Spaces:
Running
Running
print('Running') | |
import time | |
import requests | |
import pandas as pd | |
import seaborn as sns | |
import matplotlib.pyplot as plt | |
from matplotlib.pyplot import figure | |
from matplotlib.offsetbox import OffsetImage, AnnotationBbox | |
from scipy import stats | |
import matplotlib.lines as mlines | |
import matplotlib.transforms as mtransforms | |
import numpy as np | |
import time | |
#import plotly.express as px | |
#!pip install chart_studio | |
#import chart_studio.tools as tls | |
from bs4 import BeautifulSoup | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import matplotlib.font_manager as font_manager | |
from datetime import datetime | |
import pytz | |
from matplotlib.ticker import MaxNLocator | |
from matplotlib.patches import Ellipse | |
import matplotlib.transforms as transforms | |
from matplotlib.gridspec import GridSpec | |
datetime.now(pytz.timezone('US/Pacific')).strftime('%B %d, %Y') | |
# Configure Notebook | |
#%matplotlib inline | |
plt.style.use('fivethirtyeight') | |
sns.set_context("notebook") | |
import warnings | |
warnings.filterwarnings('ignore') | |
# import yfpy | |
# from yfpy.query import YahooFantasySportsQuery | |
# import yahoo_oauth | |
import json | |
import urllib | |
#import openpyxl | |
from sklearn import preprocessing | |
from datetime import timedelta | |
#import dataframe_image as dfi | |
# from google.colab import drive | |
def percentile(n): | |
def percentile_(x): | |
return np.percentile(x, n) | |
percentile_.__name__ = 'percentile_%s' % n | |
return percentile_ | |
import os | |
import praw | |
import matplotlib.pyplot as plt | |
import matplotlib.colors | |
import matplotlib.colors as mcolors | |
cmap_sum = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#4285f4","#FFFFFF","#F0E442"]) | |
#import pybaseball | |
import math | |
import matplotlib.ticker as mtick | |
import matplotlib.ticker as ticker | |
colour_palette = ['#FFB000','#648FFF','#785EF0', | |
'#DC267F','#FE6100','#3D1EB2','#894D80','#16AA02','#B5592B','#A3C1ED'] | |
import matplotlib.colors as mcolors | |
from matplotlib.ticker import FuncFormatter | |
from matplotlib.font_manager import FontProperties | |
import matplotlib.patheffects as path_effects | |
def confidence_ellipse(x, y, ax, n_std=3.0, facecolor='none', **kwargs): | |
""" | |
Create a plot of the covariance confidence ellipse of *x* and *y*. | |
Parameters | |
---------- | |
x, y : array-like, shape (n, ) | |
Input data. | |
ax : matplotlib.axes.Axes | |
The axes object to draw the ellipse into. | |
n_std : float | |
The number of standard deviations to determine the ellipse's radiuses. | |
**kwargs | |
Forwarded to `~matplotlib.patches.Ellipse` | |
Returns | |
------- | |
matplotlib.patches.Ellipse | |
""" | |
if x.size != y.size: | |
raise ValueError("x and y must be the same size") | |
cov = np.cov(x, y) | |
pearson = cov[0, 1]/np.sqrt(cov[0, 0] * cov[1, 1]) | |
# Using a special case to obtain the eigenvalues of this | |
# two-dimensional dataset. | |
ell_radius_x = np.sqrt(1 + pearson) | |
ell_radius_y = np.sqrt(1 - pearson) | |
ellipse = Ellipse((0, 0), width=ell_radius_x * 2, height=ell_radius_y * 2, | |
facecolor=facecolor, **kwargs) | |
# Calculating the standard deviation of x from | |
# the squareroot of the variance and multiplying | |
# with the given number of standard deviations. | |
scale_x = np.sqrt(cov[0, 0]) * n_std | |
mean_x = np.mean(x) | |
# calculating the standard deviation of y ... | |
scale_y = np.sqrt(cov[1, 1]) * n_std | |
mean_y = np.mean(y) | |
transf = transforms.Affine2D() \ | |
.rotate_deg(45) \ | |
.scale(scale_x, scale_y) \ | |
.translate(mean_x, mean_y) | |
ellipse.set_transform(transf + ax.transData) | |
return ax.add_patch(ellipse) | |
statcast_df = pd.read_csv('2023_statcast_pybaseball_data.csv',index_col=[0]) | |
#player_df = pd.read_csv('player_df_all.csv',index_col=[0]) | |
#player_df = pd.concat([player_df,pd.DataFrame({'player_id':668909,'team_id':114.0,'abbreviation':'CLE'},index=[2000])]) | |
sport_id=1 | |
teams = requests.get(url='https://statsapi.mlb.com/api/v1/teams/').json() | |
#Select only teams that are at the MLB level | |
# mlb_teams_city = [x['franchiseName'] for x in teams['teams'] if x['sport']['name'] == 'Major League Baseball'] | |
# mlb_teams_name = [x['teamName'] for x in teams['teams'] if x['sport']['name'] == 'Major League Baseball'] | |
# mlb_teams_franchise = [x['name'] for x in teams['teams'] if x['sport']['name'] == 'Major League Baseball'] | |
# mlb_teams_id = [x['id'] for x in teams['teams'] if x['sport']['name'] == 'Major League Baseball'] | |
# mlb_teams_abb = [x['abbreviation'] for x in teams['teams'] if x['sport']['name'] == 'Major League Baseball'] | |
mlb_teams_city = [x['franchiseName'] if 'franchiseName' in x else None for x in teams['teams']] | |
mlb_teams_name = [x['teamName'] if 'franchiseName' in x else None for x in teams['teams']] | |
mlb_teams_franchise = [x['name'] if 'franchiseName' in x else None for x in teams['teams']] | |
mlb_teams_id = [x['id'] if 'franchiseName' in x else None for x in teams['teams']] | |
mlb_teams_abb = [x['abbreviation'] if 'franchiseName' in x else None for x in teams['teams']] | |
mlb_teams_parent = [x['parentOrgName'] if 'parentOrgName' in x else None for x in teams['teams']] | |
#Create a dataframe of all the teams | |
mlb_teams_df = pd.DataFrame(data={'team_id':mlb_teams_id,'city':mlb_teams_franchise,'name':mlb_teams_name,'franchise':mlb_teams_franchise,'abbreviation':mlb_teams_abb,'parent_org':mlb_teams_parent}).drop_duplicates() | |
##Create a dataframe of all players in the database | |
#Make an api call to get a dictionary of all players | |
player_data = requests.get(url=f'https://statsapi.mlb.com/api/v1/sports/{sport_id}/players').json() | |
#Select relevant data that will help distinguish players from one another | |
fullName_list = [x['fullName'] for x in player_data['people']] | |
id_list = [x['id'] for x in player_data['people']] | |
position_list = [x['primaryPosition']['abbreviation'] for x in player_data['people']] | |
team_list = [x['currentTeam']['id']for x in player_data['people']] | |
player_list = pd.DataFrame(data={'player_id':id_list,'full_name':fullName_list,'position':position_list,'team_id':team_list}) | |
player_list = player_list.drop_duplicates(subset=['player_id'],keep='last') | |
player_df_all = player_list.merge(right=mlb_teams_df[['team_id','abbreviation']],left_on = 'team_id',right_on='team_id',how='left').drop_duplicates(keep='last') | |
mlb_teams_df = mlb_teams_df.merge(right=mlb_teams_df[['abbreviation','franchise']],left_on='parent_org',right_on='franchise',how='left').drop_duplicates().reset_index(drop=True) | |
mlb_teams_df = mlb_teams_df[mlb_teams_df.columns[:-1]] | |
mlb_teams_df.columns = ['team_id', 'city', 'name', 'franchise', 'abbreviation', | |
'parent_org', 'parent_org_abb'] | |
statcast_df = statcast_df.merge(right=player_df_all,left_on='batter',right_on='player_id',suffixes=['','_batter']) | |
statcast_df = statcast_df.merge(right=player_df_all,left_on='pitcher',right_on='player_id',suffixes=['','_pitcher']) | |
end_codes = ['single', 'strikeout', 'walk', 'field_out', | |
'grounded_into_double_play', 'fielders_choice', 'force_out', | |
'double', 'sac_fly', 'field_error', 'home_run', 'triple', | |
'hit_by_pitch', 'sac_bunt', 'double_play', 'intent_walk', | |
'fielders_choice_out', 'strikeout_double_play', | |
'sac_fly_double_play', 'catcher_interf', | |
'other_out','triple_play'] | |
pa_df_full_na_codes = statcast_df[statcast_df.events.isin(end_codes)] | |
pa_df_full_na_codes['pa'] = 1 | |
statcast_df = statcast_df.merge(pa_df_full_na_codes[['pa','play_id']],left_on='play_id',right_on='play_id',how='left') | |
test_df = statcast_df.sort_values(by='full_name_pitcher').drop_duplicates(subset='pitcher').reset_index(drop=True)[['pitcher','full_name_pitcher']]#['pitcher'].to_dict() | |
test_df = test_df.set_index('pitcher') | |
# #test_df = test_df[test_df.pitcher == 'Chris Bassitt'].append(test_df[test_df.pitcher != 'Chris Bassitt']) | |
pitcher_dict = test_df['full_name_pitcher'].to_dict() | |
statcast_df['game_opp'] = statcast_df['game_date'].astype(str) + ' vs ' + statcast_df['abbreviation'].astype(str) | |
print(statcast_df['game_opp']) | |
date_dict = pd.concat([pd.DataFrame(data={'game_pk':0,'game_opp':'Season'},index=[0]), | |
statcast_df.drop_duplicates(subset=['pitcher','game_pk','game_opp'])[['game_pk','game_opp']]]).set_index('game_pk').to_dict() | |
chadwick_df_small = pd.read_csv('chadwick_df.csv') | |
statcast_df = statcast_df.merge(right=chadwick_df_small[['key_mlbam','key_fangraphs']],left_on = 'pitcher',right_on='key_mlbam',how='left') | |
statcast_df['home_away'] = 'h' | |
statcast_df.loc[statcast_df.abbreviation_pitcher == statcast_df.away_team,'home_away'] = 'a' | |
print('home_away') | |
print(statcast_df.home_away) | |
# stuff_plus_season_df = pd.read_csv('stuff_df_melt.csv',index_col=[0]) | |
# loc_plus_season_df = pd.read_csv('loc_df_melt.csv',index_col=[0]) | |
# pitching_plus_season_df = pd.read_csv('pitching_df_melt.csv',index_col=[0]) | |
# stuff_plus_full_df = pd.read_csv('stuff_plus_full.csv',index_col=[0]) | |
# loc_plus_full_df = pd.read_csv('loc_plus_full.csv',index_col=[0]) | |
# pitching_plus_full_df = pd.read_csv('pitching_plus_full.csv',index_col=[0]) | |
types_in = ['hit_into_play', 'ball', 'swinging_strike', 'foul', 'blocked_ball', | |
'called_strike', 'foul_tip', 'swinging_strike_blocked', | |
'hit_by_pitch', 'foul_bunt', 'pitchout', 'missed_bunt', | |
'bunt_foul_tip'] | |
whiffs_in = ['swinging_strike', 'foul_tip', 'swinging_strike_blocked','missed_bunt','bunt_foul_tip'] | |
swing_in = ['foul_bunt','foul','hit_into_play','swinging_strike', 'foul_tip', 'swinging_strike_blocked','missed_bunt','bunt_foul_tip'] | |
csw_in = ['swinging_strike', 'called_strike', 'foul_tip', 'swinging_strike_blocked','missed_bunt','bunt_foul_tip'] | |
conditions_pitch = [ | |
(statcast_df['description'].isin(types_in)), | |
] | |
choices_pitch = [True] | |
statcast_df['pitch'] = np.select(conditions_pitch, choices_pitch,default=np.nan) | |
conditions_swings = [ | |
(statcast_df['description'].isin(swing_in)), | |
] | |
choices_swings = [True] | |
statcast_df['swing'] = np.select(conditions_swings, choices_swings, default=np.nan) | |
conditions_whiff = [ | |
(statcast_df['description'].isin(whiffs_in)), | |
] | |
choices_whiff = [True] | |
statcast_df['whiff'] = np.select(conditions_whiff, choices_whiff, default=np.nan) | |
conditions_csw = [ | |
(statcast_df['description'].isin(csw_in)), | |
] | |
choices_csw = [True] | |
statcast_df['csw'] = np.select(conditions_csw, choices_csw, default=np.nan) | |
# conditions_out = [ | |
# (statcast_df['zone']>9), | |
# ] | |
# choices_out = [True] | |
# statcast_df['outside'] = np.select(conditions_out, choices_out, default=np.nan) | |
statcast_df['in_zone'] = statcast_df.zone < 10 | |
statcast_df['out_zone'] = statcast_df.zone >= 10 | |
conditions_chase = [ | |
((statcast_df['description'].isin(swing_in))&(statcast_df.out_zone)), | |
] | |
choices_chase = [True] | |
statcast_df['chase'] = np.select(conditions_chase, choices_chase, default=np.nan) | |
statcast_df = statcast_df[statcast_df.pitch==1].reset_index(drop=True) | |
statcast_df.loc[(statcast_df.swing==1)&(statcast_df.whiff!=1),'whiff'] = 0 | |
statcast_df.loc[(statcast_df.pitch==1)&(statcast_df.csw!=1),'csw'] = 0 | |
statcast_df['cs'] = 0 | |
statcast_df.loc[(statcast_df.csw==1)&(statcast_df.whiff!=1),'cs'] = 1 | |
bip_in = ['field_out', 'double', 'single', | |
'sac_fly', 'home_run', 'grounded_into_double_play', 'triple', | |
'force_out', 'field_error', 'double_play', | |
