Spaces:
Running
Running
Upload 13 files
Browse files- app.py +3 -3
- batter_scatter.py +5 -5
- decision_value.py +5 -5
- ev_angle.py +9 -9
- home.py +6 -5
- pitcher_scatter.py +5 -5
- pitching_summary_graphic_new_fg_api.py +5 -5
- rolling_batter.py +5 -5
- rolling_pitcher.py +5 -5
- spray_new.py +1047 -0
- statcast_compare.py +5 -5
app.py
CHANGED
@@ -10,9 +10,9 @@ import shinyswatch
|
|
10 |
#Import pages
|
11 |
from home import home
|
12 |
|
13 |
-
from
|
14 |
from decision_value import decision_value
|
15 |
-
|
16 |
from batter_scatter import batter_scatter
|
17 |
#from ev_angle import ev_angle
|
18 |
from rolling_batter import rolling_batter
|
@@ -30,7 +30,7 @@ routes = [
|
|
30 |
|
31 |
Mount('/spray',app=spray),
|
32 |
Mount('/decision_value',app=decision_value),
|
33 |
-
|
34 |
Mount('/batter_scatter',app=batter_scatter),
|
35 |
#Mount('/ev_angle',app=ev_angle),
|
36 |
Mount('/rolling_batter',app=rolling_batter),
|
|
|
10 |
#Import pages
|
11 |
from home import home
|
12 |
|
13 |
+
from spray_new import spray
|
14 |
from decision_value import decision_value
|
15 |
+
from damage import damage
|
16 |
from batter_scatter import batter_scatter
|
17 |
#from ev_angle import ev_angle
|
18 |
from rolling_batter import rolling_batter
|
|
|
30 |
|
31 |
Mount('/spray',app=spray),
|
32 |
Mount('/decision_value',app=decision_value),
|
33 |
+
Mount('/damage_model',app=damage),
|
34 |
Mount('/batter_scatter',app=batter_scatter),
|
35 |
#Mount('/ev_angle',app=ev_angle),
|
36 |
Mount('/rolling_batter',app=rolling_batter),
|
batter_scatter.py
CHANGED
@@ -406,17 +406,17 @@ batter_scatter = App(ui.page_fluid(
|
|
406 |
href="rolling_batter/"
|
407 |
),
|
408 |
ui.a(
|
409 |
-
"Spray",
|
410 |
href="spray/"
|
411 |
),
|
412 |
ui.a(
|
413 |
"Decision Value",
|
414 |
href="decision_value/"
|
415 |
),
|
416 |
-
ui.a(
|
417 |
-
|
418 |
-
|
419 |
-
),
|
420 |
ui.a(
|
421 |
"Batter Scatter",
|
422 |
href="batter_scatter/"
|
|
|
406 |
href="rolling_batter/"
|
407 |
),
|
408 |
ui.a(
|
409 |
+
"Spray & Damage",
|
410 |
href="spray/"
|
411 |
),
|
412 |
ui.a(
|
413 |
"Decision Value",
|
414 |
href="decision_value/"
|
415 |
),
|
416 |
+
# ui.a(
|
417 |
+
# "Damage Model",
|
418 |
+
# href="damage_model/"
|
419 |
+
# ),
|
420 |
ui.a(
|
421 |
"Batter Scatter",
|
422 |
href="batter_scatter/"
|
decision_value.py
CHANGED
@@ -577,17 +577,17 @@ decision_value = App(ui.page_fluid(
|
|
577 |
href="rolling_batter/"
|
578 |
),
|
579 |
ui.a(
|
580 |
-
"Spray",
|
581 |
href="spray/"
|
582 |
),
|
583 |
ui.a(
|
584 |
"Decision Value",
|
585 |
href="decision_value/"
|
586 |
),
|
587 |
-
ui.a(
|
588 |
-
|
589 |
-
|
590 |
-
),
|
591 |
ui.a(
|
592 |
"Batter Scatter",
|
593 |
href="batter_scatter/"
|
|
|
577 |
href="rolling_batter/"
|
578 |
),
|
579 |
ui.a(
|
580 |
+
"Spray & Damage",
|
581 |
href="spray/"
|
582 |
),
|
583 |
ui.a(
|
584 |
"Decision Value",
|
585 |
href="decision_value/"
|
586 |
),
|
587 |
+
# ui.a(
|
588 |
+
# "Damage Model",
|
589 |
+
# href="damage_model/"
|
590 |
+
# ),
|
591 |
ui.a(
|
592 |
"Batter Scatter",
|
593 |
href="batter_scatter/"
|
ev_angle.py
CHANGED
@@ -199,25 +199,25 @@ ev_angle = App(ui.page_fluid(
|
|
199 |
href="rolling_batter/"
|
200 |
),
|
201 |
ui.a(
|
202 |
-
"Spray",
|
203 |
href="spray/"
|
204 |
),
|
205 |
ui.a(
|
206 |
"Decision Value",
|
207 |
href="decision_value/"
|
208 |
),
|
209 |
-
ui.a(
|
210 |
-
|
211 |
-
|
212 |
-
),
|
213 |
ui.a(
|
214 |
"Batter Scatter",
|
215 |
href="batter_scatter/"
|
216 |
),
|
217 |
-
ui.a(
|
218 |
-
|
219 |
-
|
220 |
-
),
|
221 |
ui.a(
|
222 |
"Statcast Compare",
|
223 |
href="statcast_compare/"
|
|
|
199 |
href="rolling_batter/"
|
200 |
),
|
201 |
ui.a(
|
202 |
+
"Spray & Damage",
|
203 |
