12-0.01)/5)*5,math.ceil((data_df['pfx_x'].max()*12+0.01)/5)*5)
# ax2.set_ylim(math.floor((data_df['pfx_z'].min()*12-0.01)/5)*5,math.ceil((data_df['pfx_z'].max()*12+0.01)/5)*5)
ax2.hlines(y=0,xmin=-50,xmax=50,color=colour_palette[8],alpha=0.5,linestyles='--')
ax2.vlines(x=0,ymin=-50,ymax=50,color=colour_palette[8],alpha=0.5,linestyles='--')
ax2.set_xlabel('Horizontal Break (in)', fontsize=14,fontname='Century Gothic')
ax2.set_ylabel('Induced Vertical Break (in)', fontsize=14,fontname='Century Gothic')
## Table Plot
## Table Plot
df_plot = pitch_df_pitch[['pitch_name','pitches','pitch_percent','pitch_velocity','pfx_z','pfx_x',
'extension','release_z','stuff_plus','loc_plus','whiff_rate','chase_percent','zone_percent','xwOBA','spin_axis_pitch']]
df_plot['pitches'] = [int(x) if not math.isnan(x) else np.nan for x in df_plot['pitches']]
df_plot['pitch_percent'] = df_plot['pitch_percent'].round(3)
df_plot['pitch_velocity'] = df_plot['pitch_velocity'].round(1)
df_plot['pfx_z'] = (df_plot['pfx_z']*12).round(1)
df_plot['pfx_x'] = (df_plot['pfx_x']*12).round(1)
df_plot['extension'] = df_plot['extension'].round(1)
df_plot['release_z'] = df_plot['release_z'].round(1)
df_plot['stuff_plus'] = [int(x) if not math.isnan(x) else np.nan for x in df_plot['stuff_plus']]
df_plot['loc_plus'] = [int(x) if not math.isnan(x) else np.nan for x in df_plot['loc_plus']]
# df_plot['pitching_plus'] = [int(x) if not math.isnan(x) else np.nan for x in df_plot['pitching_plus']]
df_plot['whiff_rate'] = [round(x,3) if not math.isnan(x) else '—' for x in df_plot['whiff_rate']]
df_plot['chase_percent'] = [round(x,3) if not math.isnan(x) else '—' for x in df_plot['chase_percent']]
df_plot['zone_percent'] = [round(x,3) if not math.isnan(x) else '—' for x in df_plot['zone_percent']]
df_plot['xwOBA'] = [round(x,3) if not math.isnan(x) else '—' for x in df_plot['xwOBA']]
#df_plot['spin_axis_pitch'] = [x if not np.nan else '—' for x in df_plot['spin_axis_pitch']]
[['pitch_name','pitch_percent','pitch_velocity','pfx_z','pfx_x',
'extension','release_z','stuff_plus','loc_plus','whiff_rate','zone_percent','xwOBA']]
plt.rcParams['font.family'] = 'Century Gothic'
table = ax3.table(cellText=df_plot.values, colLabels=df_plot.columns, cellLoc='center',
colWidths=[0.08,0.04,0.04,.04,0.03, 0.03, 0.05,.08, 0.04,.05, 0.04,.04,0.04, 0.06,0.06], bbox=[0.0, 0, 1, 0.8])
min_font_size = 11
# Set table properties
table.auto_set_font_size(False)
table.set_fontsize(min(min_font_size,max(min_font_size/((len(label_labels)/4)),10)))
table.scale(1, 0.5)
# Customize cell colors
#table.get_celld()[(0, 0)].set_facecolor('#56B4E9') # Header cell color
def get_color(value):
color = cmap_sum(normalize(value))
return mcolors.to_hex(color)
up_percent = 1.5
down_percent = 0.5
print(df_plot)
label_labels_plot = df_plot.pitch_name.unique()
for i in range(len(df_plot)):
if table.get_celld()[(i+1, 0)].get_text().get_text() != 'All':
#print(float(table.get_celld()[(i+1, 3)].get_text().get_text()))
#print(get_color(float(table.get_celld()[(i+1, 3)].get_text().get_text())))
#colour_of_pitch
table.get_celld()[(i+1, 0)].set_facecolor(pitch_colours[table.get_celld()[(i+1, 0)].get_text().get_text()]) # Header cell color
if table.get_celld()[(i+1, 0)].get_text().get_text() in ['Curveball','Split-Finger','Slurve','Forkball']:
table.get_celld()[(i+1, 0)].set_text_props(color='#000000',fontweight='bold')
else:
table.get_celld()[(i+1, 0)].set_text_props(color='#ffffff',fontweight='bold')
#table.get_celld()[(i+1, 0)].set_path_effects([path_effects.withStroke(linewidth=2, foreground='black')]) # Header cell color
print(label_labels_plot[i])
select_df = statcast_df_df_pitch[statcast_df_df_pitch.pitch_name == label_labels_plot[i]]
print(f'test: {select_df.pitch_velocity_std.mean()}')
cmap_sum = matplotlib.colors.LinearSegmentedColormap.from_list("", ['#648FFF','#FFFFFF','#FFB000',])