'fielders_choice_out', 'sac_bunt', 'fielders_choice', | |
'sac_fly_double_play', 'other_out'] | |
strikeout_in = ['strikeout','strikeout_double_play'] | |
walk_in = ['walk'] | |
conditions_bip = [ | |
(statcast_df['events'].isin(bip_in)), | |
] | |
choices_bip = [True] | |
statcast_df['bip'] = np.select(conditions_bip, choices_bip, default=np.nan) | |
conditions_k = [ | |
(statcast_df['events'].isin(strikeout_in)), | |
] | |
choices_k = [True] | |
statcast_df['k'] = np.select(conditions_k, choices_k, default=np.nan) | |
conditions_bb = [ | |
(statcast_df['events'].isin(walk_in)), | |
] | |
choices_bb = [True] | |
statcast_df['bb'] = np.select(conditions_bb, choices_bb, default=np.nan) | |
statcast_df.game_date = pd.to_datetime(statcast_df.game_date).dt.date | |
statcast_df_df_pitch = statcast_df[statcast_df['pitch']==1].groupby(['pitch_name']).agg( | |
pitches = ('pitch','sum'), | |
swings = ('swing','sum'), | |
whiff = ('whiff','sum'), | |
csw = ('csw','sum'), | |
out_zone = ('out_zone','sum'), | |
chase = ('chase','sum'), | |
pitch_velocity = ('release_speed','mean'), | |
spin_rate = ('release_spin_rate','mean'), | |
exit_velocity = ('launch_speed','mean'), | |
pitch_velocity_std = ('release_speed','std'), | |
spin_rate_std = ('release_spin_rate','std'), | |
exit_velocity_std = ('launch_speed','std'), | |
pfx_x = ('pfx_x','mean'), | |
pfx_z = ('pfx_z','mean'), | |
extension = ('release_extension','mean'), | |
release_x = ('release_pos_x','mean'), | |
release_z = ('release_pos_z','mean'), | |
zone_percent = ('in_zone','mean') , | |
xwOBA = ('estimated_woba_using_speedangle','mean') | |
#pitch_velocity = ('pitch_velocity','mean'), | |
# pitch_velocity = ('launch_speed',percentile(95)), | |
# launch_speed = ('launch_speed','mean'), | |
# launch_angle = ('launch_angle','mean'), | |
).sort_values(by='pitches',ascending=False).reset_index() | |
pitches_all_df = statcast_df[statcast_df['pitch']==1].groupby('pitch').agg( | |
pitches = ('pitch','sum'), | |
swings = ('swing','sum'), | |
whiff = ('whiff','sum'), | |
csw = ('csw','sum'), | |
chase = ('chase','sum'), | |
out_zone = ('out_zone','sum'), | |
pitch_velocity = ('release_speed','mean'), | |
spin_rate = ('release_spin_rate','mean'), | |
exit_velocity = ('launch_speed','mean'), | |
pitch_velocity_std = ('release_speed','std'), | |
spin_rate_std = ('release_spin_rate','std'), | |
exit_velocity_std = ('launch_speed','std'), | |
pfx_x = ('pfx_x','mean'), | |
pfx_z = ('pfx_z','mean'), | |
extension = ('release_extension','mean'), | |
release_x = ('release_pos_x','mean'), | |
release_z = ('release_pos_z','mean'), | |
zone_percent = ('in_zone','mean') , | |
xwOBA = ('estimated_woba_using_speedangle','mean') | |
#pitch_velocity = ('pitch_velocity','mean'), | |
# pitch_velocity = ('launch_speed',percentile(95)), | |
# launch_speed = ('launch_speed','mean'), | |
# launch_angle = ('launch_angle','mean'), | |
).sort_values(by='pitches',ascending=False).reset_index() | |
pitches_all_df['pitch_name'] = 'All' | |
statcast_df_df_pitch = pd.concat([statcast_df_df_pitch,pitches_all_df]).reset_index(drop=True) | |
statcast_df_df_pitch['whiff_rate'] = statcast_df_df_pitch['whiff']/statcast_df_df_pitch['swings'] | |
statcast_df_df_pitch['csw_rate'] = statcast_df_df_pitch['csw']/statcast_df_df_pitch['pitches'] | |
statcast_df_df_pitch['chase_percent'] = statcast_df_df_pitch['chase']/statcast_df_df_pitch['out_zone'] | |
statcast_df_df_pitch['pitch_percent'] = statcast_df_df_pitch['pitches']/statcast_df_df_pitch['pitches'].sum() | |
statcast_df = statcast_df.merge(statcast_df_df_pitch[['pitch_name','whiff_rate','csw_rate','xwOBA']],left_on='pitch_name',right_on='pitch_name') | |
statcast_df = statcast_df.rename(columns={'whiff_rate':'whiff_rate_league','csw_rate':'csw_rate_league'}) | |
statcast_df['whiff_rate_diff'] = statcast_df.whiff - statcast_df.whiff_rate_league | |
statcast_df['csw_rate_diff'] = statcast_df.csw - statcast_df.csw_rate_league | |
statcast_df['xwobacon_diff'] = statcast_df.estimated_woba_using_speedangle - statcast_df.xwOBA | |
statcast_df['whiff_rate_diff_100'] = (statcast_df.whiff/statcast_df.whiff_rate_league)*100 | |
statcast_df['csw_rate_diff_100'] = (statcast_df.csw/statcast_df.csw_rate_league)*100 | |
statcast_df['xwobacon_diff_100'] = (statcast_df.estimated_woba_using_speedangle/statcast_df.xwOBA)*100 | |
print('all df') | |
print(statcast_df_df_pitch) | |
pitch_colours = { | |
'4-Seam Fastball':'#648FFF', | |
'Slider':'#785EF0', | |
'Sinker':'#49A71E', | |
'Changeup':'#FE6100', | |
'Cutter':'#FFB000', | |
'Curveball':'#D9E54B', | |
'Sweeper':'#904039', | |
'Split-Finger':'#79B3FC', | |
'Knuckle Curve':'#450C37', | |
'Slurve':'#BEABD8', | |
'Other':'#9C8975', | |
'Forkball':'#F98A6C', | |
'Eephus':'#5CD0D2', | |
'Screwball':'#D64012', | |
'Slow Curve':'#601CF9', | |
'Pitch Out':'#6F2F5C', | |
'Knuckleball':'#534B26'} | |
home_away_dict = { | |
'a':'Away', | |
'h':'Home '} | |
dict_plots = { | |
'pitch_heat':{'title':'Pitch Distribution','note':'Pitches'}, | |
'whiff_rate':{'stat':'whiff','decimal_format':'percent_1','title':'Whiff%','plus':'whiff_rate_diff_100','note':'Swings'}, | |
'csw_rate':{'stat':'csw','decimal_format':'percent_1','title':'CSW%','plus':'csw_rate_diff_100','note':'Pitches'}, | |
'xwOBA':{'stat':'estimated_woba_using_speedangle','decimal_format':'string_3','title':'xwOBACON','plus':'xwobacon_diff_100','title':'xwOBACON','note':'Balls In Play'} | |
} | |
dict_plots_name = { | |
'pitch_heat':'Pitch Locations', | |
'whiff_rate':'Whiff%', | |
'csw_rate':'CSW%', | |
'xwOBA':'xwOBACON', | |
} | |
#stand_list = ['L','R'] | |
cbar_dict = { | |
'stat':[0,1], | |
} | |
# def decimal_format_assign(x): | |
# if dict_plots[stat_pick]['decimal_format'] == 'percent_1': | |
# return mtick.PercentFormatter(1,decimals=1) | |
# if dict_plots[stat_pick]['decimal_format'] == 'string_3': | |
# return mtick.FormatStrFormatter('%.3f') | |
# if dict_plotsp[stat_pick]['decimal_format'] == 'string_0': | |
# return mtick.FormatStrFormatter('%.0f') | |
# if dict_plots[stat_pick]['decimal_format'] == 'string_1': | |
# return mtick.FormatStrFormatter('%.1f') | |
# headers = {'User-agent': 'your bot 0.1'} | |
headers = {'User-agent': 'your bot 0.1'} | |
fangraphs_table = 7 | |
from shiny import ui, render, App | |
import matplotlib.image as mpimg | |
app_ui = ui.page_navbar( | |
ui.nav( | |
"Pitcher Summary", | |
#ui.panel_title("Simulate a normal distribution"), | |
ui.layout_sidebar( | |
ui.panel_sidebar( | |
ui.input_select("id", "Select Pitcher",pitcher_dict,width=1), | |
ui.input_select("date_id", "Select Date",date_dict,width=1), | |
ui.input_date_range("date_range_id", "Date range input (Set 'Select Date' to 'Season')",start = statcast_df.game_date.min(), end = statcast_df.game_date.max()), | |
ui.input_radio_buttons("radio_id", "Handedness", {"a": "All", "R": "Right","L": "Left"}), | |
ui.input_radio_buttons("home_id", "Setting", {"all": "All", "h": "Home","a": "Away"}), | |
ui.input_radio_buttons("heat_id", "Heat Map Plot (On 2nd Tab)", dict_plots_name | |
),width=2 | |
), | |
ui.panel_main( | |
ui.navset_tab( | |
ui.nav('Pitching Summary', | |
ui.output_plot("plot",height = "1400px",width="1400px"),), | |
ui.nav('Heat Maps', | |
ui.output_plot("plot_heat",height = "1400px",width="1400px"),) | |
), | |
), | |
), | |
)) | |
from urllib.request import Request, urlopen | |
from shiny import App, reactive, ui | |
from shiny.ui import h2, tags | |
# importing OpenCV(cv2) module | |
#print(app_ui) | |
def server(input, output, session): | |
def _(): | |
print('this guy') | |
print(type(list(statcast_df.pitcher.unique())[0])) | |
print(input.id()) | |
print(statcast_df.pitcher) | |
opts_dict = pd.concat([pd.DataFrame(data={'game_pk':0,'game_opp':'Season'},index=[0]), | |
statcast_df[statcast_df.pitcher == int(input.id())].drop_duplicates(subset=['pitcher','game_pk','game_opp'])[['game_pk','game_opp']].sort_values( | |
by='game_opp')]).set_index('game_pk')['game_opp'].astype(str).to_dict() | |
ui.update_select( | |
"date_id", | |
label="Select Date", | |
choices=opts_dict, | |
) | |
#@output | |
# @render.text | |
# def txt(): | |
# return f'pitcher_id: "{input.pitcher_id()}"' | |
def plot(): | |
input_id = input.id() | |
input_date_range_id = input.date_range_id() | |
input_date_id = input.date_id() | |
eury_df = statcast_df[statcast_df.pitcher.astype(int) == int(input_id)].sort_values(by=['game_date','play_id']) | |
#print(input.id()) | |
print(input_date_range_id == '0') | |
print(len(eury_df)) | |
print(str(input_date_id[0])) | |
if input_date_id == '0': | |
if input_date_range_id[0] == statcast_df.game_date.min() and input_date_range_id[1] == statcast_df.game_date.max(): | |
data_df = eury_df.copy() | |
data_df = data_df.reset_index(drop=True) | |
data_df = data_df.dropna(subset=['pitch_name']) | |
else: | |
data_df = eury_df[(eury_df.game_date >= input_date_range_id[0]) & (eury_df.game_date <= input_date_range_id[1])].reset_index(drop=True) | |
data_df = data_df.reset_index(drop=True) | |
data_df = data_df.dropna(subset=['pitch_name']) | |
else: | |
data_df = eury_df[eury_df.game_pk == int(input_date_id)].reset_index(drop=True) | |
data_df = data_df.dropna(subset=['pitch_name']) | |
if len(data_df) < 1: | |
fig, ax = plt.subplots(1, 1, figsize=(16, 16)) | |
ax.text(x=0.5,y=0.5,s='Plot Is Generating',fontsize=32,ha='center') | |
###return # | |
if input.radio_id() != 'a': | |
data_df = data_df[data_df.stand == input.radio_id()] | |
if input.home_id() != 'all': | |
data_df = data_df[data_df.home_away == input.home_id()] | |
#data_df = data_df.reset_index(drop=True) | |
print('NOWWWW') | |
print(type(eury_df.game_pk.reset_index(drop=True)[0])) | |
print(type(input_date_id)) | |
#time.sleep(5) | |
if input_date_id != '0': | |
time.sleep(5) | |
# stuff_plus_full_df_cut = stuff_plus_full_df[pd.to_datetime(stuff_plus_full_df.date).dt.date == pd.to_datetime(data_df.game_date)[0]] | |
# loc_plus_full_df_cut = loc_plus_full_df[pd.to_datetime(loc_plus_full_df.date).dt.date == pd.to_datetime(data_df.game_date)[0]] | |
# pitching_plus_full_df_cut = pitching_plus_full_df[pd.to_datetime(pitching_plus_full_df.date).dt.date == pd.to_datetime(data_df.game_date)[0]] | |
print('Game Log') | |
try: | |
url = f'https://www.fangraphs.com/leaders-legacy.aspx?pos=all&stats=pit&lg=all&type=36&season=2023&month=1000&season1=2023&ind=0&startdate={str(data_df.game_date[0])}&enddate={str(data_df.game_date[0])}&team=0&qual=0&pagenum=1&pageitems=5000' | |
data = requests.get(url, headers = {'User-agent': 'your bot 0.1'}).text | |
soup = BeautifulSoup(data, 'html.parser') | |
stuff_df = pd.read_html(data)[fangraphs_table]#.droplevel(1) | |
stuff_df.columns = stuff_df.columns.droplevel(0) | |
stuff_df = stuff_df.iloc[:-1] | |
stuff_df = stuff_df[stuff_df.columns[1:]] | |
stuff_df.columns = [x.replace('Stf+ ','') for x in stuff_df.columns] | |
stuff_df = stuff_df.rename(columns = {'FA':'FF'}) | |
stuff_df['ST'] = stuff_df.SL | |
stuff_df['SV'] = stuff_df.CU | |
# except (KeyError, requests.exceptions.HTTPError) as e: | |
# fig, ax = plt.subplots(1, 1, figsize=(16, 16)) | |
# ax.text(x=0.5,y=0.5,s='Plot Is Generating',fontsize=32,ha='center') | |
# return | |
tables = soup.find_all('table') | |
# Looking for the table with the classes 'wikitable' and 'sortable' | |
table = soup.find('table', class_='rgMasterTable') | |
import re | |
stuff_df['fg_id'] = [re.findall(r'\d+', x[:10])[0] for x in str(table).split('playerid=')[1:]] | |
stuff_plus_full_df_cut = stuff_df.melt(id_vars=['fg_id','Name','Team','IP']).dropna().sort_values(by='IP',ascending=False).reset_index(drop=True) | |
stuff_plus_full_df_cut.fg_id = stuff_plus_full_df_cut.fg_id.astype(int) | |