href="spray/"
|
204 |
),
|
205 |
ui.a(
|
206 |
"Decision Value",
|
207 |
href="decision_value/"
|
208 |
),
|
209 |
+
# ui.a(
|
210 |
+
# "Damage Model",
|
211 |
+
# href="damage_model/"
|
212 |
+
# ),
|
213 |
ui.a(
|
214 |
"Batter Scatter",
|
215 |
href="batter_scatter/"
|
216 |
),
|
217 |
+
# ui.a(
|
218 |
+
# "EV vs LA Plot",
|
219 |
+
# href="ev_angle/"
|
220 |
+
# ),
|
221 |
ui.a(
|
222 |
"Statcast Compare",
|
223 |
href="statcast_compare/"
|
home.py
CHANGED
@@ -5,6 +5,7 @@
|
|
5 |
# Import modules
|
6 |
from shiny import *
|
7 |
import shinyswatch
|
|
|
8 |
from shinywidgets import output_widget, render_widget
|
9 |
import pandas as pd
|
10 |
from configure import base_url
|
@@ -43,17 +44,17 @@ home = App(ui.page_fluid(
|
|
43 |
href="rolling_batter/"
|
44 |
),
|
45 |
ui.a(
|
46 |
-
"Spray",
|
47 |
href="spray/"
|
48 |
),
|
49 |
ui.a(
|
50 |
"Decision Value",
|
51 |
href="decision_value/"
|
52 |
),
|
53 |
-
ui.a(
|
54 |
-
|
55 |
-
|
56 |
-
),
|
57 |
ui.a(
|
58 |
"Batter Scatter",
|
59 |
href="batter_scatter/"
|
|
|
5 |
# Import modules
|
6 |
from shiny import *
|
7 |
import shinyswatch
|
8 |
+
#import plotly.express as px
|
9 |
from shinywidgets import output_widget, render_widget
|
10 |
import pandas as pd
|
11 |
from configure import base_url
|
|
|
44 |
href="rolling_batter/"
|
45 |
),
|
46 |
ui.a(
|
47 |
+
"Spray & Damage",
|
48 |
href="spray/"
|
49 |
),
|
50 |
ui.a(
|
51 |
"Decision Value",
|
52 |
href="decision_value/"
|
53 |
),
|
54 |
+
# ui.a(
|
55 |
+
# "Damage Model",
|
56 |
+
# href="damage_model/"
|
57 |
+
# ),
|
58 |
ui.a(
|
59 |
"Batter Scatter",
|
60 |
href="batter_scatter/"
|
pitcher_scatter.py
CHANGED
@@ -423,17 +423,17 @@ pitcher_scatter = App(ui.page_fluid(
|
|
423 |
href="rolling_batter/"
|
424 |
),
|
425 |
ui.a(
|
426 |
-
"Spray",
|
427 |
href="spray/"
|
428 |
),
|
429 |
ui.a(
|
430 |
"Decision Value",
|
431 |
href="decision_value/"
|
432 |
),
|
433 |
-
ui.a(
|
434 |
-
|
435 |
-
|
436 |
-
),
|
437 |
ui.a(
|
438 |
"Batter Scatter",
|
439 |
href="batter_scatter/"
|
|
|
423 |
href="rolling_batter/"
|
424 |
),
|
425 |
ui.a(
|
426 |
+
"Spray & Damage",
|
427 |
href="spray/"
|
428 |
),
|
429 |
ui.a(
|
430 |
"Decision Value",
|
431 |
href="decision_value/"
|
432 |
),
|
433 |
+
# ui.a(
|
434 |
+
# "Damage Model",
|
435 |
+
# href="damage_model/"
|
436 |
+
# ),
|
437 |
ui.a(
|
438 |
"Batter Scatter",
|
439 |
href="batter_scatter/"
|
pitching_summary_graphic_new_fg_api.py
CHANGED
@@ -2027,17 +2027,17 @@ pitching_summary_graphic_new = App(ui.page_fluid(
|
|
2027 |
href="rolling_batter/"
|
2028 |
),
|
2029 |
ui.a(
|
2030 |
-
"Spray",
|
2031 |
href="spray/"
|
2032 |
),
|
2033 |
ui.a(
|
2034 |
"Decision Value",
|
2035 |
href="decision_value/"
|
2036 |
),
|
2037 |
-
ui.a(
|
2038 |
-
|
2039 |
-
|
2040 |
-
),
|
2041 |
ui.a(
|
2042 |
"Batter Scatter",
|
2043 |
href="batter_scatter/"
|
|
|
2027 |
href="rolling_batter/"
|
2028 |
),
|
2029 |
ui.a(
|
2030 |
+
"Spray & Damage",
|
2031 |
href="spray/"
|
2032 |
),
|
2033 |
ui.a(
|
2034 |
"Decision Value",
|
2035 |
href="decision_value/"
|
2036 |
),
|
2037 |
+
# ui.a(
|
2038 |
+
# "Damage Model",
|
2039 |
+
# href="damage_model/"
|
2040 |
+
# ),
|
2041 |
ui.a(
|
2042 |
"Batter Scatter",
|
2043 |
href="batter_scatter/"
|
rolling_batter.py
CHANGED
@@ -673,17 +673,17 @@ rolling_batter = App(ui.page_fluid(
|
|
673 |
href="rolling_batter/"
|
674 |
),
|
675 |
ui.a(
|
676 |
-
"Spray",
|
677 |
href="spray/"
|
678 |
),
|
679 |
ui.a(
|
680 |
"Decision Value",
|
681 |
href="decision_value/"
|
682 |
),
|
683 |
-
ui.a(
|
684 |
-
|
685 |
-
|
686 |
-
),
|
687 |
ui.a(
|
688 |
"Batter Scatter",
|
689 |
href="batter_scatter/"
|
|
|
673 |
href="rolling_batter/"
|
674 |
),
|
675 |
ui.a(
|