print(select_df.pitch_velocity.mean()-select_df.pitch_velocity_std.mean(),select_df.pitch_velocity.mean()+select_df.pitch_velocity_std.mean(),)
#print(get_color(float(table.get_celld()[(i+1, 3)].get_text().get_text())))
normalize = mcolors.Normalize(vmin=select_df.pitch_velocity.mean()-select_df.pitch_velocity_std.mean(),
vmax=select_df.pitch_velocity.mean()+select_df.pitch_velocity_std.mean()) # Define the range of values
if table.get_celld()[(i+1, 3)].get_text().get_text() != '—':
#print(float(table.get_celld()[(i+1, 3)].get_text().get_text()))
print(get_color(float(table.get_celld()[(i+1, 3)].get_text().get_text())))
table.get_celld()[(i+1, 3)].set_facecolor(get_color(float(table.get_celld()[(i+1, 3)].get_text().get_text()))) # Header cell color
#Header cell color
cmap_sum = matplotlib.colors.LinearSegmentedColormap.from_list("", ['#648FFF','#FFFFFF','#FFB000',])
normalize = mcolors.Normalize(vmin=70,vmax=130)
table.get_celld()[(i+1, 8)].set_facecolor(get_color(float(table.get_celld()[(i+1, 8)].get_text().get_text())))
table.get_celld()[(i+1, 9)].set_facecolor(get_color(float(table.get_celld()[(i+1, 9)].get_text().get_text())))
#table.get_celld()[(i+1, 4)].set_facecolor(get_color(float(table.get_celld()[(i+1, 4)].get_text().get_text()))) # Header cell color
normalize = mcolors.Normalize(vmin=select_df.whiff_rate.mean()*down_percent, vmax=select_df.whiff_rate.mean()*up_percent)
if table.get_celld()[(i+1, 10)].get_text().get_text() != '—':
table.get_celld()[(i+1, 10)].set_facecolor(get_color(float(table.get_celld()[(i+1, 10)].get_text().get_text()))) # Header cell color
normalize = mcolors.Normalize(vmin=select_df.chase_percent.mean()*down_percent, vmax=select_df.chase_percent.mean()*up_percent)
if table.get_celld()[(i+1, 11)].get_text().get_text() != '—':
table.get_celld()[(i+1, 11)].set_facecolor(get_color(float(table.get_celld()[(i+1, 11)].get_text().get_text()))) # Header cell color
normalize = mcolors.Normalize(vmin=select_df.zone_percent.mean()*down_percent, vmax=select_df.zone_percent.mean()*up_percent)
if table.get_celld()[(i+1, 12)].get_text().get_text() != '—':
table.get_celld()[(i+1, 12)].set_facecolor(get_color(float(table.get_celld()[(i+1, 12)].get_text().get_text()))) # Header cell color
normalize = mcolors.Normalize(vmin=select_df.xwOBA.mean()*down_percent, vmax=select_df.xwOBA.mean()*up_percent)
if table.get_celld()[(i+1, 13)].get_text().get_text() != '—':
table.get_celld()[(i+1, 13)].set_facecolor(get_color(float(table.get_celld()[(i+1, 13)].get_text().get_text()))) # Header cell color
# normalize = mcolors.Normalize(vmin=select_df[df_plot.columns[2]].mean()*0.9, vmax=select_df[df_plot.columns[2]].mean()*1.1)
# if table.get_celld()[(i+1, 3)].get_text().get_text() != '—':
# table.get_celld()[(i+1, 3)].set_facecolor(get_color(float(table.get_celld()[(i+1, 3)].get_text().get_text()))) # Header cell color
# normalize = mcolors.Normalize(vmin=select_df[df_plot.columns[3]].mean()*down_percent, vmax=select_df[df_plot.columns[3]].mean()*down_percent)
# if table.get_celld()[(i+1, 3)].get_text().get_text() != '—':
# table.get_celld()[(i+1, 3)].set_facecolor(get_color(float(table.get_celld()[(i+1, 3)].get_text().get_text()))) # Header cell color
# normalize = mcolors.Normalize(vmin=select_df[df_plot.columns[4]].mean()*down_percent, vmax=select_df[df_plot.columns[4]].mean()*down_percent)
# if table.get_celld()[(i+1, 4)].get_text().get_text() != '—':
# table.get_celld()[(i+1, 4)].set_facecolor(get_color(float(table.get_celld()[(i+1, 4)].get_text().get_text()))) # Header cell color
cmap_sum = matplotlib.colors.LinearSegmentedColormap.from_list("", ['#648FFF','#FFFFFF','#FFB000',])
normalize = mcolors.Normalize(vmin=select_df[df_plot.columns[6]].mean()*0.9, vmax=select_df[df_plot.columns[6]].mean()*1.1)
if table.get_celld()[(i+1, 6)].get_text().get_text() != '—':