except (KeyError, requests.exceptions.HTTPError,ValueError,requests.exceptions.RequestException,urllib.error.HTTPError) as e: | |
stuff_plus_full_df_cut = pd.DataFrame() | |
# except: | |
# print('lol') | |
time.sleep(5) | |
try: | |
url = f'https://www.fangraphs.com/leaders-legacy.aspx?pos=all&stats=pit&lg=all&type=37&season=2023&month=1000&season1=2023&ind=0&startdate={str(data_df.game_date[0])}&enddate={str(data_df.game_date[0])}&team=0&qual=0&pagenum=1&pageitems=5000' | |
data = requests.get(url,headers=headers).text | |
soup = BeautifulSoup(data, 'html.parser') | |
loc_df = pd.read_html(data)[fangraphs_table]#.droplevel(1) | |
loc_df.columns = loc_df.columns.droplevel(0) | |
loc_df = loc_df.iloc[:-1] | |
loc_df = loc_df[loc_df.columns[1:]] | |
loc_df.columns = [x.replace('Loc+ ','') for x in loc_df.columns] | |
loc_df = loc_df.rename(columns = {'FA':'FF'}) | |
loc_df['ST'] = loc_df.SL | |
loc_df['SV'] = loc_df.CU | |
tables = soup.find_all('table') | |
# Looking for the table with the classes 'wikitable' and 'sortable' | |
table = soup.find('table', class_='rgMasterTable') | |
import re | |
loc_df['fg_id'] = [re.findall(r'\d+', x[:10])[0] for x in str(table).split('playerid=')[1:]] | |
loc_plus_full_df_cut = loc_df.melt(id_vars=['fg_id','Name','Team','IP']).dropna().sort_values(by='IP',ascending=False).reset_index(drop=True) | |
loc_plus_full_df_cut.fg_id = loc_plus_full_df_cut.fg_id.astype(int) | |
except (KeyError, requests.exceptions.HTTPError,ValueError,requests.exceptions.RequestException,urllib.error.HTTPError) as e: | |
loc_plus_full_df_cut = pd.DataFrame() | |
time.sleep(5) | |
try: | |
url = f'https://www.fangraphs.com/leaders-legacy.aspx?pos=all&stats=pit&lg=all&type=38&season=2023&month=1000&season1=2023&ind=0&startdate={str(data_df.game_date[0])}&enddate={str(data_df.game_date[0])}&team=0&qual=0&pagenum=1&pageitems=5000' | |
data = requests.get(url,headers=headers).text | |
soup = BeautifulSoup(data, 'html.parser') | |
pitching_df = pd.read_html(data)[fangraphs_table]#.droplevel(1) | |
pitching_df.columns = pitching_df.columns.droplevel(0) | |
pitching_df = pitching_df.iloc[:-1] | |
pitching_df = pitching_df[pitching_df.columns[1:]] | |
pitching_df.columns = [x.replace('Pit+ ','') for x in pitching_df.columns] | |
pitching_df = pitching_df.rename(columns = {'FA':'FF'}) | |
pitching_df['ST'] = pitching_df.SL | |
pitching_df['SV'] = pitching_df.CU | |
tables = soup.find_all('table') | |
# Looking for the table with the classes 'wikitable' and 'sortable' | |
table = soup.find('table', class_='rgMasterTable') | |
import re | |
pitching_df['fg_id'] = [re.findall(r'\d+', x[:10])[0] for x in str(table).split('playerid=')[1:]] | |
pitching_plus_full_df_cut = pitching_df.melt(id_vars=['fg_id','Name','Team','IP']).dropna().sort_values(by='IP',ascending=False).reset_index(drop=True) | |
pitching_plus_full_df_cut.fg_id = pitching_plus_full_df_cut.fg_id.astype(int) | |
except (KeyError, requests.exceptions.HTTPError,ValueError,requests.exceptions.RequestException,urllib.error.HTTPError) as e: | |
pitching_plus_full_df_cut = pd.DataFrame() | |
else: | |
if input_date_range_id[0] <= statcast_df.game_date.min() and input_date_range_id[1] >= statcast_df.game_date.max(): | |
#time.sleep(5) | |
# stuff_plus_full_df_cut = stuff_plus_season_df.copy() | |
# loc_plus_full_df_cut = loc_plus_season_df.copy() | |
# pitching_plus_full_df_cut = pitching_plus_season_df.copy() | |
print('Running') | |
try: | |
url = f'https://www.fangraphs.com/leaders-legacy.aspx?pos=all&stats=pit&lg=all&qual=0&type=36&season=2023&month=0&season1=2023&ind=0&team=0&rost=0&age=0&filter=&players=0&startdate=2023-03-30&enddate=2023-12-31&page=1_5000' | |
data = requests.get(url,headers=headers).text | |
soup = BeautifulSoup(data, 'html.parser') | |
stuff_df = pd.read_html(data)[fangraphs_table]#.droplevel(1) | |
stuff_df.columns = stuff_df.columns.droplevel(0) | |
stuff_df = stuff_df.iloc[:-1] | |
stuff_df = stuff_df[stuff_df.columns[1:]] | |
stuff_df.columns = [x.replace('Stf+ ','') for x in stuff_df.columns] | |
stuff_df = stuff_df.rename(columns = {'FA':'FF'}) | |
stuff_df['ST'] = stuff_df.SL | |
stuff_df['SV'] = stuff_df.CU | |
tables = soup.find_all('table') | |
# Looking for the table with the classes 'wikitable' and 'sortable' | |
table = soup.find('table', class_='rgMasterTable') | |
import re | |
stuff_df['fg_id'] = [re.findall(r'\d+', x[:10])[0] for x in str(table).split('playerid=')[1:]] | |
stuff_plus_full_df_cut = stuff_df.melt(id_vars=['fg_id','Name','Team','IP']).dropna().sort_values(by='IP',ascending=False).reset_index(drop=True) | |
stuff_plus_full_df_cut.fg_id = stuff_plus_full_df_cut.fg_id.astype(int) | |
except (KeyError, requests.exceptions.HTTPError,ValueError,requests.exceptions.RequestException,urllib.error.HTTPError) as e: | |
stuff_plus_full_df_cut = pd.DataFrame() | |
try: | |
#time.sleep(5) | |
url = f'https://www.fangraphs.com/leaders-legacy.aspx?pos=all&stats=pit&lg=all&qual=0&type=37&season=2023&month=0&season1=2023&ind=0&team=0&rost=0&age=0&filter=&players=0&startdate=2023-03-30&enddate=2023-12-31&page=1_5000' | |
data = requests.get(url,headers=headers).text | |
soup = BeautifulSoup(data, 'html.parser') | |
loc_df = pd.read_html(data)[fangraphs_table]#.droplevel(1) | |
loc_df.columns = loc_df.columns.droplevel(0) | |
loc_df = loc_df.iloc[:-1] | |
loc_df = loc_df[loc_df.columns[1:]] | |
loc_df.columns = [x.replace('Loc+ ','') for x in loc_df.columns] | |
loc_df = loc_df.rename(columns = {'FA':'FF'}) | |
loc_df['ST'] = loc_df.SL | |
loc_df['SV'] = loc_df.CU | |
tables = soup.find_all('table') | |
# Looking for the table with the classes 'wikitable' and 'sortable' | |
table = soup.find('table', class_='rgMasterTable') | |
import re | |
loc_df['fg_id'] = [re.findall(r'\d+', x[:10])[0] for x in str(table).split('playerid=')[1:]] | |
loc_plus_full_df_cut = loc_df.melt(id_vars=['fg_id','Name','Team','IP']).dropna().sort_values(by='IP',ascending=False).reset_index(drop=True) | |
loc_plus_full_df_cut.fg_id = loc_plus_full_df_cut.fg_id.astype(int) | |
except (KeyError, requests.exceptions.HTTPError,ValueError,requests.exceptions.RequestException,urllib.error.HTTPError) as e: | |
loc_plus_full_df_cut = pd.DataFrame() | |
try: | |
#time.sleep(5) | |
url = f'https://www.fangraphs.com/leaders-legacy.aspx?pos=all&stats=pit&lg=all&qual=0&type=38&season=2023&month=0&season1=2023&ind=0&team=0&rost=0&age=0&filter=&players=0&startdate=2023-03-30&enddate=2023-12-31&page=1_5000' | |
data = requests.get(url,headers=headers).text | |
soup = BeautifulSoup(data, 'html.parser') | |
pitching_df = pd.read_html(data)[fangraphs_table]#.droplevel(1) | |
pitching_df.columns = pitching_df.columns.droplevel(0) | |
pitching_df = pitching_df.iloc[:-1] | |
pitching_df = pitching_df[pitching_df.columns[1:]] | |
pitching_df.columns = [x.replace('Pit+ ','') for x in pitching_df.columns] | |
pitching_df = pitching_df.rename(columns = {'FA':'FF'}) | |
pitching_df['ST'] = pitching_df.SL | |
pitching_df['SV'] = pitching_df.CU | |
tables = soup.find_all('table') | |
# Looking for the table with the classes 'wikitable' and 'sortable' | |
table = soup.find('table', class_='rgMasterTable') | |
import re | |
pitching_df['fg_id'] = [re.findall(r'\d+', x[:10])[0] for x in str(table).split('playerid=')[1:]] | |
pitching_plus_full_df_cut = pitching_df.melt(id_vars=['fg_id','Name','Team','IP']).dropna().sort_values(by='IP',ascending=False).reset_index(drop=True) | |
pitching_plus_full_df_cut.fg_id = pitching_plus_full_df_cut.fg_id.astype(int) | |
except (KeyError, requests.exceptions.HTTPError,ValueError,requests.exceptions.RequestException,urllib.error.HTTPError) as e: | |
pitching_plus_full_df_cut = pd.DataFrame() | |
else: | |
print('Running') | |
try: | |
#time.sleep(5) | |
url = f'https://www.fangraphs.com/leaders-legacy.aspx?pos=all&stats=pit&lg=all&type=36&season=2023&month=1000&season1=2023&ind=0&startdate={str(input.date_range_id()[0])}&enddate={str(input.date_range_id()[1])}&team=0&qual=0&pagenum=1&pageitems=5000&page=1_5000' | |
print(url) | |
data = requests.get(url,headers=headers).text | |
stuff_df = pd.read_html(data)[fangraphs_table]#.droplevel(1) | |
stuff_df.columns = stuff_df.columns.droplevel(0) | |
stuff_df = stuff_df.iloc[:-1] | |
stuff_df = stuff_df[stuff_df.columns[1:]] | |
stuff_df.columns = [x.replace('Stf+ ','') for x in stuff_df.columns] | |
stuff_df = stuff_df.rename(columns = {'FA':'FF'}) | |
stuff_df['ST'] = stuff_df.SL | |
stuff_df['SV'] = stuff_df.CU | |
stuff_df = stuff_df[stuff_df.Name!='No records to display.'] | |
soup = BeautifulSoup(data, 'html.parser') | |
tables = soup.find_all('table') | |
# Looking for the table with the classes 'wikitable' and 'sortable' | |
table = soup.find('table', class_='rgMasterTable') | |
import re | |
stuff_df['fg_id'] = [re.findall(r'\d+', x[:10])[0] for x in str(table).split('playerid=')[1:]] | |
stuff_plus_full_df_cut = stuff_df.melt(id_vars=['fg_id','Name','Team','IP']).dropna().sort_values(by='IP',ascending=False).reset_index(drop=True) | |
stuff_plus_full_df_cut.fg_id = stuff_plus_full_df_cut.fg_id.astype(int) | |
except (KeyError, requests.exceptions.HTTPError,ValueError,requests.exceptions.RequestException,urllib.error.HTTPError) as e: | |
stuff_plus_full_df_cut = pd.DataFrame() | |
try: | |
#time.sleep(5) | |
url = f'https://www.fangraphs.com/leaders-legacy.aspx?pos=all&stats=pit&lg=all&type=37&season=2023&month=1000&season1=2023&ind=0&startdate={str(input.date_range_id()[0])}&enddate={str(input.date_range_id()[1])}&team=0&qual=0&pagenum=1&pageitems=5000&page=1_5000' | |
data = requests.get(url,headers=headers).text | |
soup = BeautifulSoup(data, 'html.parser') | |
loc_df = pd.read_html(data)[fangraphs_table]#.droplevel(1) | |
loc_df.columns = loc_df.columns.droplevel(0) | |
loc_df = loc_df.iloc[:-1] | |
loc_df = loc_df[loc_df.columns[1:]] | |
loc_df.columns = [x.replace('Loc+ ','') for x in loc_df.columns] | |
loc_df = loc_df.rename(columns = {'FA':'FF'}) | |
loc_df['ST'] = loc_df.SL | |
loc_df['SV'] = loc_df.CU | |
loc_df = loc_df[loc_df.Name!='No records to display.'] | |
# url = f'https://www.fangraphs.com/leaders-legacy.aspx?pos=all&stats=pit&lg=all&type=37&season=2023&month=1000&season1=2023&ind=0&startdate={str(input.date_range_id()[0])}&enddate={str(input.date_range_id()[1])}&team=0&qual=0&pagenum=1&pageitems=5000&page=1_5000' | |
# data = requests.get(url).text | |
# soup = BeautifulSoup(data, 'html.parser') | |
tables = soup.find_all('table') | |
# Looking for the table with the classes 'wikitable' and 'sortable' | |
table = soup.find('table', class_='rgMasterTable') | |
import re | |
loc_df['fg_id'] = [re.findall(r'\d+', x[:10])[0] for x in str(table).split('playerid=')[1:]] | |
loc_plus_full_df_cut = loc_df.melt(id_vars=['fg_id','Name','Team','IP']).dropna().sort_values(by='IP',ascending=False).reset_index(drop=True) | |
loc_plus_full_df_cut.fg_id = loc_plus_full_df_cut.fg_id.astype(int) | |
except (KeyError, requests.exceptions.HTTPError,ValueError,requests.exceptions.RequestException,urllib.error.HTTPError) as e: | |
loc_plus_full_df_cut = pd.DataFrame() | |
try: | |
#time.sleep(5) | |
url = f'https://www.fangraphs.com/leaders-legacy.aspx?pos=all&stats=pit&lg=all&type=38&season=2023&month=1000&season1=2023&ind=0&startdate={str(input.date_range_id()[0])}&enddate={str(input.date_range_id()[1])}&team=0&qual=0&pagenum=1&pageitems=5000&page=1_5000' | |
data = requests.get(url,headers=headers).text | |
soup = BeautifulSoup(data, 'html.parser') | |
pitching_df = pd.read_html(data)[fangraphs_table]#.droplevel(1) | |
pitching_df.columns = pitching_df.columns.droplevel(0) | |
pitching_df = pitching_df.iloc[:-1] | |
pitching_df = pitching_df[pitching_df.columns[1:]] | |
pitching_df.columns = [x.replace('Pit+ ','') for x in pitching_df.columns] | |