676 |
+
"Spray & Damage",
|
677 |
href="spray/"
|
678 |
),
|
679 |
ui.a(
|
680 |
"Decision Value",
|
681 |
href="decision_value/"
|
682 |
),
|
683 |
+
# ui.a(
|
684 |
+
# "Damage Model",
|
685 |
+
# href="damage_model/"
|
686 |
+
# ),
|
687 |
ui.a(
|
688 |
"Batter Scatter",
|
689 |
href="batter_scatter/"
|
rolling_pitcher.py
CHANGED
@@ -659,17 +659,17 @@ rolling_pitcher = App(ui.page_fluid(
|
|
659 |
href="rolling_batter/"
|
660 |
),
|
661 |
ui.a(
|
662 |
-
"Spray",
|
663 |
href="spray/"
|
664 |
),
|
665 |
ui.a(
|
666 |
"Decision Value",
|
667 |
href="decision_value/"
|
668 |
),
|
669 |
-
ui.a(
|
670 |
-
|
671 |
-
|
672 |
-
),
|
673 |
ui.a(
|
674 |
"Batter Scatter",
|
675 |
href="batter_scatter/"
|
|
|
659 |
href="rolling_batter/"
|
660 |
),
|
661 |
ui.a(
|
662 |
+
"Spray & Damage",
|
663 |
href="spray/"
|
664 |
),
|
665 |
ui.a(
|
666 |
"Decision Value",
|
667 |
href="decision_value/"
|
668 |
),
|
669 |
+
# ui.a(
|
670 |
+
# "Damage Model",
|
671 |
+
# href="damage_model/"
|
672 |
+
# ),
|
673 |
ui.a(
|
674 |
"Batter Scatter",
|
675 |
href="batter_scatter/"
|
spray_new.py
ADDED
@@ -0,0 +1,1047 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##### games.,py #####
|
2 |
+
|
3 |
+
# Import modules
|
4 |
+
from shiny import *
|
5 |
+
import shinyswatch
|
6 |
+
#import plotly.express as px
|
7 |
+
from shinywidgets import output_widget, render_widget
|
8 |
+
import pandas as pd
|
9 |
+
from configure import base_url
|
10 |
+
import math
|
11 |
+
import datetime
|
12 |
+
import datasets
|
13 |
+
from datasets import load_dataset
|
14 |
+
import numpy as np
|
15 |
+
import matplotlib
|
16 |
+
from matplotlib.ticker import MaxNLocator
|
17 |
+
from matplotlib.gridspec import GridSpec
|
18 |
+
import matplotlib.pyplot as plt
|
19 |
+
from scipy.stats import gaussian_kde
|
20 |
+
import seaborn as sns
|
21 |
+
|
22 |
+
### Import Datasets
|
23 |
+
dataset = load_dataset('nesticot/mlb_data', data_files=['mlb_pitch_data_2023.csv',
|
24 |
+
'mlb_pitch_data_2022.csv'])
|
25 |
+
dataset_train = dataset['train']
|
26 |
+
df_2023 = dataset_train.to_pandas().set_index(list(dataset_train.features.keys())[0]).reset_index(drop=True)
|
27 |
+
# Paths to data
|
28 |
+
### Normalize Hit Locations
|
29 |
+
df_2023['hit_x'] = df_2023['hit_x'] - 126#df_2023['hit_x'].median()
|
30 |
+
df_2023['hit_y'] = -df_2023['hit_y']+204.5#df_2023['hit_y'].quantile(0.9999)
|
31 |
+
|
32 |
+
df_2023['hit_x_og'] = df_2023['hit_x']
|
33 |
+
df_2023.loc[df_2023['batter_hand'] == 'R','hit_x'] = -1*df_2023.loc[df_2023['batter_hand'] == 'R','hit_x']
|
34 |
+
|
35 |
+
### Calculate Horizontal Launch Angles
|
36 |
+
df_2023['h_la'] = np.arctan(df_2023['hit_x'] / df_2023['hit_y'])*180/np.pi
|
37 |
+
conditions_ss = [
|
38 |
+
(df_2023['h_la']<-16+5/6),
|
39 |
+
(df_2023['h_la']<16+5/6)&(df_2023['h_la']>=-16+5/6),
|
40 |
+
(df_2023['h_la']>=16+5/6)
|
41 |
+
]
|
42 |
+
|
43 |
+
choices_ss = ['Oppo','Straight','Pull']
|
44 |
+
df_2023['traj'] = np.select(conditions_ss, choices_ss, default=np.nan)
|
45 |
+
df_2023['bip'] = [1 if x > 0 else np.nan for x in df_2023['launch_speed']]
|
46 |
+
|
47 |
+
conditions_woba = [
|
48 |
+
(df_2023['event_type']=='walk'),
|
49 |
+
(df_2023['event_type']=='hit_by_pitch'),
|
50 |
+
(df_2023['event_type']=='single'),
|
51 |
+
(df_2023['event_type']=='double'),
|
52 |
+
(df_2023['event_type']=='triple'),
|
53 |
+
(df_2023['event_type']=='home_run'),
|
54 |
+
]
|
55 |
+
|
56 |
+
choices_woba = [1,
|
57 |
+
1,
|
58 |
+
1,
|
59 |
+
2,
|
60 |
+
3,
|
61 |
+
4]
|
62 |
+
|
63 |
+
choices_woba_train = [1,
|
64 |
+
1,
|
65 |
+
1,
|
66 |
+
2,
|
67 |
+
3,
|
68 |
+
4]
|
69 |
+
|
70 |
+
|
71 |
+
df_2023['woba_train'] = np.select(conditions_woba, choices_woba_train, default=0)