table.get_celld()[(i+1, 6)].set_facecolor(get_color(float(table.get_celld()[(i+1, 6)].get_text().get_text()))) # Header cell color
# normalize = mcolors.Normalize(vmin=select_df[df_plot.columns[6]].mean()*down_percent, vmax=[df_plot.columns[6]].mean()*down_percent)
# if table.get_celld()[(i+1, 6)].get_text().get_text() != '—':
# table.get_celld()[(i+1, 6)].set_facecolor(get_color(float(table.get_celld()[(i+1, 6)].get_text().get_text()))) # Header cell color
normalize = mcolors.Normalize(vmin=select_df.xwOBA.mean()*down_percent, vmax=select_df.xwOBA.mean()*up_percent)
cmap_sum = matplotlib.colors.LinearSegmentedColormap.from_list("", ['#FFB000','#FFFFFF','#648FFF',])
if table.get_celld()[(i+1, 13)].get_text().get_text() != '—':
table.get_celld()[(i+1, 13)].set_facecolor(get_color(float(table.get_celld()[(i+1, 13)].get_text().get_text()))) # Header cell color
# normalize = mcolors.Normalize(vmin=select_df.csw_rate.mean()*down_percent, vmax=select_df.csw_rate.mean()*up_percent) # Define the range of values
# table.get_celld()[(i+1, 6)].set_facecolor(get_color(float(table.get_celld()[(i+1, 6)].get_text().get_text()))) # Header cell color
normalize = mcolors.Normalize(vmin=select_df.pitch_velocity.mean()-select_df.pitch_velocity_std.mean(),
vmax=select_df.pitch_velocity.mean()+select_df.pitch_velocity_std.mean()) # Define the range of values
#Header cell color
# [['pitch_name','pitch_percent','pitch_velocity','pfx_z','pfx_x',
# 'extension','release_z','stuff_plus','loc_plus','whiff_rate','zone_percent','xwOBA']]
new_column_names = ['$\\bf{Pitch\ Name}$',
'$\\bf{Count}$',
'$\\bf{Pitch\%}$',
'$\\bf{Velocity}$',
'$\\bf{iVB}$',
'$\\bf{HB}$',
'$\\bf{Extension}$',
'$\\bf{Release\ Height}$',
'$\\bf{Stuff+}$',
'$\\bf{Location+}$',
'$\\bf{Whiff\%}$',
'$\\bf{Chase\%}$',
'$\\bf{Zone\%}$',
'$\\bf{xwOBACON}$',
'$\\bf{Spin\ Axis}$']
# #new_column_names = ['Pitch Name', 'Pitch%', 'Velocity', 'Spin Rate','Exit Velocity', 'Whiff%', 'CSW%']
for i, col_name in enumerate(new_column_names):
table.get_celld()[(0, i)].get_text().set_text(col_name)
pitch_col = df_plot['pitch_percent']
for cell in table.get_celld().values():
if cell.get_text().get_text() in pitch_col.astype(str).values:
cell.get_text().set_text('{:,.1%}'.format(float(cell.get_text().get_text())))
pitch_col = df_plot['whiff_rate']
for cell in table.get_celld().values():
if cell.get_text().get_text() in pitch_col.astype(str).values and cell.get_text().get_text() != '—':
cell.get_text().set_text('{:,.1%}'.format(float(cell.get_text().get_text())))
pitch_col = df_plot['chase_percent']
for cell in table.get_celld().values():
if cell.get_text().get_text() in pitch_col.astype(str).values and cell.get_text().get_text() != '—':
cell.get_text().set_text('{:,.1%}'.format(float(cell.get_text().get_text())))
pitch_col = df_plot['zone_percent']
for cell in table.get_celld().values():
if cell.get_text().get_text() in pitch_col.astype(str).values and cell.get_text().get_text() != '—':
cell.get_text().set_text('{:,.1%}'.format(float(cell.get_text().get_text())))
pitch_col = df_plot['xwOBA']
for cell in table.get_celld().values():
if cell.get_text().get_text() in pitch_col.astype(str).values and cell.get_text().get_text() != '—':
print('xwOBA')
cell.get_text().set_text('{:,.3f}'.format(float(cell.get_text().get_text())))
float_list = ['pitch_velocity','pfx_z','pfx_x',
'extension','release_z']
for fl in float_list:
pitch_col = df_plot[fl]
for cell in table.get_celld().values():
if cell.get_text().get_text() in pitch_col.astype(str).values and cell.get_text().get_text() != '—':
cell.get_text().set_text('{:,.1f}'.format(float(cell.get_text().get_text())))
int_list = ['stuff_plus','loc_plus',]
for fl in int_list:
pitch_col = df_plot[fl]
for cell in table.get_celld().values():
if cell.get_text().get_text() in pitch_col.astype(str).values and cell.get_text().get_text() != '—':