pitching_df = pitching_df.rename(columns = {'FA':'FF'}) | |
pitching_df['ST'] = pitching_df.SL | |
pitching_df['SV'] = pitching_df.CU | |
pitching_df = pitching_df[pitching_df.Name!='No records to display.'] | |
tables = soup.find_all('table') | |
# Looking for the table with the classes 'wikitable' and 'sortable' | |
table = soup.find('table', class_='rgMasterTable') | |
import re | |
pitching_df['fg_id'] = [re.findall(r'\d+', x[:10])[0] for x in str(table).split('playerid=')[1:]] | |
pitching_plus_full_df_cut = pitching_df.melt(id_vars=['fg_id','Name','Team','IP']).dropna().sort_values(by='IP',ascending=False).reset_index(drop=True) | |
pitching_plus_full_df_cut.fg_id = pitching_plus_full_df_cut.fg_id.astype(int) | |
except (KeyError, requests.exceptions.HTTPError,ValueError,requests.exceptions.RequestException,urllib.error.HTTPError) as e: | |
pitching_plus_full_df_cut = pd.DataFrame() | |
if len(stuff_plus_full_df_cut) < 1: | |
stuff_plus_full_df_cut = pd.DataFrame(columns=['fg_id', 'Name', 'Team', 'IP', 'variable', 'value']) | |
if len(loc_plus_full_df_cut) < 1: | |
loc_plus_full_df_cut = pd.DataFrame(columns=['fg_id', 'Name', 'Team', 'IP', 'variable', 'value']) | |
if len(pitching_plus_full_df_cut) < 1: | |
pitching_plus_full_df_cut = pd.DataFrame(columns=['fg_id', 'Name', 'Team', 'IP', 'variable', 'value']) | |
print(stuff_plus_full_df_cut) | |
data_df = data_df.merge(right=stuff_plus_full_df_cut,left_on=['key_fangraphs','pitch_type'],right_on=['fg_id','variable'],how='left') | |
data_df = data_df.merge(right=loc_plus_full_df_cut,left_on=['key_fangraphs','pitch_type'],right_on=['fg_id','variable'],how='left',suffixes=['','_loc']) | |
data_df = data_df.merge(right=pitching_plus_full_df_cut,left_on=['key_fangraphs','pitch_type'],right_on=['fg_id','variable'],how='left',suffixes=['','_pitching']) | |
data_df['value'] = data_df['value'].astype(float) | |
data_df['value_loc'] = data_df['value_loc'].astype(float) | |
data_df['value_pitching'] = data_df['value_pitching'].astype(float) | |
data_df['prop'] = data_df.groupby("pitch_name")["pitch"].transform("sum") | |
data_df = data_df.sort_values(by=['prop','value','pitch_name'],ascending=[False,False,True]) | |
if input_date_id == '0': | |
if input_date_range_id[0] == statcast_df.game_date.min() and input_date_range_id[1] == statcast_df.game_date.max(): | |
season_sum = requests.get(url=f"https://statsapi.mlb.com/api/v1/people?personIds={str((int(data_df.pitcher.reset_index(drop=True)[0])))}&appContext=majorLeague&" | |
"hydrate=currentTeam,awards," | |
"stats(group=[pitching],type=[yearByYear])").json() | |
print(f"https://statsapi.mlb.com/api/v1/people?personIds={str((int(data_df.pitcher.reset_index(drop=True)[0])))}&appContext=majorLeague&" | |
"hydrate=currentTeam,awards," | |
"stats(group=[pitching],type=[yearByYear])") | |
p_ip = season_sum['people'][0]['stats'][0]['splits'][-1]['stat']['inningsPitched'] | |
p_hits = season_sum['people'][0]['stats'][0]['splits'][-1]['stat']['whip'] | |
p_er = season_sum['people'][0]['stats'][0]['splits'][-1]['stat']['era'] | |
p_pa = season_sum['people'][0]['stats'][0]['splits'][-1]['stat']['battersFaced'] | |
p_k = season_sum['people'][0]['stats'][0]['splits'][-1]['stat']['strikeOuts'] | |
p_bb = season_sum['people'][0]['stats'][0]['splits'][-1]['stat']['baseOnBalls'] | |
summary_df_pitch = pd.DataFrame(data={'ip':p_ip,'hits':p_hits,'er':p_er,'k':p_k,'bb':p_bb,'pitches':p_pa}, index=[0]) | |
summary_df_pitch['k'] = summary_df_pitch['k']/summary_df_pitch['pitches'] | |
summary_df_pitch['bb'] = summary_df_pitch['bb']/summary_df_pitch['pitches'] | |
else: | |
start_date = pd.to_datetime(input_date_range_id[0]).strftime('%m/%d/%Y') | |
end_date = pd.to_datetime(input_date_range_id[1]).strftime('%m/%d/%Y') | |
print(str((int(data_df.pitcher.reset_index(drop=True)[0]))),start_date,end_date) | |
season_sum = requests.get(f"https://statsapi.mlb.com/api/v1/people?personIds={str((int(data_df.pitcher.reset_index(drop=True)[0])))}&hydrate=stats(group=[pitching],type=[byDateRange],startDate={start_date},endDate={end_date},season=2023)").json() | |
print(f"https://statsapi.mlb.com/api/v1/people?personIds={str((int(data_df.pitcher.reset_index(drop=True)[0])))}&hydrate=stats(group=[pitching],type=[byDateRange],startDate={start_date},endDate={end_date},season=2023)") | |
#season_sum = requests.get(f'https://statsapi.mlb.com/api/v1/people?personIds={str((int(data_df.pitcher.reset_index(drop=True)[0])))}&hydrate=stats(group=[hitting],type=[byDateRange],startDate={start_date},endDate={end_date},season=2023)').json() | |
print(season_sum) | |
#test_json['people'][0]['stats'][0]['splits'][0]['stat'] | |
p_ip = season_sum['people'][0]['stats'][0]['splits'][-1]['stat']['inningsPitched'] | |
p_hits = season_sum['people'][0]['stats'][0]['splits'][-1]['stat']['whip'] | |
p_er = season_sum['people'][0]['stats'][0]['splits'][-1]['stat']['era'] | |
p_pa = season_sum['people'][0]['stats'][0]['splits'][-1]['stat']['battersFaced'] | |
p_k = season_sum['people'][0]['stats'][0]['splits'][-1]['stat']['strikeOuts'] | |
p_bb = season_sum['people'][0]['stats'][0]['splits'][-1]['stat']['baseOnBalls'] | |
summary_df_pitch = pd.DataFrame(data={'ip':p_ip,'hits':p_hits,'er':p_er,'k':p_k,'bb':p_bb,'pitches':p_pa}, index=[0]) | |
summary_df_pitch['k'] = summary_df_pitch['k']/summary_df_pitch['pitches'] | |
summary_df_pitch['bb'] = summary_df_pitch['bb']/summary_df_pitch['pitches'] | |
else: | |
game_sum = requests.get(url='https://statsapi.mlb.com/api/v1.1/game/'+str((int(input_date_id)))+'/feed/live').json() | |
if int(data_df.pitcher.unique()[0]) in game_sum['liveData']['boxscore']['teams']['away']['pitchers']: | |
p_ip = game_sum['liveData']['boxscore']['teams']['away']['players']['ID'+str(int(data_df.pitcher.unique()[0]))]['stats']['pitching']['inningsPitched'] | |
p_hits = game_sum['liveData']['boxscore']['teams']['away']['players']['ID'+str(int(data_df.pitcher.unique()[0]))]['stats']['pitching']['hits'] | |
p_er = game_sum['liveData']['boxscore']['teams']['away']['players']['ID'+str(int(data_df.pitcher.unique()[0]))]['stats']['pitching']['earnedRuns'] | |
p_k = game_sum['liveData']['boxscore']['teams']['away']['players']['ID'+str(int(data_df.pitcher.unique()[0]))]['stats']['pitching']['strikeOuts'] | |
p_bb = game_sum['liveData']['boxscore']['teams']['away']['players']['ID'+str(int(data_df.pitcher.unique()[0]))]['stats']['pitching']['baseOnBalls'] | |
if int(data_df.pitcher.unique()[0]) in game_sum['liveData']['boxscore']['teams']['home']['pitchers']: | |
p_ip = game_sum['liveData']['boxscore']['teams']['home']['players']['ID'+str(int(data_df.pitcher.unique()[0]))]['stats']['pitching']['inningsPitched'] | |
p_hits = game_sum['liveData']['boxscore']['teams']['home']['players']['ID'+str(int(data_df.pitcher.unique()[0]))]['stats']['pitching']['hits'] | |
p_er = game_sum['liveData']['boxscore']['teams']['home']['players']['ID'+str(int(data_df.pitcher.unique()[0]))]['stats']['pitching']['earnedRuns'] | |
p_k = game_sum['liveData']['boxscore']['teams']['home']['players']['ID'+str(int(data_df.pitcher.unique()[0]))]['stats']['pitching']['strikeOuts'] | |
p_bb = game_sum['liveData']['boxscore']['teams']['home']['players']['ID'+str(int(data_df.pitcher.unique()[0]))]['stats']['pitching']['baseOnBalls'] | |
summary_df_pitch = pd.DataFrame(data={'ip':p_ip,'hits':p_hits,'er':p_er,'k':p_k,'bb':p_bb}, index=[0]) | |
types_in = ['hit_into_play', 'ball', 'swinging_strike', 'foul', 'blocked_ball', | |
'called_strike', 'foul_tip', 'swinging_strike_blocked', | |
'hit_by_pitch', 'foul_bunt', 'pitchout', 'missed_bunt', | |
'bunt_foul_tip'] | |
whiffs_in = ['swinging_strike', 'foul_tip', 'swinging_strike_blocked','missed_bunt','bunt_foul_tip'] | |
swing_in = ['foul_bunt','foul','hit_into_play','swinging_strike', 'foul_tip', 'swinging_strike_blocked','missed_bunt','bunt_foul_tip'] | |
csw_in = ['swinging_strike', 'called_strike', 'foul_tip', 'swinging_strike_blocked','missed_bunt','bunt_foul_tip'] | |
conditions_pitch = [ | |
(data_df['description'].isin(types_in)), | |
] | |
choices_pitch = [True] | |
data_df['pitch'] = np.select(conditions_pitch, choices_pitch, default=np.nan) | |
conditions_swings = [ | |
(data_df['description'].isin(swing_in)), | |
] | |
choices_swings = [True] | |
data_df['swing'] = np.select(conditions_swings, choices_swings, default=np.nan) | |
conditions_whiff = [ | |
(data_df['description'].isin(whiffs_in)), | |
] | |
choices_whiff = [True] | |
data_df['whiff'] = np.select(conditions_whiff, choices_whiff, default=np.nan) | |
conditions_csw = [ | |
(data_df['description'].isin(csw_in)), | |
] | |
choices_csw = [True] | |
data_df['csw'] = np.select(conditions_csw, choices_csw, default=np.nan) | |
bip_in = ['field_out', 'double', 'single', | |
'sac_fly', 'home_run', 'grounded_into_double_play', 'triple', | |
'force_out', 'field_error', 'double_play', | |
'fielders_choice_out', 'sac_bunt', 'fielders_choice', | |
'sac_fly_double_play', 'other_out'] | |
strikeout_in = ['strikeout','strikeout_double_play'] | |
walk_in = ['walk'] | |
conditions_bip = [ | |
(data_df['events'].isin(bip_in)), | |
] | |
choices_bip = [True] | |
data_df['bip'] = np.select(conditions_bip, choices_bip, default=np.nan) | |
conditions_k = [ | |
(data_df['events'].isin(strikeout_in)), | |
] | |
choices_k = [True] | |
data_df['k'] = np.select(conditions_k, choices_k, default=np.nan) | |
conditions_bb = [ | |
(data_df['events'].isin(walk_in)), | |
] | |
choices_bb = [True] | |
data_df['bb'] = np.select(conditions_bb, choices_bb, default=np.nan) | |
data_df.game_date = pd.to_datetime(data_df.game_date).dt.date | |
data_df['in_zone'] = data_df['zone'] < 10 | |
data_df['out_zone'] = data_df['zone'] >= 10 | |
print('OUT OF THE ZONE') | |
print(data_df['chase'].sum()) | |
print(data_df['out_zone'].sum()) | |
conditions_chase = [ | |
((data_df['description'].isin(swing_in))&(data_df.out_zone)), | |
] | |
choices_chase = [True] | |
data_df['chase'] = np.select(conditions_chase, choices_chase, default=np.nan) | |
pitch_df_pitch = data_df[data_df['pitch']==1].groupby(['pitch_name']).agg( | |
pitches = ('pitch','sum'), | |
swings = ('swing','sum'), | |
whiff = ('whiff','sum'), | |
csw = ('csw','sum'), | |
out_zone = ('out_zone','sum'), | |
chase = ('chase','sum'), | |
pitch_velocity = ('release_speed','mean'), | |
spin_rate = ('release_spin_rate','mean'), | |
exit_velocity = ('launch_speed','mean'), | |
pfx_x = ('pfx_x','mean'), | |
pfx_z = ('pfx_z','mean'), | |
extension = ('release_extension','mean'), | |
release_x = ('release_pos_x','mean'), | |
release_z = ('release_pos_z','mean'), | |
zone_percent = ('in_zone','mean') , | |
xwOBA = ('estimated_woba_using_speedangle','mean') , | |
stuff_plus = ('value','mean'), | |
loc_plus = ('value_loc','mean'), | |
pitching_plus = ('value_pitching','mean'), | |
#pitch_velocity = ('pitch_velocity','mean'), | |
# pitch_velocity = ('launch_speed',percentile(95)), | |
# launch_speed = ('launch_speed','mean'), | |
# launch_angle = ('launch_angle','mean'), | |
).sort_values(by='pitches',ascending=False).reset_index() | |
print('plot df') | |
print(pitch_df_pitch) | |
stuff_plus_all_day_df = stuff_plus_full_df_cut.copy() | |
data_df['spin_axis_pitch'] = [(x + 180) for x in data_df.spin_axis] | |
(((data_df.groupby('pitch_name').mean()[['spin_axis_pitch']] %360 % 30 / 30 /100 *60).round(2) *10).round(0)//1.5/4 ) | |
clock_time = ((data_df.groupby('pitch_name').mean()['spin_axis_pitch']) %360 // 30 )+ (((data_df.groupby('pitch_name').mean()['spin_axis_pitch'] %360 % 30 / 30 /100 *60).round(2) *10).round(0)//1.5/4 ) | |
print('Clocks') | |
print(clock_time) | |