|
72 |
+
|
73 |
+
conditions = [
|
74 |
+
(df_2023['launch_speed'].isna()),
|
75 |
+
(df_2023['launch_speed']*1.5 - df_2023['launch_angle'] >= 117 ) & (df_2023['launch_speed'] + df_2023['launch_angle'] >= 124) & (df_2023['launch_speed'] > 98) & (df_2023['launch_angle'] >= 8) & (df_2023['launch_angle'] <= 50)
|
76 |
+
]
|
77 |
+
|
78 |
+
choices = [False,True]
|
79 |
+
df_2023['barrel'] = np.select(conditions, choices, default=np.nan)
|
80 |
+
|
81 |
+
test_df = df_2023.sort_values(by='batter_name').drop_duplicates(subset='batter_id').reset_index(drop=True)[['batter_id','batter_name']]#['pitcher'].to_dict()
|
82 |
+
test_df = test_df.set_index('batter_id')
|
83 |
+
|
84 |
+
#test_df = test_df[test_df.pitcher == 'Chris Bassitt'].append(test_df[test_df.pitcher != 'Chris Bassitt'])
|
85 |
+
|
86 |
+
batter_dict = test_df['batter_name'].to_dict()
|
87 |
+
|
88 |
+
colour_palette = ['#FFB000','#648FFF','#785EF0',
|
89 |
+
'#DC267F','#FE6100','#3D1EB2','#894D80','#16AA02','#B5592B','#A3C1ED']
|
90 |
+
|
91 |
+
angle_ev_list_df = pd.read_csv('angle_ev_list_df.csv')
|
92 |
+
ev_ranges = list(np.arange(97.5,130,0.1))
|
93 |
+
angle_ranges = list(range(8,51))
|
94 |
+
|
95 |
+
|
96 |
+
df_2023_bip = df_2023[~df_2023['bip'].isnull()].dropna(subset=['h_la','launch_angle'])
|
97 |
+
df_2023_bip['h_la'] = df_2023_bip['h_la'].round(0)
|
98 |
+
|
99 |
+
|
100 |
+
df_2023_bip['season'] = df_2023_bip['game_date'].str[0:4].astype(int)
|
101 |
+
|
102 |
+
#df_2023_bip = df_2023[~df_2023['bip'].isnull()].dropna(subset=['launch_angle','bip'])
|
103 |
+
df_2023_bip_train = df_2023_bip[df_2023_bip['season'] == 2023]
|
104 |
+
|
105 |
+
|
106 |
+
features = ['launch_angle','launch_speed','h_la']
|
107 |
+
target = ['woba_train']
|
108 |
+
|
109 |
+
df_2023_bip_train = df_2023_bip_train.dropna(subset=features)
|
110 |
+
|
111 |
+
import joblib
|
112 |
+
# # Dump the model to a file named 'model.joblib'
|
113 |
+
model = joblib.load('xtb_model.joblib')
|
114 |
+
|
115 |
+
|
116 |
+
df_2023_bip_train['y_pred'] = [sum(x) for x in model.predict_proba(df_2023_bip_train[features]) * ([0,1,2,3,4])]
|
117 |
+
# df_2023_bip_train['y_pred_noh'] = [sum(x) for x in model_noh.predict_proba(df_2023_bip_train[['launch_angle','launch_speed']]) * ([0,0.887,1.253,1.583,2.027])]
|
118 |
+
|
119 |
+
df_2023_output = df_2023_bip_train.groupby(['batter_id','batter_name']).agg(
|
120 |
+
bip = ('y_pred','count'),
|
121 |
+
y_pred = ('y_pred','sum'),
|
122 |
+
xslgcon = ('y_pred','mean'),
|
123 |
+
launch_speed = ('launch_speed','mean'),
|
124 |
+
launch_angle_std = ('launch_angle','median'),
|
125 |
+
h_la_std = ('h_la','mean'))
|
126 |
+
|
127 |
+
df_2023_output_copy = df_2023_output.copy()
|
128 |
+
# df_2023_output = df_2023_output[df_2023_output['bip'] > 100]
|
129 |
+
# df_2023_output[df_2023_output['bip'] > 100].sort_values(by='h_la_std',ascending=True).head(20)
|
130 |
+
|
131 |
+
import pandas as pd
|
132 |
+
import numpy as np
|
133 |
+
|
134 |
+
|
135 |
+
# Create grid coordinates
|
136 |
+
x = np.arange(30, 121,1 )
|
137 |
+
y = np.arange(-30, 61,1 )
|
138 |
+
z = np.arange(-45, 46,1 )
|
139 |
+
|
140 |
+
# Create a meshgrid
|
141 |
+
X, Y, Z = np.meshgrid(x, y, z, indexing='ij')
|
142 |
+
# Flatten the meshgrid to get x and y coordinates
|
143 |
+
x_flat = X.flatten()
|
144 |
+
y_flat = Y.flatten()
|
145 |
+
z_flat = Z.flatten()
|
146 |
+
|
147 |
+
# Create a DataFrame
|
148 |
+
df = pd.DataFrame({'launch_speed': x_flat, 'launch_angle': y_flat,'h_la':z_flat})
|
149 |
+
|
150 |
+
df['y_pred'] = [sum(x) for x in model.predict_proba(df[features]) * ([0,1,2,3,4])]
|
151 |
+
|
152 |
+
|
153 |
+
import matplotlib
|
154 |
+
|
155 |
+