cell.get_text().set_text('{:,.0f}'.format(float(cell.get_text().get_text())))
# pitch_col = df_plot['csw_rate']
# for cell in table.get_celld().values():
# if cell.get_text().get_text() in pitch_col.astype(str).values:
# cell.get_text().set_text('{:,.1%}'.format(float(cell.get_text().get_text())))
# for (row, col), cell in table.get_celld().items():
# if (row == len(df_plot)):
# cell.set_text_props(fontproperties=FontProperties(weight='bold',style='italic'),fontsize=(min(12,max(12/((len(label_labels)/4)),8))))
# # new_column_names = ['$\\bf{'+str(x)+'}$' for x in list(df_plot.loc[len(df_plot)-1])]
# #new_column_names = ['Pitch Name', 'Pitch%', 'Velocity', 'Spin Rate','Exit Velocity', 'Whiff%', 'CSW%']
# # for i in len(df_plot.columns):
# # table.get_celld()[(len(df_plot), i)].get_text().set_fontweight('bold')
table2 = ax4.table(cellText=summary_df_pitch.values, colLabels=summary_df_pitch.columns, cellLoc='center',
colWidths=[0.1,0.05,.05,.05, 0.05, 0.05,.05,.05], bbox=[0.00, 0.4, 0.955, .80])
# table2 = ax4.table(cellText=summary_df_pitch.values, colLabels=summary_df_pitch.columns, cellLoc='center',
# colWidths=[0.1,0.05,.05,.05, 0.05, 0.05,.05,.05], bbox=[0.00, 0.4, 0.955, min(.8,0.8/(len(df_plot)/4))])
# Set table properties
table2.auto_set_font_size(False)
min_font_size = 11
table2.set_fontsize(min(min_font_size,max(min_font_size/((len(label_labels)/4)),10)))
table2.scale(1, 1)
if input_date_id == '0':
pitch_col = summary_df_pitch['k']
for cell in table2.get_celld().values():
if cell.get_text().get_text() in pitch_col.astype(str).values and cell.get_text().get_text() != '—':
cell.get_text().set_text('{:,.1%}'.format(float(cell.get_text().get_text())))
pitch_col = summary_df_pitch['bb']
for cell in table2.get_celld().values():
if cell.get_text().get_text() in pitch_col.astype(str).values:
cell.get_text().set_text('{:,.1%}'.format(float(cell.get_text().get_text())))
new_column_names = ['$\\bf{Pitcher}$',
'$\\bf{PA}$',
'$\\bf{IP}$',
'$\\bf{WHIP}$',
'$\\bf{ERA}$',
'$\\bf{K\%}$',
'$\\bf{BB\%}$']
else:
new_column_names = ['$\\bf{Pitcher}$',
'$\\bf{Pitches}$',
'$\\bf{IP}$',
'$\\bf{Hits}$',
'$\\bf{ER}$',
'$\\bf{K}$',
'$\\bf{BB}$']
for i, col_name in enumerate(new_column_names):
table2.get_celld()[(0, i)].get_text().set_text(col_name)
for (row, col), cell in table.get_celld().items():
if (row == len(df_plot)):
cell.set_text_props(fontproperties=FontProperties(weight='bold',style='italic'),fontsize=(min(min_font_size,max(min_font_size/((len(label_labels)/4)),10))))
# # table = ax3.table(cellText=pitch_df_pitch[['pitch_name','pitch_percent','spin_rate','exit_velocity','whiff_rate','csw_rate']].values, colLabels=pitch_df_pitch[['pitch_name','pitch_percent','spin_rate','exit_velocity','whiff_rate','csw_rate']].columns, loc='center')
# # Set the table properties
# table.auto_set_font_size(False)
# table.set_fontsize(12)
# table.scale(1.2, 1.2)
#ax1.get_legend().remove()
ax2.get_legend().remove()
# ax1.set_xticklabels(ax1.get_xticks(), fontdict=font_properties)
ax2.set_xticklabels(ax2.get_xticks(), fontdict=font_properties)
# ax1.set_yticklabels(ax1.get_yticks(), fontdict=font_properties)
ax2.set_yticklabels(ax2.get_yticks(), fontdict=font_properties)
# ax1.xaxis.set_major_locator(ticker.MaxNLocator(integer=True))
# ax2.xaxis.set_major_locator(ticker.MaxNLocator(integer=True))
# ax1.yaxis.set_major_locator(ticker.MaxNLocator(integer=True))
# ax2.yaxis.set_major_locator(ticker.MaxNLocator(integer=True))
# ax1.set_facecolor('white')
# ax2.set_facecolor('white')
# ax1.xaxis.set_major_formatter(mtick.FormatStrFormatter('%.0f'))
# ax2.yaxis.set_major_formatter(decimal_format_assign(x=pitcher_dict_stat[input.stat_y()]))
# ax1.xaxis.set_major_formatter(decimal_format_assign(x=pitcher_dict_stat[input.stat_x()]))
# ax2.yaxis.set_major_formatter(decimal_format_assign(x=pitcher_dict_stat[input.stat_y()]))
# ax1.legend(loc='upper center', bbox_to_anchor=(1, 1.05),
# ncol=len(label_labels), fancybox=True, shadow=True)
handles, labels = ax2.get_legend_handles_labels()