clock_time = (clock_time.astype(int) + clock_time%1*60/100).round(2).astype(str).str.replace('.',':').str.replace(':0',':00').str.replace(':3',':30').to_frame() | |
#print() | |
pitch_df_pitch = pitch_df_pitch.merge(right=clock_time,left_on='pitch_name',right_index=True) | |
#print(pitch_df_pitch['clock_time']) | |
# if len(stuff_plus_all_day_df) < 1: | |
# stuff_plus_all_day_df = pd.DataFrame(columns=['fg_id', 'Name', 'Team', 'IP', 'variable', 'value']) | |
# # loc_plus_full_df_cut = pd.DataFrame(columns=['fg_id', 'Name', 'Team', 'IP', 'variable', 'value']) | |
# # pitching_plus_full_df_cut = pd.DataFrame(columns=['fg_id', 'Name', 'Team', 'IP', 'variable', 'value']) | |
# if input_date_id != '0': | |
# stuff_plus_all_day_df = stuff_plus_full_df[(stuff_plus_full_df.fg_id == data_df.reset_index(drop=True).key_fangraphs[0]) & | |
# (stuff_plus_full_df.date == str(data_df.reset_index(drop=True).game_date[0]))] | |
# else: | |
# if input_date_range_id[0] == statcast_df.game_date.min() and input_date_range_id[1] == statcast_df.game_date.max(): | |
# stuff_plus_all_day_df = stuff_plus_season_df[(stuff_plus_season_df.fg_id == data_df.reset_index(drop=True).key_fangraphs[0])] | |
# else: | |
# stuff_plus_all_day_df = stuff_plus_full_df_cut[(stuff_plus_full_df_cut.fg_id == data_df.reset_index(drop=True).key_fangraphs[0])] | |
pitch_df_pitch_all = data_df[data_df['pitch']==1].groupby(['pitcher']).agg( | |
pitches = ('pitch','sum'), | |
swings = ('swing','sum'), | |
whiff = ('whiff','sum'), | |
csw = ('csw','sum'), | |
out_zone = ('out_zone','sum'), | |
chase = ('chase','sum'), | |
pitch_velocity = ('release_speed','mean'), | |
spin_rate = ('release_spin_rate','mean'), | |
exit_velocity = ('launch_speed','mean'), | |
pfx_x = ('pfx_x','mean'), | |
pfx_z = ('pfx_z','mean'), | |
extension = ('release_extension','mean'), | |
release_x = ('release_pos_x','mean'), | |
release_z = ('release_pos_z','mean'), | |
zone_percent = ('in_zone','mean') , | |
xwOBA = ('estimated_woba_using_speedangle','mean') , | |
stuff_plus = ('value','mean'), | |
loc_plus = ('value_loc','mean'), | |
pitching_plus = ('value_pitching','mean'), | |
).sort_values(by='pitches',ascending=False).reset_index() | |
#print('stff df') | |
#print(stuff_plus_all_day_df) | |
print('Pitch Sum') | |
print(pitch_df_pitch_all) | |
if len(stuff_plus_all_day_df) > 0: | |
stuff_plus_all_day_df = stuff_plus_all_day_df[stuff_plus_all_day_df.fg_id == data_df.key_fangraphs[0]] | |
else: | |
stuff_plus_all_day_df = pd.DataFrame(columns=['fg_id', 'Name', 'Team', 'IP', 'variable', 'value']) | |
pitch_df_pitch_all['pitch_name'] = 'All' | |
if len(stuff_plus_all_day_df) > 0: | |
pitch_df_pitch_all['stuff_plus'] = int(stuff_plus_all_day_df[stuff_plus_all_day_df.variable == 'Stuff+'].reset_index(drop=True)['value'][0]) | |
pitch_df_pitch_all['loc_plus'] = int(stuff_plus_all_day_df[stuff_plus_all_day_df.variable == 'Location+'].reset_index(drop=True)['value'][0]) | |
pitch_df_pitch_all['pitching_plus'] = int(stuff_plus_all_day_df[stuff_plus_all_day_df.variable == 'Pitching+'].reset_index(drop=True)['value'][0]) | |
else: | |
pitch_df_pitch_all['stuff_plus'] = np.nan | |
pitch_df_pitch_all['loc_plus'] = np.nan | |
pitch_df_pitch_all['pitching_plus'] = np.nan | |
print('Pitch Sum') | |
print(pitch_df_pitch_all) | |
if input_date_id != '0': | |
summary_df_pitch['pitcher'] = data_df.full_name_pitcher.unique()[0] | |
summary_df_pitch['pitches'] = pitch_df_pitch.pitches.sum() | |
summary_df_pitch['pitches'] = summary_df_pitch['pitches'].astype(int) | |
summary_df_pitch= summary_df_pitch[['pitcher', 'pitches','ip', 'hits', 'er', 'k', 'bb']] | |
#summary_df_pitch_new.columns = ['Pitcher', 'Pitches','IP', 'Hits', 'ER', 'K', 'BB'] | |
else: | |
summary_df_pitch['pitcher'] = data_df.full_name_pitcher.unique()[0] | |
summary_df_pitch = summary_df_pitch[['pitcher', 'pitches','ip', 'hits', 'er', 'k', 'bb']] | |
pitch_df_pitch['whiff_rate'] = pitch_df_pitch['whiff']/pitch_df_pitch['swings'] | |
pitch_df_pitch['csw_rate'] = pitch_df_pitch['csw']/pitch_df_pitch['pitches'] | |
pitch_df_pitch['chase_percent'] = pitch_df_pitch['chase']/pitch_df_pitch['out_zone'] | |
pitch_df_pitch['pitch_percent'] = pitch_df_pitch['pitches']/pitch_df_pitch['pitches'].sum() | |
pitch_df_pitch_all['whiff_rate'] = pitch_df_pitch_all['whiff']/pitch_df_pitch_all['swings'] | |
pitch_df_pitch_all['csw_rate'] = pitch_df_pitch_all['csw']/pitch_df_pitch_all['pitches'] | |
pitch_df_pitch_all['chase_percent'] = pitch_df_pitch_all['chase']/pitch_df_pitch_all['out_zone'] | |
pitch_df_pitch_all['pitch_percent'] = pitch_df_pitch_all['pitches']/pitch_df_pitch_all['pitches'].sum() | |
pitch_df_pitch_all['spin_axis_pitch'] = '—' | |
pitch_df_pitch = pd.concat([pitch_df_pitch,pitch_df_pitch_all]).reset_index(drop=True) | |
#fig, ax = plt.subplots(3, 2, figsize=(9, 9)) | |
label_labels = data_df.sort_values(by=['prop','value','pitch_name'],ascending=[False,False,True]).pitch_name.unique() | |
#plt.rcParams["figure.figsize"] = [10,10] | |
fig = plt.figure(figsize=(15, 15),dpi=600) | |
plt.rcParams.update({'figure.autolayout': True}) | |
fig.set_facecolor('white') | |
sns.set_theme(style="whitegrid", palette="pastel") | |
# gs = GridSpec(7, 2, width_ratios=[1,1], height_ratios=[1.5,1,1,1,1,1,2.5]) | |
gs = GridSpec(4, 1, width_ratios=[1], height_ratios=[1,0.75,5.5,2.5]) | |
#gs = GridSpec(4, 1, width_ratios=[1], height_ratios=[1,0.75,7-len(label_labels)/4,1+len(label_labels)/4]) | |
gs.update(hspace=0.1, wspace=0.2) | |
#gs.update(hspace=0.1/(len(label_labels)/4), wspace=0.2) | |
# gs.update(left=0.1,right=0.9,top=0.97,bottom=0.03,wspace=0.3,hspace=0.09) | |
# ax1 = plt.subplot(4,1,1) | |
# ax2 = plt.subplot(2,2,2) | |
# ax3 = plt.subplot(2,2,3) | |
# ax4 = plt.subplot(4,1,4) | |
#ax2 = plt.subplot(3,3,2) | |
# Add subplots to the grid | |
ax0 = fig.add_subplot(gs[0, :]) | |
#ax1 = fig.add_subplot(gs[2, 0]) | |
ax2 = fig.add_subplot(gs[2, :]) # Subplot at the top-right position | |
ax3 = fig.add_subplot(gs[-1, :]) | |
ax4 = fig.add_subplot(gs[1, :]) # Subplot spanning the entire bottom row | |
# a = {} | |
# k = 0 | |
# while k < len(label_labels): | |
# # dynamically create key | |
# key = f'{k}_plot' # Subplot at the top-left position | |
# # calculate value | |
# value = fig.add_subplot(gs[1+k, 0]) # Subplot at the top-left position | |
# a[key] = value | |
# k += 1 | |
# ax1 = fig.add_subplot(gs[1, 0]) # Subplot at the top-left position | |
# ax3.yaxis.set_visible(False) | |
# ax4.yaxis.set_visible(False) | |
# Customize subplots | |
ax3.tick_params(left = False, right = False , labelleft = False , | |
labelbottom = False, bottom = False) | |
ax4.tick_params(left = False, right = False , labelleft = False , | |
labelbottom = False, bottom = False) | |
ax3.axis('off') | |
ax4.axis('off') | |
ax0.axis('off') | |
# Calculate and set the position of the subplot | |
ax3.set_anchor('C') | |
ax4.set_anchor('C') | |
sns.set_theme(style="whitegrid", palette="pastel") | |
fig.set_facecolor('white') | |
# ax2.set_facecolor('white') | |
## Legend Plot | |
# sns.scatterplot(ax=ax4,x=data_df.plate_x,y=data_df.plate_z,hue=data_df.pitch_name,palette=colour_palette[:len(data_df.pitch_name.unique())],s=1) | |
# ax4.legend(loc='center',bbox_to_anchor=(0, -0.1, 1, 0.1), | |
# ncol=len(data_df['pitch_name'].unique()), fancybox=True, fontsize=16,facecolor='white',handleheight=2, framealpha=1.0) | |
# # Show the plot | |
# ax4.axis('off') | |
## Pitch Plot | |
# label_labels = data_df['pitch_name'].unique() | |
# j = 0 | |
# for label in label_labels: | |
# subset = data_df[data_df['pitch_name'] == label] | |
# confidence_ellipse(subset['plate_x'], subset['plate_z'], ax=ax1,edgecolor= colour_palette[j],n_std=1,facecolor= colour_palette[j],alpha=0.2) | |
# j=j+1 | |
font_properties = {'family': 'century gothic', 'size': 16} | |
# n = 0 | |
# ax1.xaxis.set_major_locator(MaxNLocator(integer=True)) | |
# # ax1.set_xlim(1,max(data_df['pitch_count'])) | |
# j = 0 | |
# for label in label_labels: | |
# subset = data_df[data_df['pitch_name'] == label] | |
# if len(subset) >= 1: | |
# print('test',label, len(subset),colour_palette[j]) | |
# confidence_ellipse(subset['release_speed'], subset['release_spin_rate'], ax=ax1,edgecolor= pitch_colours[label],n_std=2,facecolor = pitch_colours[label],alpha=0.2) | |
# j=j+1 | |
# else: | |
# j=j+1 | |
# #sns.kdeplot(data=data_df[data_df.pitch_name == label_labels[n]].release_speed,ax=a[x],color=colour_palette[n],fill=True) | |
# #sns.lineplot(data=data_df[data_df.pitch_name==x],x='pitch_count',y='release_speed',color=colour_palette[n],ax=ax1,zorder=1) | |
# sns.scatterplot(data=data_df,x='release_speed',y='release_spin_rate',hue='pitch_name',palette=pitch_colours,ax=ax1,marker='o',size=50,ec='black',zorder=100,alpha=1) | |
# # ax1.hlines(y=data_df[data_df.pitch_name == label_labels[n]].release_speed.mean(),xmin=-1,xmax=max(data_df['pitch_count']),color=colour_palette[n],linestyles='--',linewidth=1) | |
# # ax1.hlines(y=statcast_df[statcast_df.pitch_name == label_labels[n]].release_speed.mean(),xmin=-1,xmax=max(data_df['pitch_count']),color=colour_palette[n],linestyles='dotted',linewidth=1) | |
# # ax1.text(1.5,statcast_df[statcast_df.pitch_name == label_labels[n]].release_speed.mean(),'League Average', rotation=0, verticalalignment='bottom',ha='left', | |
# # bbox=dict(facecolor='white',alpha=0.5, edgecolor=colour_palette[n], pad=1),fontsize=4) | |
# n = n+1 | |
# ax1.set_xticklabels(ax1.get_xticks(), fontdict=font_properties) | |
# ax1.set_yticklabels(ax1.get_yticks(), fontdict=font_properties) | |
# #a[x].set_ylim(0,1) | |
# ax1.set_xlabel('Velocity (mph)', fontdict=font_properties) | |
# ax1.set_ylabel('Spin Rate (rpm)', fontdict=font_properties) | |
# ax1.set_title('Spin Rate vs Velocity',fontdict={'family': 'century gothic', 'size': 12}) | |
# a[x].set_yticks([]) | |
# a[x].vlines(x=data_df[data_df.pitch_name == label_labels[n]].release_speed.mean(),ymin=0,ymax=1,color=colour_palette[n],linestyles='--') | |
# a[x].vlines(x=statcast_df[statcast_df.pitch_name == label_labels[n]].release_speed.mean(),ymin=0,ymax=1,color=colour_palette[n],linestyles='dotted') | |
# sns.scatterplot(ax=ax1,x=data_df.release_pos_x,y=data_df.release_pos_z,hue=data_df.pitch_name,palette=colour_palette[:len(data_df.pitch_name.unique())],s=50,ec='black',alpha=0.7) | |
# ax1.set_xlim(-3.5,3.5) | |
# ax1.set_ylim(0,7) | |
# ax1.hlines(y=statcast_df[statcast_df.zone.isin([1,2,3])].plate_z.quantile(0.95),xmin=-17/12/2,xmax=17/12/2,color=colour_palette[8],alpha=0.5,linestyles='-') | |
# ax1.hlines(y=statcast_df[statcast_df.zone.isin([7,8,9])].plate_z.quantile(0.05),xmin=-17/12/2,xmax=17/12/2,color=colour_palette[8],alpha=0.5,linestyles='-') | |
# ax1.hlines(y=(-statcast_df[statcast_df.zone.isin([7,8,9])].plate_z.quantile(0.05)+ | |
# statcast_df[statcast_df.zone.isin([1,2,3])].plate_z.quantile(0.95))/3+statcast_df[statcast_df.zone.isin([7,8,9])].plate_z.quantile(0.05),xmin=-17/12/2,xmax=17/12/2,color=colour_palette[8],alpha=0.5,linestyles='dotted') | |
# ax1.hlines(y=(-statcast_df[statcast_df.zone.isin([7,8,9])].plate_z.quantile(0.05)+ | |
# statcast_df[statcast_df.zone.isin([1,2,3])].plate_z.quantile(0.95))/3*2+statcast_df[statcast_df.zone.isin([7,8,9])].plate_z.quantile(0.05),xmin=-17/12/2,xmax=17/12/2,color=colour_palette[8],alpha=0.5,linestyles='dotted') | |
# ax1.vlines(x=-17/12/2,ymin=statcast_df[statcast_df.zone.isin([7,8,9])].plate_z.quantile(0.05),ymax=statcast_df[statcast_df.zone.isin([1,2,3])].plate_z.quantile(0.95),color=colour_palette[8],alpha=0.5,linestyles='-') | |
# ax1.vlines(x=17/12/2,ymin=statcast_df[statcast_df.zone.isin([7,8,9])].plate_z.quantile(0.05),ymax=statcast_df[statcast_df.zone.isin([1,2,3])].plate_z.quantile(0.95),color=colour_palette[8],alpha=0.5,linestyles='-') | |
# ax1.vlines(x=(-17/12/2)+17/12/3,ymin=statcast_df[statcast_df.zone.isin([7,8,9])].plate_z.quantile(0.05),ymax=statcast_df[statcast_df.zone.isin([1,2,3])].plate_z.quantile(0.95),color=colour_palette[8],alpha=0.5,linestyles='dotted') | |
# ax1.vlines(x=(-17/12/2)+17/12*2/3,ymin=statcast_df[statcast_df.zone.isin([7,8,9])].plate_z.quantile(0.05),ymax=statcast_df[statcast_df.zone.isin([1,2,3])].plate_z.quantile(0.95),color=colour_palette[8],alpha=0.5,linestyles='dotted') | |
# ax1.set_xlabel("Catcher's Presepctive (ft)", fontsize=10,fontname='Century Gothic') | |
# ax1.set_ylabel('Vertical Distance From Plate (ft)', fontsize=10,fontname='Century Gothic') | |
## Break Plot | |
j = 0 | |