colour_palette = ['#FFB000','#648FFF','#785EF0',
|
156 |
+
'#DC267F','#FE6100','#3D1EB2','#894D80','#16AA02','#B5592B','#A3C1ED']
|
157 |
+
|
158 |
+
cmap_hue = matplotlib.colors.LinearSegmentedColormap.from_list("", [colour_palette[1],'#ffffff',colour_palette[0]])
|
159 |
+
cmap_hue2 = matplotlib.colors.LinearSegmentedColormap.from_list("",['#ffffff',colour_palette[0]])
|
160 |
+
|
161 |
+
|
162 |
+
from matplotlib.pyplot import text
|
163 |
+
import inflect
|
164 |
+
from scipy.stats import percentileofscore
|
165 |
+
p = inflect.engine()
|
166 |
+
|
167 |
+
|
168 |
+
batter_dict = df_2023_bip.sort_values('batter_name').set_index('batter_id')['batter_name'].to_dict()
|
169 |
+
|
170 |
+
|
171 |
+
# def server(input: Inputs, output: Outputs, session: Session):
|
172 |
+
|
173 |
+
#if input.my_tabs() == '2023 vs MLB':
|
174 |
+
#return
|
175 |
+
# #if input.my_tabs() == 'Damage Hex':
|
176 |
+
# ui.insert_ui(
|
177 |
+
# ui.input_numeric("quant",
|
178 |
+
# "Select Percentile",
|
179 |
+
# value=50,
|
180 |
+
# min=0,max=100),
|
181 |
+
# selector="#go",
|
182 |
+
# where="beforeBegin",
|
183 |
+
# ),
|
184 |
+
# ui.insert_ui(
|
185 |
+
# ui.input_numeric("rolling_window",
|
186 |
+
# "Select Rolling Window",
|
187 |
+
# value=50,
|
188 |
+
# min=1),
|
189 |
+
# selector="#go",
|
190 |
+
# where="beforeBegin",
|
191 |
+
# )
|
192 |
+
#return
|
193 |
+
|
194 |
+
# ui.insert_ui(
|
195 |
+
# ui.input_numeric("quant",
|
196 |
+
# "Select Percentile",
|
197 |
+
# value=50,
|
198 |
+
# min=0,max=100),
|
199 |
+
# ),
|
200 |
+
# ui.insert_ui(
|
201 |
+
# ui.input_numeric("rolling_window",
|
202 |
+
# "Select Rolling Window",
|
203 |
+
# value=50,
|
204 |
+
# min=1),
|
205 |
+
|
206 |
+
# where="beforeEnd",
|
207 |
+
# )
|
208 |
+
# return
|
209 |
+
# if input.my_tabs() == 'Damage Roll':
|
210 |
+
# return ui.panel_sidebar(
|
211 |
+
# ui.input_select("batter_id",
|
212 |
+
# "Select Batter2",
|
213 |
+
# batter_dict,
|
214 |
+
# width=1,
|
215 |
+
# size=1,
|
216 |
+
# selectize=True),
|
217 |
+
# ui.input_action_button("go", "Generate",class_="btn-primary",
|
218 |
+
# )),
|
219 |
+
# if input.my_tabs() == 'EV vs LA':
|
220 |
+
# return ui.panel_sidebar(
|
221 |
+
# ui.input_select("batter_id",
|
222 |
+
# "Select Batter3",
|
223 |
+
# batter_dict,
|
224 |
+
# width=1,
|
225 |
+
# size=1,
|
226 |
+
# selectize=True),
|
227 |
+
# ui.input_action_button("go", "Generate",class_="btn-primary",
|
228 |
+
# )),
|
229 |
+
|
230 |
+
|
231 |
+
|
232 |
+
def server(input,output,session):
|
233 |
+
@reactive.Effect
|
234 |
+
@reactive.event(input.update_ui)
|
235 |
+
def test():
|
236 |
+
if input.my_tabs() == 'Damage Hex':
|
237 |
+
ui.remove_ui(selector="div:has(> #quant)")
|
238 |
+
ui.remove_ui(selector="div:has(> #rolling_window)")
|
239 |
+
ui.remove_ui(selector="div:has(> #plot_id)")
|
240 |
+
|
241 |
+
ui.insert_ui(
|
242 |
+
ui.input_numeric("quant",
|
243 |
+
"Select Percentile",
|
244 |
+
value=50,
|
245 |
+
min=0,max=100),
|
246 |
+
selector="#go",
|
247 |
+
where="beforeBegin")
|
248 |
+
print(input.quant())
|
249 |
+
|
250 |
+
if input.my_tabs() == 'Damage Roll':
|
251 |
+
ui.remove_ui(selector="div:has(> #rolling_window)")
|
252 |
+
ui.remove_ui(selector="div:has(> #quant)")
|
253 |
+
ui.remove_ui(selector="div:has(> #plot_id)")
|
254 |
+
|
255 |
+
ui.insert_ui(
|
256 |
+
ui.input_numeric("rolling_window",
|
257 |
+
"Select Rolling Window",
|
258 |
+
value=50,
|
259 |
+
min=1),
|
260 |
+
selector="#go",
|
261 |
+
where="beforeBegin",
|
262 |
+
)
|
263 |
+
|
264 |
+
# if input.my_tabs() == 'EV vs LA':
|
265 |
+
# ui.remove_ui(selector="div:has(> #rolling_window)")
|
266 |
+
# ui.remove_ui(selector="div:has(> #quant)")
|
267 |