fig.legend(handles, labels, bbox_to_anchor=(0, 0.775-0.005*len(label_labels), 1, 0.1), ncol=len(label_labels),fancybox=True,loc='upper center',fontsize=min(max(16/len(handles)*5,7.5),16/3*4),framealpha=1.0, markerscale=2*5/len(handles))
title_spot = f'{summary_df_pitch.pitcher[0]} Pitching Summary'
if input_date_id != '0':
if sum(data_df.home_team == data_df.abbreviation_pitcher.reset_index(drop=True)[0]) > 0:
line2 = f"{mlb_teams_df[mlb_teams_df.team_id == data_df.team_id_pitcher.reset_index(drop=True)[0]].reset_index(drop=True)['franchise'][0]} vs {mlb_teams_df[mlb_teams_df.team_id == data_df.team_id.reset_index(drop=True)[0]].reset_index(drop=True)['franchise'][0]}"
if sum(data_df.away_team == data_df.abbreviation_pitcher.reset_index(drop=True)[0]) > 0:
line2 = f"{mlb_teams_df[mlb_teams_df.team_id == data_df.team_id_pitcher.reset_index(drop=True)[0]].reset_index(drop=True)['franchise'][0]} @ {mlb_teams_df[mlb_teams_df.team_id == data_df.team_id.reset_index(drop=True)[0]].reset_index(drop=True)['franchise'][0]}"
if input.radio_id() != 'a':
line2 = f"{line2} , vs {input.radio_id()}"
if input.home_id() != 'all':
line2 = f"{line2} , {home_away_dict[input.home_id()]}"
fig.text(x=0.5,y=0.89,s=line2,fontname='Century Gothic',ha='center',fontstyle='italic',fontsize=20)
else:
if input_date_range_id[0] == statcast_df.game_date.min() and input_date_range_id[1] == statcast_df.game_date.max():
line2 = f'2023 Season'
else:
line2 = f'{str(input_date_range_id[0])} to {str(input_date_range_id[1])}'
if input.radio_id() != 'a':
line2 = f"{line2} , vs {input.radio_id()}"
if input.home_id() != 'all':
line2 = f"{line2} , {home_away_dict[input.home_id()]}"
fig.text(x=0.5,y=0.88,s=line2,fontname='Century Gothic',ha='center',fontstyle='italic',fontsize=20)
fig.text(x=0.5,y=0.92,s=title_spot,fontname='Century Gothic',ha='center',fontsize=36)
if input_date_id != '0':
fig.text(x=0.5,y=0.87,s=data_df.game_date[0],fontname='Century Gothic',ha='center',fontstyle='italic',fontsize=16)
#ax1.set_aspect('equal', adjustable='box')
ax2.invert_xaxis()
ax2.set_aspect('equal', adjustable='box')
#ax1.yaxis.set_major_formatter(FuncFormatter(lambda x, _: int(x)))
ax2.xaxis.set_major_formatter(FuncFormatter(lambda x, _: int(x)))
ax2.yaxis.set_major_formatter(FuncFormatter(lambda x, _: int(x)))
#ax1.set_xticklabels(range(1,data_df.pitch_count.max()+1))
fig.text(x=0.05,y=0.03,s='By: @TJStats',fontname='Century Gothic',ha='left',fontsize=16)
fig.text(x=1-0.05,y=0.03,s='Data: MLB, Eno Sarris',ha='right',fontname='Century Gothic',fontsize=16)
fig.text(x=0.5,y=0.05,s='Note: Colour Coding Compares to League Average By Pitch',ha='center',fontname='Century Gothic',fontsize=10)
fig.tight_layout()
#fig.set_size_inches(10, 10)
#fig.subplots_adjust(left=0.03, right=0.97, bottom=0.05, top=0.95)
matplotlib.rcParams["figure.dpi"] = 600
#plt.axis('scaled')
@output
@render.plot(alt="heat plot")
def plot_heat(dpi=600):
print('HEAT')
input_id = input.id()
input_date_range_id = input.date_range_id()
input_date_id = input.date_id()
eury_df = statcast_df[statcast_df.pitcher.astype(int) == int(input_id)].sort_values(by=['game_date','play_id'])
#print(input.id())
print(input_date_range_id == '0')
print(len(eury_df))
print(str(input_date_id[0]))
if input_date_id == '0':
if input_date_range_id[0] == statcast_df.game_date.min() and input_date_range_id[1] == statcast_df.game_date.max():
data_df = eury_df.copy()
data_df = data_df.reset_index(drop=True)
data_df = data_df.dropna(subset=['pitch_name'])
else:
data_df = eury_df[(eury_df.game_date >= input_date_range_id[0]) & (eury_df.game_date <= input_date_range_id[1])].reset_index(drop=True)