for label in label_labels: | |
subset = data_df[data_df['pitch_name'] == label] | |
print(label) | |
if len(subset) > 1: | |
subset['pfx_x'] = subset['pfx_x']*12 | |
subset['pfx_z'] = subset['pfx_z']*12 | |
confidence_ellipse(subset['pfx_x'], subset['pfx_z'], ax=ax2,edgecolor = pitch_colours[label],n_std=2,facecolor= pitch_colours[label],alpha=0.2) | |
j=j+1 | |
else: | |
j=j+1 | |
#data_df = data_df.sort_values(by='prop',ascending=False) | |
sns.scatterplot(ax=ax2,x=data_df.pfx_x*12,y=data_df.pfx_z*12,hue=data_df.pitch_name,palette=pitch_colours,ec='black',alpha=0.7) | |
# ax2.set_xlim(min(-25,-abs(math.floor((data_df['pfx_x'].min()*12-0.01)/5)*5), | |
# -abs(math.floor((data_df['pfx_z'].min()*12-0.01)/5)*5), | |
# -abs(math.ceil((data_df['pfx_x'].max()*12+0.01)/5)*5), | |
# -abs(math.ceil((data_df['pfx_z'].max()*12+0.01)/5)*5)), | |
# max(25,abs(math.floor((data_df['pfx_x'].min()*12-0.01)/5)*5), | |
# abs(math.floor((data_df['pfx_z'].min()*12-0.01)/5)*5), | |
# abs(math.ceil((data_df['pfx_x'].max()*12+0.01)/5)*5), | |
# abs(math.ceil((data_df['pfx_z'].max()*12+0.01)/5)*5))) | |
# ax2.set_ylim(min(-25,-abs(math.floor((data_df['pfx_x'].min()*12-0.01)/5)*5), | |
# -abs(math.floor((data_df['pfx_z'].min()*12-0.01)/5)*5), | |
# -abs(math.ceil((data_df['pfx_x'].max()*12+0.01)/5)*5), | |
# -abs(math.ceil((data_df['pfx_z'].max()*12+0.01)/5)*5)), | |
# max(25,abs(math.floor((data_df['pfx_x'].min()*12-0.01)/5)*5), | |
# abs(math.floor((data_df['pfx_z'].min()*12-0.01)/5)*5), | |
# abs(math.ceil((data_df['pfx_x'].max()*12+0.01)/5)*5), | |
# abs(math.ceil((data_df['pfx_z'].max()*12+0.01)/5)*5))) | |
ax2.set_xlim((-25,25)) | |
ax2.set_ylim((-25,25)) | |
ax2.set_title('Pitch Breaks',fontdict={'family': 'century gothic', 'size': 20}) | |
# ax2.set_xlim(math.floor((data_df['pfx_x'].min()*12-0.01)/5)*5,math.ceil((data_df['pfx_x'].max()*12+0.01)/5)*5) | |
# ax2.set_ylim(math.floor((data_df['pfx_z'].min()*12-0.01)/5)*5,math.ceil((data_df['pfx_z'].max()*12+0.01)/5)*5) | |
ax2.hlines(y=0,xmin=-50,xmax=50,color=colour_palette[8],alpha=0.5,linestyles='--') | |
ax2.vlines(x=0,ymin=-50,ymax=50,color=colour_palette[8],alpha=0.5,linestyles='--') | |
ax2.set_xlabel('Horizontal Break (in)', fontsize=14,fontname='Century Gothic') | |
ax2.set_ylabel('Induced Vertical Break (in)', fontsize=14,fontname='Century Gothic') | |
## Table Plot | |
## Table Plot | |
df_plot = pitch_df_pitch[['pitch_name','pitches','pitch_percent','pitch_velocity','pfx_z','pfx_x', | |
'extension','release_z','stuff_plus','loc_plus','whiff_rate','chase_percent','zone_percent','xwOBA','spin_axis_pitch']] | |
df_plot['pitches'] = [int(x) if not math.isnan(x) else np.nan for x in df_plot['pitches']] | |
df_plot['pitch_percent'] = df_plot['pitch_percent'].round(3) | |
df_plot['pitch_velocity'] = df_plot['pitch_velocity'].round(1) | |
df_plot['pfx_z'] = (df_plot['pfx_z']*12).round(1) | |
df_plot['pfx_x'] = (df_plot['pfx_x']*12).round(1) | |
df_plot['extension'] = df_plot['extension'].round(1) | |
df_plot['release_z'] = df_plot['release_z'].round(1) | |
df_plot['stuff_plus'] = [int(x) if not math.isnan(x) else np.nan for x in df_plot['stuff_plus']] | |
df_plot['loc_plus'] = [int(x) if not math.isnan(x) else np.nan for x in df_plot['loc_plus']] | |
# df_plot['pitching_plus'] = [int(x) if not math.isnan(x) else np.nan for x in df_plot['pitching_plus']] | |
df_plot['whiff_rate'] = [round(x,3) if not math.isnan(x) else '—' for x in df_plot['whiff_rate']] | |
df_plot['chase_percent'] = [round(x,3) if not math.isnan(x) else '—' for x in df_plot['chase_percent']] | |
df_plot['zone_percent'] = [round(x,3) if not math.isnan(x) else '—' for x in df_plot['zone_percent']] | |
df_plot['xwOBA'] = [round(x,3) if not math.isnan(x) else '—' for x in df_plot['xwOBA']] | |
#df_plot['spin_axis_pitch'] = [x if not np.nan else '—' for x in df_plot['spin_axis_pitch']] | |
[['pitch_name','pitch_percent','pitch_velocity','pfx_z','pfx_x', | |
'extension','release_z','stuff_plus','loc_plus','whiff_rate','zone_percent','xwOBA']] | |
plt.rcParams['font.family'] = 'Century Gothic' | |
table = ax3.table(cellText=df_plot.values, colLabels=df_plot.columns, cellLoc='center', | |
colWidths=[0.08,0.04,0.04,.04,0.03, 0.03, 0.05,.08, 0.04,.05, 0.04,.04,0.04, 0.06,0.06], bbox=[0.0, 0, 1, 0.8]) | |
min_font_size = 11 | |
# Set table properties | |
table.auto_set_font_size(False) | |
table.set_fontsize(min(min_font_size,max(min_font_size/((len(label_labels)/4)),10))) | |
table.scale(1, 0.5) | |
# Customize cell colors | |
#table.get_celld()[(0, 0)].set_facecolor('#56B4E9') # Header cell color | |
def get_color(value): | |
color = cmap_sum(normalize(value)) | |
return mcolors.to_hex(color) | |
up_percent = 1.5 | |
down_percent = 0.5 | |
print(df_plot) | |
label_labels_plot = df_plot.pitch_name.unique() | |
for i in range(len(df_plot)): | |
if table.get_celld()[(i+1, 0)].get_text().get_text() != 'All': | |
#print(float(table.get_celld()[(i+1, 3)].get_text().get_text())) | |
#print(get_color(float(table.get_celld()[(i+1, 3)].get_text().get_text()))) | |
#colour_of_pitch | |
table.get_celld()[(i+1, 0)].set_facecolor(pitch_colours[table.get_celld()[(i+1, 0)].get_text().get_text()]) # Header cell color | |
if table.get_celld()[(i+1, 0)].get_text().get_text() in ['Curveball','Split-Finger','Slurve','Forkball']: | |
table.get_celld()[(i+1, 0)].set_text_props(color='#000000',fontweight='bold') | |
else: | |
table.get_celld()[(i+1, 0)].set_text_props(color='#ffffff',fontweight='bold') | |
#table.get_celld()[(i+1, 0)].set_path_effects([path_effects.withStroke(linewidth=2, foreground='black')]) # Header cell color | |
print(label_labels_plot[i]) | |
select_df = statcast_df_df_pitch[statcast_df_df_pitch.pitch_name == label_labels_plot[i]] | |
print(f'test: {select_df.pitch_velocity_std.mean()}') | |
cmap_sum = matplotlib.colors.LinearSegmentedColormap.from_list("", ['#648FFF','#FFFFFF','#FFB000',]) | |
print(select_df.pitch_velocity.mean()-select_df.pitch_velocity_std.mean(),select_df.pitch_velocity.mean()+select_df.pitch_velocity_std.mean(),) | |
#print(get_color(float(table.get_celld()[(i+1, 3)].get_text().get_text()))) | |
normalize = mcolors.Normalize(vmin=select_df.pitch_velocity.mean()-select_df.pitch_velocity_std.mean(), | |
vmax=select_df.pitch_velocity.mean()+select_df.pitch_velocity_std.mean()) # Define the range of values | |
if table.get_celld()[(i+1, 3)].get_text().get_text() != '—': | |
#print(float(table.get_celld()[(i+1, 3)].get_text().get_text())) | |
print(get_color(float(table.get_celld()[(i+1, 3)].get_text().get_text()))) | |
table.get_celld()[(i+1, 3)].set_facecolor(get_color(float(table.get_celld()[(i+1, 3)].get_text().get_text()))) # Header cell color | |
#Header cell color | |
cmap_sum = matplotlib.colors.LinearSegmentedColormap.from_list("", ['#648FFF','#FFFFFF','#FFB000',]) | |
normalize = mcolors.Normalize(vmin=70,vmax=130) | |
table.get_celld()[(i+1, 8)].set_facecolor(get_color(float(table.get_celld()[(i+1, 8)].get_text().get_text()))) | |
table.get_celld()[(i+1, 9)].set_facecolor(get_color(float(table.get_celld()[(i+1, 9)].get_text().get_text()))) | |
#table.get_celld()[(i+1, 4)].set_facecolor(get_color(float(table.get_celld()[(i+1, 4)].get_text().get_text()))) # Header cell color | |
normalize = mcolors.Normalize(vmin=select_df.whiff_rate.mean()*down_percent, vmax=select_df.whiff_rate.mean()*up_percent) | |
if table.get_celld()[(i+1, 10)].get_text().get_text() != '—': | |
table.get_celld()[(i+1, 10)].set_facecolor(get_color(float(table.get_celld()[(i+1, 10)].get_text().get_text()))) # Header cell color | |
normalize = mcolors.Normalize(vmin=select_df.chase_percent.mean()*down_percent, vmax=select_df.chase_percent.mean()*up_percent) | |
if table.get_celld()[(i+1, 11)].get_text().get_text() != '—': | |
table.get_celld()[(i+1, 11)].set_facecolor(get_color(float(table.get_celld()[(i+1, 11)].get_text().get_text()))) # Header cell color | |
normalize = mcolors.Normalize(vmin=select_df.zone_percent.mean()*down_percent, vmax=select_df.zone_percent.mean()*up_percent) | |
if table.get_celld()[(i+1, 12)].get_text().get_text() != '—': | |
table.get_celld()[(i+1, 12)].set_facecolor(get_color(float(table.get_celld()[(i+1, 12)].get_text().get_text()))) # Header cell color | |
normalize = mcolors.Normalize(vmin=select_df.xwOBA.mean()*down_percent, vmax=select_df.xwOBA.mean()*up_percent) | |
if table.get_celld()[(i+1, 13)].get_text().get_text() != '—': | |
table.get_celld()[(i+1, 13)].set_facecolor(get_color(float(table.get_celld()[(i+1, 13)].get_text().get_text()))) # Header cell color | |
# normalize = mcolors.Normalize(vmin=select_df[df_plot.columns[2]].mean()*0.9, vmax=select_df[df_plot.columns[2]].mean()*1.1) | |
# if table.get_celld()[(i+1, 3)].get_text().get_text() != '—': | |
# table.get_celld()[(i+1, 3)].set_facecolor(get_color(float(table.get_celld()[(i+1, 3)].get_text().get_text()))) # Header cell color | |
# normalize = mcolors.Normalize(vmin=select_df[df_plot.columns[3]].mean()*down_percent, vmax=select_df[df_plot.columns[3]].mean()*down_percent) | |
# if table.get_celld()[(i+1, 3)].get_text().get_text() != '—': | |
# table.get_celld()[(i+1, 3)].set_facecolor(get_color(float(table.get_celld()[(i+1, 3)].get_text().get_text()))) # Header cell color | |
# normalize = mcolors.Normalize(vmin=select_df[df_plot.columns[4]].mean()*down_percent, vmax=select_df[df_plot.columns[4]].mean()*down_percent) | |
# if table.get_celld()[(i+1, 4)].get_text().get_text() != '—': | |
# table.get_celld()[(i+1, 4)].set_facecolor(get_color(float(table.get_celld()[(i+1, 4)].get_text().get_text()))) # Header cell color | |
cmap_sum = matplotlib.colors.LinearSegmentedColormap.from_list("", ['#648FFF','#FFFFFF','#FFB000',]) | |
normalize = mcolors.Normalize(vmin=select_df[df_plot.columns[6]].mean()*0.9, vmax=select_df[df_plot.columns[6]].mean()*1.1) | |
if table.get_celld()[(i+1, 6)].get_text().get_text() != '—': | |
table.get_celld()[(i+1, 6)].set_facecolor(get_color(float(table.get_celld()[(i+1, 6)].get_text().get_text()))) # Header cell color | |
# normalize = mcolors.Normalize(vmin=select_df[df_plot.columns[6]].mean()*down_percent, vmax=[df_plot.columns[6]].mean()*down_percent) | |
# if table.get_celld()[(i+1, 6)].get_text().get_text() != '—': | |
# table.get_celld()[(i+1, 6)].set_facecolor(get_color(float(table.get_celld()[(i+1, 6)].get_text().get_text()))) # Header cell color | |
normalize = mcolors.Normalize(vmin=select_df.xwOBA.mean()*down_percent, vmax=select_df.xwOBA.mean()*up_percent) | |
cmap_sum = matplotlib.colors.LinearSegmentedColormap.from_list("", ['#FFB000','#FFFFFF','#648FFF',]) | |
if table.get_celld()[(i+1, 13)].get_text().get_text() != '—': | |
table.get_celld()[(i+1, 13)].set_facecolor(get_color(float(table.get_celld()[(i+1, 13)].get_text().get_text()))) # Header cell color | |
# normalize = mcolors.Normalize(vmin=select_df.csw_rate.mean()*down_percent, vmax=select_df.csw_rate.mean()*up_percent) # Define the range of values | |
# table.get_celld()[(i+1, 6)].set_facecolor(get_color(float(table.get_celld()[(i+1, 6)].get_text().get_text()))) # Header cell color | |
normalize = mcolors.Normalize(vmin=select_df.pitch_velocity.mean()-select_df.pitch_velocity_std.mean(), | |