+
# ui.remove_ui(selector="div:has(> #plot_id)")
|
268 |
+
|
269 |
+
# ui.insert_ui(
|
270 |
+
# ui.input_select("plot_id", "Select Plot",{'scatter':'Scatter Plot','dist':'Distribution Plot'}),
|
271 |
+
# selector="#go",
|
272 |
+
# where="beforeBegin",
|
273 |
+
# )
|
274 |
+
|
275 |
+
@output
|
276 |
+
@render.plot(alt="plot")
|
277 |
+
@reactive.event(input.go, ignore_none=False)
|
278 |
+
def plot():
|
279 |
+
|
280 |
+
batter_id_select = int(input.batter_id())
|
281 |
+
df_batter_2023 = df_2023_bip.loc[(df_2023_bip['batter_id'] == batter_id_select)&(df_2023_bip['season']==2023)]
|
282 |
+
df_batter_2022 = df_2023_bip.loc[(df_2023_bip['batter_id'] == batter_id_select)&(df_2023_bip['season']==2022)]
|
283 |
+
|
284 |
+
df_non_batter_2023 = df_2023_bip.loc[(df_2023_bip['batter_id'] != batter_id_select)&(df_2023_bip['season']==2023)]
|
285 |
+
df_non_batter_2022 = df_2023_bip.loc[(df_2023_bip['batter_id'] != batter_id_select)&(df_2023_bip['season']==2022)]
|
286 |
+
|
287 |
+
traj_df = df_batter_2023.groupby(['traj'])['launch_speed'].count() / len(df_batter_2023)
|
288 |
+
trajectory_df = df_batter_2023.groupby(['trajectory'])['launch_speed'].count() / len(df_batter_2023)#.loc['Oppo']
|
289 |
+
|
290 |
+
|
291 |
+
|
292 |
+
|
293 |
+
colour_palette = ['#FFB000','#648FFF','#785EF0',
|
294 |
+
'#DC267F','#FE6100','#3D1EB2','#894D80','#16AA02','#B5592B','#A3C1ED']
|
295 |
+
|
296 |
+
fig = plt.figure(figsize=(10, 10))
|
297 |
+
|
298 |
+
|
299 |
+
|
300 |
+
# Create a 2x2 grid of subplots using GridSpec
|
301 |
+
gs = GridSpec(3, 3, width_ratios=[0.1,0.8,0.1], height_ratios=[0.1,0.8,0.1])
|
302 |
+
|
303 |
+
# ax00 = fig.add_subplot(gs[0, 0])
|
304 |
+
ax01 = fig.add_subplot(gs[0, :]) # Subplot at the top-right position
|
305 |
+
# ax02 = fig.add_subplot(gs[0, 2])
|
306 |
+
# Subplot spanning the entire bottom row
|
307 |
+
ax10 = fig.add_subplot(gs[1, 0])
|
308 |
+
ax11 = fig.add_subplot(gs[1, 1]) # Subplot at the top-right position
|
309 |
+
ax12 = fig.add_subplot(gs[1, 2])
|
310 |
+
# ax20 = fig.add_subplot(gs[2, 0])
|
311 |
+
ax21 = fig.add_subplot(gs[2, :]) # Subplot at the top-right position
|
312 |
+
# ax22 = fig.add_subplot(gs[2, 2])
|
313 |
+
|
314 |
+
initial_position = ax12.get_position()
|
315 |
+
|
316 |
+
# Change the size of the axis
|
317 |
+
# new_width = 0.06 # Set your desired width
|
318 |
+
# new_height = 0.4 # Set your desired height
|
319 |
+
# new_position = [initial_position.x0-0.01, initial_position.y0+0.065, new_width, new_height]
|
320 |
+
# ax12.set_position(new_position)
|
321 |
+
|
322 |
+
cmap_hue = matplotlib.colors.LinearSegmentedColormap.from_list("", [colour_palette[1],'#ffffff',colour_palette[0]])
|
323 |
+
# Generate two sets of two-dimensional data
|
324 |
+
# data1 = np.random.multivariate_normal([0, 0], [[1, 0.5], [0.5, 1]], 1000)
|
325 |
+
# data2 = np.random.multivariate_normal([3, 3], [[1, -0.5], [-0.5, 1]], 1000)
|
326 |
+
bat_hand = df_batter_2023.groupby('batter_hand')['launch_speed'].count().sort_values(ascending=False).index[0]
|
327 |
+
|
328 |
+
bat_hand_value = 1
|
329 |
+
|
330 |
+
if bat_hand == 'R':
|
331 |
+
bat_hand_value = -1
|
332 |
+
|
333 |
+
kde1_df = df_batter_2023[['h_la','launch_angle']]
|
334 |
+
kde1_df['h_la'] = kde1_df['h_la'] * bat_hand_value
|
335 |
+
kde2_df = df_non_batter_2023[['h_la','launch_angle']].sample(n=50000, random_state=42)
|
336 |
+
kde2_df['h_la'] = kde2_df['h_la'] * bat_hand_value
|
337 |
+
|
338 |
+
|
339 |
+
# Calculate 2D KDE for each dataset
|
340 |
+
kde1 = gaussian_kde(kde1_df.values.T)
|
341 |
+
kde2 = gaussian_kde(kde2_df.values.T)
|
342 |
+
|
343 |
+
# Generate a grid of points for evaluation
|
344 |
+