data_df = data_df.reset_index(drop=True)
data_df = data_df.dropna(subset=['pitch_name'])
else:
data_df = eury_df[eury_df.game_pk == int(input_date_id)].reset_index(drop=True)
data_df = data_df.dropna(subset=['pitch_name'])
if len(data_df) < 1:
fig, ax = plt.subplots(1, 1, figsize=(16, 16))
ax.text(x=0.5,y=0.5,s='Plot Is Generating',fontsize=32,ha='center')
###return #
if input.radio_id() != 'a':
data_df = data_df[data_df.stand == input.radio_id()]
if input.home_id() != 'all':
data_df = data_df[data_df.home_away == input.home_id()]
#data_df = data_df.reset_index(drop=True)
print('NOWWWW')
print(data_df)
print(type(eury_df.game_pk.reset_index(drop=True)[0]))
print(type(input_date_id))
eury_df['pitch_name'].value_counts(normalize=True)
eury_df['prop'] = eury_df.groupby("pitch_name")["pitch_name"].transform("count")/len(eury_df)
eury_df = eury_df.sort_values(by='prop',ascending=False)
pitch_list = eury_df.pitch_name.unique()
stat_pick = input.heat_id()
def decimal_format_assign(x):
if dict_plots[stat_pick]['decimal_format'] == 'percent_1':
return mtick.PercentFormatter(1,decimals=1)
if dict_plots[stat_pick]['decimal_format'] == 'string_3':
return mtick.FormatStrFormatter('%.3f')
if dict_plots[stat_pick]['decimal_format'] == 'string_0':
return mtick.FormatStrFormatter('%.0f')
if dict_plots[stat_pick]['decimal_format'] == 'string_1':
return mtick.FormatStrFormatter('%.1f')
rate_pick = 'rate'
stand_list = input.radio_id()
cmap_sum = matplotlib.colors.LinearSegmentedColormap.from_list("", ['#0C7BDC','#FFFFFF','#FF0A0A',])
# DEFINE STRIKE ZONE
strike_zone = pd.DataFrame({
'PlateLocSide': [-0.9, -0.9, 0.9, 0.9, -0.9],
'PlateLocHeight': [1.5, 3.5, 3.5, 1.5, 1.5]
})
# Add strike zone
def draw_line(axis,alpha_spot=1,catcher_p = True):
axis.plot(strike_zone['PlateLocSide'], strike_zone['PlateLocHeight'], color='black', linewidth=1.3,zorder=3,alpha=alpha_spot,)
# ax.plot([-0.2833333, -0.2833333], [1.6, 3.5], color='black', linestyle='dashed',alpha=alpha_spot,zorder=3)
# ax.plot([0.2833333, 0.2833333], [1.6, 3.5], color='black', linestyle='dashed',alpha=alpha_spot,zorder=3)
# ax.plot([-0.85, 0.85], [2.2, 2.2], color='black', linestyle='dashed',alpha=alpha_spot,zorder=3)
# ax.plot([-0.85, 0.85], [2.9, 2.9], color='black', linestyle='dashed',alpha=alpha_spot,zorder=3)
if catcher_p:
# Add dashed line
# Add home plate
axis.plot([-0.708, 0.708], [0.15, 0.15], color='black', linewidth=1,alpha=alpha_spot,zorder=1)
axis.plot([-0.708, -0.708], [0.15, 0.3], color='black', linewidth=1,alpha=alpha_spot,zorder=1)
axis.plot([-0.708, 0], [0.3, 0.5], color='black', linewidth=1,alpha=alpha_spot,zorder=1)
axis.plot([0, 0.708], [0.5, 0.3], color='black', linewidth=1,alpha=alpha_spot,zorder=1)
axis.plot([0.708, 0.708], [0.3, 0.15], color='black', linewidth=1,alpha=alpha_spot,zorder=1)
else:
axis.plot([-0.708, 0.708], [0.4, 0.4], color='black', linewidth=1,alpha=alpha_spot,zorder=1)
axis.plot([-0.708, -0.9], [0.4, -0.1], color='black', linewidth=1,alpha=alpha_spot,zorder=1)
axis.plot([-0.9, 0], [-0.1, -0.35], color='black', linewidth=1,alpha=alpha_spot,zorder=1)
axis.plot([0, 0.9], [-.35, -0.1], color='black', linewidth=1,alpha=alpha_spot,zorder=1)
axis.plot([0.9, 0.708], [-0.1,0.4], color='black', linewidth=1,alpha=alpha_spot,zorder=1)
# eury_df = eury_df[eury_df.prop > 0.05]
# pitch_list = eury_df.pitch_name.unique()
# fig = plt.figure(figsize=(10, 10),dpi=600)
#plt.rcParams.update({'figure.autolayout': True})
#plt.rcParams.update({'figure.autolayout': True})
plt.rcParams['font.family'] = 'Century Gothic'
sns.set_theme(style="whitegrid", palette="pastel")
font_plot = 'Arial'
fig, ax = plt.subplots(math.ceil(len(pitch_list)/3), 3, figsize=(9, 2*math.ceil(len(pitch_list)/3)))
fig.set_facecolor('white')
print(stat_pick)
print(len(ax))
if stat_pick == 'pitch_heat':