vmax=select_df.pitch_velocity.mean()+select_df.pitch_velocity_std.mean()) # Define the range of values | |
#Header cell color | |
# [['pitch_name','pitch_percent','pitch_velocity','pfx_z','pfx_x', | |
# 'extension','release_z','stuff_plus','loc_plus','whiff_rate','zone_percent','xwOBA']] | |
new_column_names = ['$\\bf{Pitch\ Name}$', | |
'$\\bf{Count}$', | |
'$\\bf{Pitch\%}$', | |
'$\\bf{Velocity}$', | |
'$\\bf{iVB}$', | |
'$\\bf{HB}$', | |
'$\\bf{Extension}$', | |
'$\\bf{Release\ Height}$', | |
'$\\bf{Stuff+}$', | |
'$\\bf{Location+}$', | |
'$\\bf{Whiff\%}$', | |
'$\\bf{Chase\%}$', | |
'$\\bf{Zone\%}$', | |
'$\\bf{xwOBACON}$', | |
'$\\bf{Spin\ Axis}$'] | |
# #new_column_names = ['Pitch Name', 'Pitch%', 'Velocity', 'Spin Rate','Exit Velocity', 'Whiff%', 'CSW%'] | |
for i, col_name in enumerate(new_column_names): | |
table.get_celld()[(0, i)].get_text().set_text(col_name) | |
pitch_col = df_plot['pitch_percent'] | |
for cell in table.get_celld().values(): | |
if cell.get_text().get_text() in pitch_col.astype(str).values: | |
cell.get_text().set_text('{:,.1%}'.format(float(cell.get_text().get_text()))) | |
pitch_col = df_plot['whiff_rate'] | |
for cell in table.get_celld().values(): | |
if cell.get_text().get_text() in pitch_col.astype(str).values and cell.get_text().get_text() != '—': | |
cell.get_text().set_text('{:,.1%}'.format(float(cell.get_text().get_text()))) | |
pitch_col = df_plot['chase_percent'] | |
for cell in table.get_celld().values(): | |
if cell.get_text().get_text() in pitch_col.astype(str).values and cell.get_text().get_text() != '—': | |
cell.get_text().set_text('{:,.1%}'.format(float(cell.get_text().get_text()))) | |
pitch_col = df_plot['zone_percent'] | |
for cell in table.get_celld().values(): | |
if cell.get_text().get_text() in pitch_col.astype(str).values and cell.get_text().get_text() != '—': | |
cell.get_text().set_text('{:,.1%}'.format(float(cell.get_text().get_text()))) | |
pitch_col = df_plot['xwOBA'] | |
for cell in table.get_celld().values(): | |
if cell.get_text().get_text() in pitch_col.astype(str).values and cell.get_text().get_text() != '—': | |
print('xwOBA') | |
cell.get_text().set_text('{:,.3f}'.format(float(cell.get_text().get_text()))) | |
float_list = ['pitch_velocity','pfx_z','pfx_x', | |
'extension','release_z'] | |
for fl in float_list: | |
pitch_col = df_plot[fl] | |
for cell in table.get_celld().values(): | |
if cell.get_text().get_text() in pitch_col.astype(str).values and cell.get_text().get_text() != '—': | |
cell.get_text().set_text('{:,.1f}'.format(float(cell.get_text().get_text()))) | |
int_list = ['stuff_plus','loc_plus',] | |
for fl in int_list: | |
pitch_col = df_plot[fl] | |
for cell in table.get_celld().values(): | |
if cell.get_text().get_text() in pitch_col.astype(str).values and cell.get_text().get_text() != '—': | |
cell.get_text().set_text('{:,.0f}'.format(float(cell.get_text().get_text()))) | |
# pitch_col = df_plot['csw_rate'] | |
# for cell in table.get_celld().values(): | |
# if cell.get_text().get_text() in pitch_col.astype(str).values: | |
# cell.get_text().set_text('{:,.1%}'.format(float(cell.get_text().get_text()))) | |
# for (row, col), cell in table.get_celld().items(): | |
# if (row == len(df_plot)): | |
# cell.set_text_props(fontproperties=FontProperties(weight='bold',style='italic'),fontsize=(min(12,max(12/((len(label_labels)/4)),8)))) | |
# # new_column_names = ['$\\bf{'+str(x)+'}$' for x in list(df_plot.loc[len(df_plot)-1])] | |
# #new_column_names = ['Pitch Name', 'Pitch%', 'Velocity', 'Spin Rate','Exit Velocity', 'Whiff%', 'CSW%'] | |
# # for i in len(df_plot.columns): | |
# # table.get_celld()[(len(df_plot), i)].get_text().set_fontweight('bold') | |
table2 = ax4.table(cellText=summary_df_pitch.values, colLabels=summary_df_pitch.columns, cellLoc='center', | |
colWidths=[0.1,0.05,.05,.05, 0.05, 0.05,.05,.05], bbox=[0.00, 0.4, 0.955, .80]) | |
# table2 = ax4.table(cellText=summary_df_pitch.values, colLabels=summary_df_pitch.columns, cellLoc='center', | |
# colWidths=[0.1,0.05,.05,.05, 0.05, 0.05,.05,.05], bbox=[0.00, 0.4, 0.955, min(.8,0.8/(len(df_plot)/4))]) | |
# Set table properties | |
table2.auto_set_font_size(False) | |
min_font_size = 11 | |
table2.set_fontsize(min(min_font_size,max(min_font_size/((len(label_labels)/4)),10))) | |
table2.scale(1, 1) | |
if input_date_id == '0': | |
pitch_col = summary_df_pitch['k'] | |
for cell in table2.get_celld().values(): | |
if cell.get_text().get_text() in pitch_col.astype(str).values and cell.get_text().get_text() != '—': | |
cell.get_text().set_text('{:,.1%}'.format(float(cell.get_text().get_text()))) | |
pitch_col = summary_df_pitch['bb'] | |
for cell in table2.get_celld().values(): | |
if cell.get_text().get_text() in pitch_col.astype(str).values: | |
cell.get_text().set_text('{:,.1%}'.format(float(cell.get_text().get_text()))) | |
new_column_names = ['$\\bf{Pitcher}$', | |
'$\\bf{PA}$', | |
'$\\bf{IP}$', | |
'$\\bf{WHIP}$', | |
'$\\bf{ERA}$', | |
'$\\bf{K\%}$', | |
'$\\bf{BB\%}$'] | |
else: | |
new_column_names = ['$\\bf{Pitcher}$', | |
'$\\bf{Pitches}$', | |
'$\\bf{IP}$', | |
'$\\bf{Hits}$', | |
'$\\bf{ER}$', | |
'$\\bf{K}$', | |
'$\\bf{BB}$'] | |
for i, col_name in enumerate(new_column_names): | |
table2.get_celld()[(0, i)].get_text().set_text(col_name) | |
for (row, col), cell in table.get_celld().items(): | |
if (row == len(df_plot)): | |
cell.set_text_props(fontproperties=FontProperties(weight='bold',style='italic'),fontsize=(min(min_font_size,max(min_font_size/((len(label_labels)/4)),10)))) | |
# # table = ax3.table(cellText=pitch_df_pitch[['pitch_name','pitch_percent','spin_rate','exit_velocity','whiff_rate','csw_rate']].values, colLabels=pitch_df_pitch[['pitch_name','pitch_percent','spin_rate','exit_velocity','whiff_rate','csw_rate']].columns, loc='center') | |
# # Set the table properties | |
# table.auto_set_font_size(False) | |
# table.set_fontsize(12) | |
# table.scale(1.2, 1.2) | |
#ax1.get_legend().remove() | |
ax2.get_legend().remove() | |
# ax1.set_xticklabels(ax1.get_xticks(), fontdict=font_properties) | |
ax2.set_xticklabels(ax2.get_xticks(), fontdict=font_properties) | |
# ax1.set_yticklabels(ax1.get_yticks(), fontdict=font_properties) | |
ax2.set_yticklabels(ax2.get_yticks(), fontdict=font_properties) | |
# ax1.xaxis.set_major_locator(ticker.MaxNLocator(integer=True)) | |
# ax2.xaxis.set_major_locator(ticker.MaxNLocator(integer=True)) | |
# ax1.yaxis.set_major_locator(ticker.MaxNLocator(integer=True)) | |
# ax2.yaxis.set_major_locator(ticker.MaxNLocator(integer=True)) | |
# ax1.set_facecolor('white') | |
# ax2.set_facecolor('white') | |
# ax1.xaxis.set_major_formatter(mtick.FormatStrFormatter('%.0f')) | |
# ax2.yaxis.set_major_formatter(decimal_format_assign(x=pitcher_dict_stat[input.stat_y()])) | |
# ax1.xaxis.set_major_formatter(decimal_format_assign(x=pitcher_dict_stat[input.stat_x()])) | |
# ax2.yaxis.set_major_formatter(decimal_format_assign(x=pitcher_dict_stat[input.stat_y()])) | |
# ax1.legend(loc='upper center', bbox_to_anchor=(1, 1.05), | |
# ncol=len(label_labels), fancybox=True, shadow=True) | |
handles, labels = ax2.get_legend_handles_labels() | |
fig.legend(handles, labels, bbox_to_anchor=(0, 0.775-0.005*len(label_labels), 1, 0.1), ncol=len(label_labels),fancybox=True,loc='upper center',fontsize=min(max(16/len(handles)*5,7.5),16/3*4),framealpha=1.0, markerscale=2*5/len(handles)) | |
title_spot = f'{summary_df_pitch.pitcher[0]} Pitching Summary' | |
if input_date_id != '0': | |
if sum(data_df.home_team == data_df.abbreviation_pitcher.reset_index(drop=True)[0]) > 0: | |
line2 = f"{mlb_teams_df[mlb_teams_df.team_id == data_df.team_id_pitcher.reset_index(drop=True)[0]].reset_index(drop=True)['franchise'][0]} vs {mlb_teams_df[mlb_teams_df.team_id == data_df.team_id.reset_index(drop=True)[0]].reset_index(drop=True)['franchise'][0]}" | |
if sum(data_df.away_team == data_df.abbreviation_pitcher.reset_index(drop=True)[0]) > 0: | |
line2 = f"{mlb_teams_df[mlb_teams_df.team_id == data_df.team_id_pitcher.reset_index(drop=True)[0]].reset_index(drop=True)['franchise'][0]} @ {mlb_teams_df[mlb_teams_df.team_id == data_df.team_id.reset_index(drop=True)[0]].reset_index(drop=True)['franchise'][0]}" | |
if input.radio_id() != 'a': | |
line2 = f"{line2} , vs {input.radio_id()}" | |
if input.home_id() != 'all': | |
line2 = f"{line2} , {home_away_dict[input.home_id()]}" | |
fig.text(x=0.5,y=0.89,s=line2,fontname='Century Gothic',ha='center',fontstyle='italic',fontsize=20) | |
else: | |
if input_date_range_id[0] == statcast_df.game_date.min() and input_date_range_id[1] == statcast_df.game_date.max(): | |
line2 = f'2023 Season' | |
else: | |
line2 = f'{str(input_date_range_id[0])} to {str(input_date_range_id[1])}' | |
if input.radio_id() != 'a': | |
line2 = f"{line2} , vs {input.radio_id()}" | |
if input.home_id() != 'all': | |
line2 = f"{line2} , {home_away_dict[input.home_id()]}" | |
fig.text(x=0.5,y=0.88,s=line2,fontname='Century Gothic',ha='center',fontstyle='italic',fontsize=20) | |
fig.text(x=0.5,y=0.92,s=title_spot,fontname='Century Gothic',ha='center',fontsize=36) | |
if input_date_id != '0': | |
fig.text(x=0.5,y=0.87,s=data_df.game_date[0],fontname='Century Gothic',ha='center',fontstyle='italic',fontsize=16) | |
#ax1.set_aspect('equal', adjustable='box') | |
ax2.invert_xaxis() | |
ax2.set_aspect('equal', adjustable='box') | |
#ax1.yaxis.set_major_formatter(FuncFormatter(lambda x, _: int(x))) | |
ax2.xaxis.set_major_formatter(FuncFormatter(lambda x, _: int(x))) | |
ax2.yaxis.set_major_formatter(FuncFormatter(lambda x, _: int(x))) | |
#ax1.set_xticklabels(range(1,data_df.pitch_count.max()+1)) | |
fig.text(x=0.05,y=0.03,s='By: @TJStats',fontname='Century Gothic',ha='left',fontsize=16) | |
fig.text(x=1-0.05,y=0.03,s='Data: MLB, Eno Sarris',ha='right',fontname='Century Gothic',fontsize=16) | |
fig.text(x=0.5,y=0.05,s='Note: Colour Coding Compares to League Average By Pitch',ha='center',fontname='Century Gothic',fontsize=10) | |
fig.tight_layout() | |
#fig.set_size_inches(10, 10) | |
#fig.subplots_adjust(left=0.03, right=0.97, bottom=0.05, top=0.95) | |
matplotlib.rcParams["figure.dpi"] = 600 | |
#plt.axis('scaled') | |
def plot_heat(dpi=600): | |
print('HEAT') | |
input_id = input.id() | |
input_date_range_id = input.date_range_id() | |
input_date_id = input.date_id() | |
eury_df = statcast_df[statcast_df.pitcher.astype(int) == int(input_id)].sort_values(by=['game_date','play_id']) | |
#print(input.id()) | |
print(input_date_range_id == '0') | |
print(len(eury_df)) | |
print(str(input_date_id[0])) | |
if input_date_id == '0': | |
if input_date_range_id[0] == statcast_df.game_date.min() and input_date_range_id[1] == statcast_df.game_date.max(): | |
data_df = eury_df.copy() | |
data_df = data_df.reset_index(drop=True) | |
data_df = data_df.dropna(subset=['pitch_name']) | |
else: | |
data_df = eury_df[(eury_df.game_date >= input_date_range_id[0]) & (eury_df.game_date <= input_date_range_id[1])].reset_index(drop=True) | |
data_df = data_df.reset_index(drop=True) | |
data_df = data_df.dropna(subset=['pitch_name']) | |
else: | |
data_df = eury_df[eury_df.game_pk == int(input_date_id)].reset_index(drop=True) | |
data_df = data_df.dropna(subset=['pitch_name']) | |
if len(data_df) < 1: | |
fig, ax = plt.subplots(1, 1, figsize=(16, 16)) | |
ax.text(x=0.5,y=0.5,s='Plot Is Generating',fontsize=32,ha='center') | |
###return # | |
if input.radio_id() != 'a': | |
data_df = data_df[data_df.stand == input.radio_id()] | |
if input.home_id() != 'all': | |
data_df = data_df[data_df.home_away == input.home_id()] | |