x, y = np.meshgrid(np.arange(-45, 46,1 ), np.arange(-30, 61,1 ))
|
345 |
+
positions = np.vstack([x.ravel(), y.ravel()])
|
346 |
+
|
347 |
+
# Evaluate the KDEs on the grid
|
348 |
+
kde1_values = np.reshape(kde1(positions).T, x.shape)
|
349 |
+
kde2_values = np.reshape(kde2(positions).T, x.shape)
|
350 |
+
|
351 |
+
# Subtract one KDE from the other
|
352 |
+
result_kde_values = kde1_values - kde2_values
|
353 |
+
|
354 |
+
# Normalize the array to the range [0, 1]
|
355 |
+
# result_kde_values = (result_kde_values - np.min(result_kde_values)) / (np.max(result_kde_values) - np.min(result_kde_values))
|
356 |
+
result_kde_values = (result_kde_values - np.mean(result_kde_values)) / (np.std(result_kde_values))
|
357 |
+
|
358 |
+
result_kde_values = np.clip(result_kde_values, -3, 3)
|
359 |
+
# # Plot the original KDEs
|
360 |
+
# plt.contourf(x, y, kde1_values, cmap='Blues', alpha=0.5, levels=20)
|
361 |
+
# plt.contourf(x, y, kde2_values, cmap='Reds', alpha=0.5, levels=20)
|
362 |
+
|
363 |
+
# Plot the subtracted KDE
|
364 |
+
# Set the number of levels and midrange value
|
365 |
+
# Set the number of levels and midrange value
|
366 |
+
num_levels = 14
|
367 |
+
midrange_value = 0
|
368 |
+
|
369 |
+
# Create a filled contour plot with specified levels
|
370 |
+
levels = np.linspace(-3, 3, num_levels)
|
371 |
+
|
372 |
+
batter_plot = ax11.contourf(x, y, result_kde_values, cmap=cmap_hue, levels=levels, vmin=-3, vmax=3)
|
373 |
+
|
374 |
+
|
375 |
+
ax11.hlines(y=10,xmin=45,xmax=-45,color=colour_palette[3],linewidth=1)
|
376 |
+
ax11.hlines(y=25,xmin=45,xmax=-45,color=colour_palette[3],linewidth=1)
|
377 |
+
ax11.hlines(y=50,xmin=45,xmax=-45,color=colour_palette[3],linewidth=1)
|
378 |
+
|
379 |
+
ax11.vlines(x=-15,ymin=-30,ymax=60,color=colour_palette[3],linewidth=1)
|
380 |
+
ax11.vlines(x=15,ymin=-30,ymax=60,color=colour_palette[3],linewidth=1)
|
381 |
+
#ax11.axis('square')
|
382 |
+
#ax11.axis('off')
|
383 |
+
#ax.hlines(y=10,xmin=-45,xmax=-45)
|
384 |
+
# Add labels and legend
|
385 |
+
#plt.xlabel('X-axis')
|
386 |
+
#plt.ylabel('Y-axis')
|
387 |
+
#ax.plot('equal')
|
388 |
+
#plt.gca().set_aspect('equal')
|
389 |
+
|
390 |
+
#Choose a mappable (can be any plot or image)
|
391 |
+
ax12.set_ylim(0,1)
|
392 |
+
cbar = plt.colorbar(batter_plot, cax=ax12, orientation='vertical',shrink=1)
|
393 |
+
cbar.set_ticks([])
|
394 |
+
# Set the colorbar to have 13 levels
|
395 |
+
cbar_locator = MaxNLocator(nbins=13)
|
396 |
+
cbar.locator = cbar_locator
|
397 |
+
cbar.update_ticks()
|
398 |
+
#cbar.set_clim(vmin=-3, vmax=)
|
399 |
+
# Set ticks and tick labels
|
400 |
+
# cbar.set_ticks(np.linspace(-3, 3, 13))
|
401 |
+
# cbar.set_ticklabels(np.linspace(0, 3, 13))
|
402 |
+
cbar.set_ticks([])
|
403 |
+
|
404 |
+
|
405 |
+
|
406 |
+
|
407 |
+
ax10.text(s=f"Pop Up\n({trajectory_df.loc['popup']:.1%})",
|
408 |
+
x=1,
|
409 |
+
y=0.95,va='center',ha='right',fontsize=16)
|
410 |
+
# Choose a mappable (can be any plot or image)
|
411 |
+
ax10.text(s=f"Fly Ball\n({trajectory_df.loc['fly_ball']:.1%})",
|
412 |
+
x=1,
|
413 |
+
y=0.75,va='center',ha='right',fontsize=16)
|
414 |
+
|
415 |
+
ax10.text(s=f"Line\nDrive\n({trajectory_df.loc['line_drive']:.1%})",
|
416 |
+
x=1,
|
417 |
+
y=0.53,va='center',ha='right',fontsize=16)
|
418 |
+
|
419 |
+
|
420 |
+
ax10.text(s=f"Ground\nBall\n({trajectory_df.loc['ground_ball']:.1%})",
|
421 |
+
x=1,
|
422 |
+
y=0.23,va='center',ha='right',fontsize=16)
|
423 |
+
#ax12.axis(True)
|
424 |
+
# Set equal aspect ratio for the contour plot
|
425 |
+
|
426 |
+
if bat_hand == 'R':
|
427 |
+
|
428 |
+
|
429 |
+
ax21.text(s=f"Pull\n({traj_df.loc['Pull']:.1%})",
|
430 |
+
x=0.2+1/16*0.8,
|
431 |
+
y=1,va='top',ha='center',fontsize=16)