data_df = data_df.dropna(subset=['plate_x'])
#data_df = data_df[data_df.stand.isin(stand_list)]
data_df['prop'] = data_df.groupby("pitch_name")["pitch_name"].transform("count")/len(eury_df)
#data_df = data_df.sort_values(by='prop',ascending=False)
#pitch_list = data_df.pitch_name.unique()
if len(pitch_list) <= 3:
ax_list = [[]]
for a in range(len(ax)):
ax_list[0].append(ax[a])
ax = np.array(ax_list)
#print()
k = 0
for i in range(math.ceil(len(pitch_list)/3)):
for j in range(3):
ax[i,j].axis('off')
if k < len(pitch_list):
# sns.kdeplot(data=eury_df_left[(eury_df.pitch_name==pitch_list[k])],x='plate_x',y='plate_z',fill=True,cmap=cmap_sum,ax=ax[i,1],levels=8,bw_adjust=0.75,zorder=2)
try:
if len(data_df[(data_df.pitch_name==pitch_list[k])]) > 5:
sns.kdeplot(data=data_df[(data_df.pitch_name==pitch_list[k])],x='plate_x',y='plate_z',fill=True,cmap=cmap_sum,ax=ax[i,j],levels=8,bw_adjust=0.7,zorder=2,alpha=0.7)
else:
sns.scatterplot(data=data_df[(data_df.pitch_name==pitch_list[k])],x='plate_x',y='plate_z',ax=ax[i,j],color='#FF0A0A',zorder=2,alpha=0.7)
except np.linalg.LinAlgError:
sns.scatterplot(data=data_df[(data_df.pitch_name==pitch_list[k])],x='plate_x',y='plate_z',ax=ax[i,j],color='#FF0A0A',zorder=2,alpha=0.7)
#sns.kdeplot(data=eury_df[eury_df.pitch_name==i],x='plate_x',y='plate_z',ax=ax[i,j])
draw_line(ax[i,j],alpha_spot=0.75,catcher_p=True)
ax[i,j].set_aspect('equal')
ax[i,j].set_title(f'\n\n\n\n\n{pitch_list[k]} ({len(data_df[data_df.pitch_name==pitch_list[k]])/len(data_df):.1%})\n{data_df[data_df.pitch_name==pitch_list[k]].release_speed.mean():.1f} mph',fontname=font_plot,fontsize=16)
# ax[i,j].set_xlabel('Distance X-Axis',fontname='Century Gothic')
# ax[i,j].set_ylabel('Distance Z-Axis',fontname='Century Gothic')
ax[i,j].set_xlim((-2.5,2.5))
ax[i,j].set_ylim((-1,6))
ax[i,j].invert_xaxis()
if i < math.ceil(len(pitch_list)/3) - 1:
ax[i,j].axhline(-1, color='black', linestyle=':')
k = k + 1
#ax_list.append([ax[0],ax[1],ax[2]])
# eury_df = eury_df[eury_df.prop > 0.05]
# pitch_list = eury_df.pitch_name.unique()
#fig = plt.figure(figsize=(1
#fig = plt.figure(figsize=(10, 10),dpi=600)
else:
# data_df = eury_df[(eury_df.stand.isin(stand_list))].dropna(subset=[dict_plots[stat_pick]['stat']])
# data_df = data_df[data_df.stand.isin(stand_list)]
data_df = data_df.dropna(subset=[dict_plots[stat_pick]['stat']])
data_df['prop'] = data_df.groupby("pitch_name")["pitch_name"].transform("count")/len(eury_df)
#data_df = data_df.sort_values(by='prop',ascending=False)
#pitch_list = data_df.pitch_name.unique()
if len(pitch_list) <= 3:
ax_list = [[]]
for a in range(len(ax)):
ax_list[0].append(ax[a])
ax = np.array(ax_list)
# Compute the common extent for both plots
x_min = -2.5
x_max = 2.5
y_min = -1
y_max = 6
extent = [x_min, x_max, y_min, y_max]
k = 0
for i in range(math.ceil(len(pitch_list)/3)):
print(i)
for j in range(3):
print(j)
ax[i,j].axis('off')
if k < len(pitch_list):
# cbar_min = statcast_df_df_pitch[statcast_df_df_pitch.pitch_name==pitch_list[k]]['xwobacon']*0
# cbar_max = statcast_df_df_pitch[statcast_df_df_pitch.pitch_name==pitch_list[k]]['xwobacon']*2
cbar_min = cbar_dict['stat'][0]
cbar_max = cbar_dict['stat'][1]
ax[i,j].hexbin(data=data_df[(data_df.pitch_name==pitch_list[k])],x='plate_x',y='plate_z',
cmap=cmap_sum, C=dict_plots[stat_pick]['stat'],
vmin=cbar_min,
vmax=cbar_max,
gridsize=(15,int(15/7*5)),extent=extent, edgecolors='black',linewidth=0.5)
ax[i,j].set_aspect('equal')
ax[i,j].set_xlim((-2.5,2.5))
ax[i,j].set_ylim((-1,6))
ax[i,j].axis('off')
draw_line(ax[i,j],alpha_spot=0.75,catcher_p=True)
ax[i,j].invert_xaxis()
norm = plt.Normalize(cbar_min,cbar_max)
sm = plt.cm.ScalarMappable(cmap=cmap_sum, norm=norm)
cbar = ax[i,j].figure.colorbar(sm, ax=ax[i,j],orientation='vertical',aspect=15,shrink=0.5,format=decimal_format_assign(x=dict_plots[stat_pick]['decimal_format']))