#data_df = data_df.reset_index(drop=True) | |
print('NOWWWW') | |
print(data_df) | |
print(type(eury_df.game_pk.reset_index(drop=True)[0])) | |
print(type(input_date_id)) | |
eury_df['pitch_name'].value_counts(normalize=True) | |
eury_df['prop'] = eury_df.groupby("pitch_name")["pitch_name"].transform("count")/len(eury_df) | |
eury_df = eury_df.sort_values(by='prop',ascending=False) | |
pitch_list = eury_df.pitch_name.unique() | |
stat_pick = input.heat_id() | |
def decimal_format_assign(x): | |
if dict_plots[stat_pick]['decimal_format'] == 'percent_1': | |
return mtick.PercentFormatter(1,decimals=1) | |
if dict_plots[stat_pick]['decimal_format'] == 'string_3': | |
return mtick.FormatStrFormatter('%.3f') | |
if dict_plots[stat_pick]['decimal_format'] == 'string_0': | |
return mtick.FormatStrFormatter('%.0f') | |
if dict_plots[stat_pick]['decimal_format'] == 'string_1': | |
return mtick.FormatStrFormatter('%.1f') | |
rate_pick = 'rate' | |
stand_list = input.radio_id() | |
cmap_sum = matplotlib.colors.LinearSegmentedColormap.from_list("", ['#0C7BDC','#FFFFFF','#FF0A0A',]) | |
# DEFINE STRIKE ZONE | |
strike_zone = pd.DataFrame({ | |
'PlateLocSide': [-0.9, -0.9, 0.9, 0.9, -0.9], | |
'PlateLocHeight': [1.5, 3.5, 3.5, 1.5, 1.5] | |
}) | |
# Add strike zone | |
def draw_line(axis,alpha_spot=1,catcher_p = True): | |
axis.plot(strike_zone['PlateLocSide'], strike_zone['PlateLocHeight'], color='black', linewidth=1.3,zorder=3,alpha=alpha_spot,) | |
# ax.plot([-0.2833333, -0.2833333], [1.6, 3.5], color='black', linestyle='dashed',alpha=alpha_spot,zorder=3) | |
# ax.plot([0.2833333, 0.2833333], [1.6, 3.5], color='black', linestyle='dashed',alpha=alpha_spot,zorder=3) | |
# ax.plot([-0.85, 0.85], [2.2, 2.2], color='black', linestyle='dashed',alpha=alpha_spot,zorder=3) | |
# ax.plot([-0.85, 0.85], [2.9, 2.9], color='black', linestyle='dashed',alpha=alpha_spot,zorder=3) | |
if catcher_p: | |
# Add dashed line | |
# Add home plate | |
axis.plot([-0.708, 0.708], [0.15, 0.15], color='black', linewidth=1,alpha=alpha_spot,zorder=1) | |
axis.plot([-0.708, -0.708], [0.15, 0.3], color='black', linewidth=1,alpha=alpha_spot,zorder=1) | |
axis.plot([-0.708, 0], [0.3, 0.5], color='black', linewidth=1,alpha=alpha_spot,zorder=1) | |
axis.plot([0, 0.708], [0.5, 0.3], color='black', linewidth=1,alpha=alpha_spot,zorder=1) | |
axis.plot([0.708, 0.708], [0.3, 0.15], color='black', linewidth=1,alpha=alpha_spot,zorder=1) | |
else: | |
axis.plot([-0.708, 0.708], [0.4, 0.4], color='black', linewidth=1,alpha=alpha_spot,zorder=1) | |
axis.plot([-0.708, -0.9], [0.4, -0.1], color='black', linewidth=1,alpha=alpha_spot,zorder=1) | |
axis.plot([-0.9, 0], [-0.1, -0.35], color='black', linewidth=1,alpha=alpha_spot,zorder=1) | |
axis.plot([0, 0.9], [-.35, -0.1], color='black', linewidth=1,alpha=alpha_spot,zorder=1) | |
axis.plot([0.9, 0.708], [-0.1,0.4], color='black', linewidth=1,alpha=alpha_spot,zorder=1) | |
# eury_df = eury_df[eury_df.prop > 0.05] | |
# pitch_list = eury_df.pitch_name.unique() | |
# fig = plt.figure(figsize=(10, 10),dpi=600) | |
#plt.rcParams.update({'figure.autolayout': True}) | |
#plt.rcParams.update({'figure.autolayout': True}) | |
plt.rcParams['font.family'] = 'Century Gothic' | |
sns.set_theme(style="whitegrid", palette="pastel") | |
font_plot = 'Arial' | |
fig, ax = plt.subplots(math.ceil(len(pitch_list)/3), 3, figsize=(9, 2*math.ceil(len(pitch_list)/3))) | |
fig.set_facecolor('white') | |
print(stat_pick) | |
print(len(ax)) | |
if stat_pick == 'pitch_heat': | |
data_df = data_df.dropna(subset=['plate_x']) | |
#data_df = data_df[data_df.stand.isin(stand_list)] | |
data_df['prop'] = data_df.groupby("pitch_name")["pitch_name"].transform("count")/len(eury_df) | |
#data_df = data_df.sort_values(by='prop',ascending=False) | |
#pitch_list = data_df.pitch_name.unique() | |
if len(pitch_list) <= 3: | |
ax_list = [[]] | |
for a in range(len(ax)): | |
ax_list[0].append(ax[a]) | |
ax = np.array(ax_list) | |
#print() | |
k = 0 | |
for i in range(math.ceil(len(pitch_list)/3)): | |
for j in range(3): | |
ax[i,j].axis('off') | |
if k < len(pitch_list): | |
# sns.kdeplot(data=eury_df_left[(eury_df.pitch_name==pitch_list[k])],x='plate_x',y='plate_z',fill=True,cmap=cmap_sum,ax=ax[i,1],levels=8,bw_adjust=0.75,zorder=2) | |
try: | |
if len(data_df[(data_df.pitch_name==pitch_list[k])]) > 5: | |
sns.kdeplot(data=data_df[(data_df.pitch_name==pitch_list[k])],x='plate_x',y='plate_z',fill=True,cmap=cmap_sum,ax=ax[i,j],levels=8,bw_adjust=0.7,zorder=2,alpha=0.7) | |
else: | |
sns.scatterplot(data=data_df[(data_df.pitch_name==pitch_list[k])],x='plate_x',y='plate_z',ax=ax[i,j],color='#FF0A0A',zorder=2,alpha=0.7) | |
except np.linalg.LinAlgError: | |
sns.scatterplot(data=data_df[(data_df.pitch_name==pitch_list[k])],x='plate_x',y='plate_z',ax=ax[i,j],color='#FF0A0A',zorder=2,alpha=0.7) | |
#sns.kdeplot(data=eury_df[eury_df.pitch_name==i],x='plate_x',y='plate_z',ax=ax[i,j]) | |
draw_line(ax[i,j],alpha_spot=0.75,catcher_p=True) | |
ax[i,j].set_aspect('equal') | |
ax[i,j].set_title(f'\n\n\n\n\n{pitch_list[k]} ({len(data_df[data_df.pitch_name==pitch_list[k]])/len(data_df):.1%})\n{data_df[data_df.pitch_name==pitch_list[k]].release_speed.mean():.1f} mph',fontname=font_plot,fontsize=16) | |
# ax[i,j].set_xlabel('Distance X-Axis',fontname='Century Gothic') | |
# ax[i,j].set_ylabel('Distance Z-Axis',fontname='Century Gothic') | |
ax[i,j].set_xlim((-2.5,2.5)) | |
ax[i,j].set_ylim((-1,6)) | |
ax[i,j].invert_xaxis() | |
if i < math.ceil(len(pitch_list)/3) - 1: | |
ax[i,j].axhline(-1, color='black', linestyle=':') | |
k = k + 1 | |
#ax_list.append([ax[0],ax[1],ax[2]]) | |
# eury_df = eury_df[eury_df.prop > 0.05] | |
# pitch_list = eury_df.pitch_name.unique() | |
#fig = plt.figure(figsize=(1 | |
#fig = plt.figure(figsize=(10, 10),dpi=600) | |
else: | |
# data_df = eury_df[(eury_df.stand.isin(stand_list))].dropna(subset=[dict_plots[stat_pick]['stat']]) | |
# data_df = data_df[data_df.stand.isin(stand_list)] | |
data_df = data_df.dropna(subset=[dict_plots[stat_pick]['stat']]) | |
data_df['prop'] = data_df.groupby("pitch_name")["pitch_name"].transform("count")/len(eury_df) | |
#data_df = data_df.sort_values(by='prop',ascending=False) | |
#pitch_list = data_df.pitch_name.unique() | |
if len(pitch_list) <= 3: | |
ax_list = [[]] | |
for a in range(len(ax)): | |
ax_list[0].append(ax[a]) | |
ax = np.array(ax_list) | |
# Compute the common extent for both plots | |
x_min = -2.5 | |
x_max = 2.5 | |
y_min = -1 | |
y_max = 6 | |
extent = [x_min, x_max, y_min, y_max] | |
k = 0 | |
for i in range(math.ceil(len(pitch_list)/3)): | |
print(i) | |
for j in range(3): | |
print(j) | |
ax[i,j].axis('off') | |
if k < len(pitch_list): | |
# cbar_min = statcast_df_df_pitch[statcast_df_df_pitch.pitch_name==pitch_list[k]]['xwobacon']*0 | |
# cbar_max = statcast_df_df_pitch[statcast_df_df_pitch.pitch_name==pitch_list[k]]['xwobacon']*2 | |
cbar_min = cbar_dict['stat'][0] | |
cbar_max = cbar_dict['stat'][1] | |
ax[i,j].hexbin(data=data_df[(data_df.pitch_name==pitch_list[k])],x='plate_x',y='plate_z', | |
cmap=cmap_sum, C=dict_plots[stat_pick]['stat'], | |
vmin=cbar_min, | |
vmax=cbar_max, | |
gridsize=(15,int(15/7*5)),extent=extent, edgecolors='black',linewidth=0.5) | |
ax[i,j].set_aspect('equal') | |
ax[i,j].set_xlim((-2.5,2.5)) | |
ax[i,j].set_ylim((-1,6)) | |
ax[i,j].axis('off') | |
draw_line(ax[i,j],alpha_spot=0.75,catcher_p=True) | |
ax[i,j].invert_xaxis() | |
norm = plt.Normalize(cbar_min,cbar_max) | |
sm = plt.cm.ScalarMappable(cmap=cmap_sum, norm=norm) | |
cbar = ax[i,j].figure.colorbar(sm, ax=ax[i,j],orientation='vertical',aspect=15,shrink=0.5,format=decimal_format_assign(x=dict_plots[stat_pick]['decimal_format'])) | |
cbar.ax.plot([0, 1], [data_df[data_df.pitch_name==pitch_list[k]][dict_plots[stat_pick]['stat']].mean(),data_df[data_df.pitch_name==pitch_list[k]][dict_plots[stat_pick]["stat"]].mean()], '#000000') | |
cbar.ax.plot([0, 1], [statcast_df_df_pitch[statcast_df_df_pitch['pitch_name']==pitch_list[k]][stat_pick].values[0],statcast_df_df_pitch[statcast_df_df_pitch['pitch_name']==pitch_list[k]][stat_pick].values[0]], '#000000',linestyle='dotted',linewidth='1') | |
ax[i,j].set_title(f'\n\n\n\n\n{pitch_list[k]} ({len(data_df[data_df.pitch_name==pitch_list[k]])/len(data_df):.1%})\n{data_df[data_df.pitch_name==pitch_list[k]][dict_plots[stat_pick]["stat"]].mean():.1%} {dict_plots[stat_pick]["title"]}\n {data_df[data_df.pitch_name==pitch_list[k]][dict_plots[stat_pick]["plus"]].mean():.0f} {dict_plots[stat_pick]["title"]}+',fontname=font_plot,fontsize=16) | |
k = k + 1 | |
if i < math.ceil(len(pitch_list)/3) - 1: | |
ax[i,j].axhline(-1, color='black', linestyle=':') | |
# fig.suptitle(f'{name_select} {dict_plots[stat_pick]["title"]} By Pitch',x=0.5,y=1.02,fontsize=24,fontname=font_plot) | |
# #fig.text(s=f'Colour Scale Compares to League Average xwOBACON+',x=0.5,y=-0.02,fontsize=8,fontname=font_plot,ha='center') | |
# fig.text(s=f'Percentage Beside Pitch Name Indicates Proportions of {dict_plots[stat_pick]["note"]}',x=0.5,y=-0.02,fontsize=8,fontname=font_plot,ha='center') | |
# fig.text(s=f'By: @TJStats',x=0.05,y=-0.02,fontsize=12,fontname=font_plot,ha='left') | |
# fig.text(s=f'Data: MLB',x=1-0.05,y=-0.02,fontsize=12,fontname=font_plot,ha='right') | |
title_spot = f'{data_df.full_name_pitcher.values[0]} {dict_plots[stat_pick]["title"]} Heat Map' | |
if input_date_id != '0': | |
if sum(data_df.home_team == data_df.abbreviation_pitcher.reset_index(drop=True)[0]) > 0: | |
line2 = f"{mlb_teams_df[mlb_teams_df.team_id == data_df.team_id_pitcher.reset_index(drop=True)[0]].reset_index(drop=True)['franchise'][0]} vs {mlb_teams_df[mlb_teams_df.team_id == data_df.team_id.reset_index(drop=True)[0]].reset_index(drop=True)['franchise'][0]}" | |
if sum(data_df.away_team == data_df.abbreviation_pitcher.reset_index(drop=True)[0]) > 0: | |
line2 = f"{mlb_teams_df[mlb_teams_df.team_id == data_df.team_id_pitcher.reset_index(drop=True)[0]].reset_index(drop=True)['franchise'][0]} @ {mlb_teams_df[mlb_teams_df.team_id == data_df.team_id.reset_index(drop=True)[0]].reset_index(drop=True)['franchise'][0]}" | |
if input.radio_id() != 'a': | |
line2 = f"{line2} , vs {input.radio_id()}" | |
if input.home_id() != 'all': | |
line2 = f"{line2} , {home_away_dict[input.home_id()]}" | |
fig.text(x=0.5,y=0.91,s=line2,fontname='Century Gothic',ha='center',fontstyle='italic',fontsize=20) | |
else: | |
if input_date_range_id[0] == statcast_df.game_date.min() and input_date_range_id[1] == statcast_df.game_date.max(): | |
line2 = f'2023 Season' | |
else: | |
line2 = f'{str(input_date_range_id[0])} to {str(input_date_range_id[1])}' | |
if input.radio_id() != 'a': | |
line2 = f"{line2} , vs {input.radio_id()}" | |
if input.home_id() != 'all': | |
line2 = f"{line2} , {home_away_dict[input.home_id()]}" | |
fig.text(x=0.5,y=.91,s=line2,fontname='Century Gothic',ha='center',fontstyle='italic',fontsize=20) | |
fig.suptitle(x=0.5,y=.97,t=title_spot,fontname='Century Gothic',ha='center',fontsize=36) | |
if input_date_id != '0': | |
try: | |
fig.text(x=0.5,y=.89,s=data_df.game_date[0],fontname='Century Gothic',ha='center',fontstyle='italic',fontsize=16) | |
except KeyError: | |
fig.text(x=0.5,y=.89,s=data_df.game_date[0],fontname='Century Gothic',ha='center',fontstyle='italic',fontsize=16) | |
#matplotlib.rcParams["figure.dpi"] = 600 | |
fig.text(s=f'Percentage Beside Pitch Name Indicates Proportions of {dict_plots[stat_pick]["note"]}',x=0.5,y=0.01,fontsize=10,fontname=font_plot,ha='center') | |
fig.text(s=f'By: @TJStats',x=0.05,y=0.01,fontsize=16,fontname=font_plot,ha='left') | |
fig.text(s=f'Data: MLB',x=1-0.05,y=0.01,fontsize=16,fontname=font_plot,ha='right') | |
fig.tight_layout() | |
app = App(app_ui, server) |