cbar.ax.plot([0, 1], [data_df[data_df.pitch_name==pitch_list[k]][dict_plots[stat_pick]['stat']].mean(),data_df[data_df.pitch_name==pitch_list[k]][dict_plots[stat_pick]["stat"]].mean()], '#000000')
cbar.ax.plot([0, 1], [statcast_df_df_pitch[statcast_df_df_pitch['pitch_name']==pitch_list[k]][stat_pick].values[0],statcast_df_df_pitch[statcast_df_df_pitch['pitch_name']==pitch_list[k]][stat_pick].values[0]], '#000000',linestyle='dotted',linewidth='1')
ax[i,j].set_title(f'\n\n\n\n\n{pitch_list[k]} ({len(data_df[data_df.pitch_name==pitch_list[k]])/len(data_df):.1%})\n{data_df[data_df.pitch_name==pitch_list[k]][dict_plots[stat_pick]["stat"]].mean():.1%} {dict_plots[stat_pick]["title"]}\n {data_df[data_df.pitch_name==pitch_list[k]][dict_plots[stat_pick]["plus"]].mean():.0f} {dict_plots[stat_pick]["title"]}+',fontname=font_plot,fontsize=16)
k = k + 1
if i < math.ceil(len(pitch_list)/3) - 1:
ax[i,j].axhline(-1, color='black', linestyle=':')
# fig.suptitle(f'{name_select} {dict_plots[stat_pick]["title"]} By Pitch',x=0.5,y=1.02,fontsize=24,fontname=font_plot)
# #fig.text(s=f'Colour Scale Compares to League Average xwOBACON+',x=0.5,y=-0.02,fontsize=8,fontname=font_plot,ha='center')
# fig.text(s=f'Percentage Beside Pitch Name Indicates Proportions of {dict_plots[stat_pick]["note"]}',x=0.5,y=-0.02,fontsize=8,fontname=font_plot,ha='center')
# fig.text(s=f'By: @TJStats',x=0.05,y=-0.02,fontsize=12,fontname=font_plot,ha='left')
# fig.text(s=f'Data: MLB',x=1-0.05,y=-0.02,fontsize=12,fontname=font_plot,ha='right')
title_spot = f'{data_df.full_name_pitcher.values[0]} {dict_plots[stat_pick]["title"]} Heat Map'
if input_date_id != '0':
if sum(data_df.home_team == data_df.abbreviation_pitcher.reset_index(drop=True)[0]) > 0:
line2 = f"{mlb_teams_df[mlb_teams_df.team_id == data_df.team_id_pitcher.reset_index(drop=True)[0]].reset_index(drop=True)['franchise'][0]} vs {mlb_teams_df[mlb_teams_df.team_id == data_df.team_id.reset_index(drop=True)[0]].reset_index(drop=True)['franchise'][0]}"
if sum(data_df.away_team == data_df.abbreviation_pitcher.reset_index(drop=True)[0]) > 0:
line2 = f"{mlb_teams_df[mlb_teams_df.team_id == data_df.team_id_pitcher.reset_index(drop=True)[0]].reset_index(drop=True)['franchise'][0]} @ {mlb_teams_df[mlb_teams_df.team_id == data_df.team_id.reset_index(drop=True)[0]].reset_index(drop=True)['franchise'][0]}"
if input.radio_id() != 'a':
line2 = f"{line2} , vs {input.radio_id()}"
if input.home_id() != 'all':
line2 = f"{line2} , {home_away_dict[input.home_id()]}"
fig.text(x=0.5,y=0.91,s=line2,fontname='Century Gothic',ha='center',fontstyle='italic',fontsize=20)
else:
if input_date_range_id[0] == statcast_df.game_date.min() and input_date_range_id[1] == statcast_df.game_date.max():
line2 = f'2023 Season'
else:
line2 = f'{str(input_date_range_id[0])} to {str(input_date_range_id[1])}'
if input.radio_id() != 'a':
line2 = f"{line2} , vs {input.radio_id()}"
if input.home_id() != 'all':
line2 = f"{line2} , {home_away_dict[input.home_id()]}"
fig.text(x=0.5,y=.91,s=line2,fontname='Century Gothic',ha='center',fontstyle='italic',fontsize=20)
fig.suptitle(x=0.5,y=.97,t=title_spot,fontname='Century Gothic',ha='center',fontsize=36)
if input_date_id != '0':
try:
fig.text(x=0.5,y=.89,s=data_df.game_date[0],fontname='Century Gothic',ha='center',fontstyle='italic',fontsize=16)
except KeyError:
fig.text(x=0.5,y=.89,s=data_df.game_date[0],fontname='Century Gothic',ha='center',fontstyle='italic',fontsize=16)
#matplotlib.rcParams["figure.dpi"] = 600
fig.text(s=f'Percentage Beside Pitch Name Indicates Proportions of {dict_plots[stat_pick]["note"]}',x=0.5,y=0.01,fontsize=10,fontname=font_plot,ha='center')
fig.text(s=f'By: @TJStats',x=0.05,y=0.01,fontsize=16,fontname=font_plot,ha='left')
fig.text(s=f'Data: MLB',x=1-0.05,y=0.01,fontsize=16,fontname=font_plot,ha='right')
fig.tight_layout()
app = App(app_ui, server)