|
432 |
+
|
433 |
+
ax21.text(s=f"Straight\n({traj_df.loc['Straight']:.1%})",
|
434 |
+
x=0.5,
|
435 |
+
y=1,va='top',ha='center',fontsize=16)
|
436 |
+
|
437 |
+
ax21.text(s=f"Oppo\n({traj_df.loc['Oppo']:.1%})",
|
438 |
+
x=0.8-1/16*0.8,
|
439 |
+
y=1,va='top',ha='center',fontsize=16)
|
440 |
+
|
441 |
+
else:
|
442 |
+
|
443 |
+
ax21.text(s=f"Pull\n({traj_df.loc['Pull']:.1%})",
|
444 |
+
x=0.8-1/16*0.8,
|
445 |
+
y=1,va='top',ha='center',fontsize=16)
|
446 |
+
|
447 |
+
ax21.text(s=f"Straight\n({traj_df.loc['Straight']:.1%})",
|
448 |
+
x=0.5,
|
449 |
+
y=1,va='top',ha='center',fontsize=16)
|
450 |
+
|
451 |
+
ax21.text(s=f"Oppo\n({traj_df.loc['Oppo']:.1%})",
|
452 |
+
x=0.2+1/16*0.8,
|
453 |
+
y=1,va='top',ha='center',fontsize=16)
|
454 |
+
|
455 |
+
# Define the initial position of the axis
|
456 |
+
|
457 |
+
# Customize colorbar properties
|
458 |
+
# cbar = fig.colorbar(orientation='vertical', pad=0.1,ax=ax12)
|
459 |
+
#cbar.set_label('Difference', rotation=270, labelpad=15)
|
460 |
+
# Show the plot
|
461 |
+
# ax21.text(0.0, 0., "By: Thomas Nestico\n @TJStats",ha='left', va='bottom',fontsize=12)
|
462 |
+
# ax21.text(1, 0., "Data: MLB",ha='right', va='bottom',fontsize=12)
|
463 |
+
# ax21.text(0.5, 0., "Inspired by @blandalytics",ha='center', va='bottom',fontsize=12)
|
464 |
+
|
465 |
+
# ax00.axis('off')
|
466 |
+
ax01.axis('off')
|
467 |
+
# ax02.axis('off')
|
468 |
+
ax10.axis('off')
|
469 |
+
#ax11.axis('off')
|
470 |
+
#ax12.axis('off')
|
471 |
+
# ax20.axis('off')
|
472 |
+
ax21.axis('off')
|
473 |
+
# ax22.axis('off')
|
474 |
+
|
475 |
+
ax21.text(0.0, 0., "By: Thomas Nestico\n @TJStats",ha='left', va='bottom',fontsize=12)
|
476 |
+
ax21.text(0.98, 0., "Data: MLB",ha='right', va='bottom',fontsize=12)
|
477 |
+
ax21.text(0.5, 0., "Inspired by @blandalytics",ha='center', va='bottom',fontsize=12)
|
478 |
+
|
479 |
+
|
480 |
+
ax11.set_xticks([])
|
481 |
+
ax11.set_yticks([])
|
482 |
+
|
483 |
+
# ax12.text(s='Same',x=np.mean([x for x in ax12.get_xlim()]),y=np.median([x for x in ax12.get_ylim()]),
|
484 |
+
# va='center',ha='center',fontsize=12)
|
485 |
+
|
486 |
+
# ax12.text(s='More\nOften',x=0.5,y=0.74,
|
487 |
+
# va='top',ha='center',fontsize=12)
|
488 |
+
|
489 |
+
ax12.text(s='+3σ',x=0.5,y=3-1/14*3,
|
490 |
+
va='center',ha='center',fontsize=12)
|
491 |
+
|
492 |
+
ax12.text(s='+2σ',x=0.5,y=2-1/14*2,
|
493 |
+
va='center',ha='center',fontsize=12)
|
494 |
+
|
495 |
+
ax12.text(s='+1σ',x=0.5,y=1-1/14*1,
|
496 |
+
va='center',ha='center',fontsize=12)
|
497 |
+
|
498 |
+
|
499 |
+
ax12.text(s='±0σ',x=0.5,y=0,
|
500 |
+
va='center',ha='center',fontsize=12)
|
501 |
+
|
502 |
+
ax12.text(s='-1σ',x=0.5,y=-1-1/14*-1,
|
503 |
+
va='center',ha='center',fontsize=12)
|
504 |
+
|
505 |
+
ax12.text(s='-2σ',x=0.5,y=-2-1/14*-2,
|
506 |
+
va='center',ha='center',fontsize=12)
|
507 |
+
|
508 |
+
ax12.text(s='-3σ',x=0.5,y=-3-1/14*-3,
|
509 |
+
va='center',ha='center',fontsize=12)
|
510 |
+
|
511 |
+
# # ax12.text(s='Less\nOften',x=0.5,y=0.26,
|
512 |
+
# # va='bottom',ha='center',fontsize=12)
|
513 |
+
|
514 |
+
ax01.text(s=f"{df_batter_2023['batter_name'].values[0]}'s 2023 Batted Ball Tendencies",
|
515 |
+
x=0.5,
|
516 |
+
y=0.8,va='top',ha='center',fontsize=20)
|
517 |
+
|
518 |
+
ax01.text(s=f"(Compared to rest of MLB)",
|
519 |
+
x=0.5,
|
520 |
+
y=0.3,va='top',ha='center',fontsize=16)
|
521 |
+
|
522 |
+
#plt.show()
|
523 |
+
|
524 |
+
@output
|
525 |
+
@render.plot(alt="hex_plot")
|
526 |
+
@reactive.event(input.go, ignore_none=False)
|
527 |
+
def hex_plot():
|
528 |
+
|
529 |
+
if input.batter_id() is "":
|
530 |
+
fig = plt.figure(figsize=(12, 12))
|
531 |
+
fig.text(s='Please Select a Batter',x=0.5,y=0.5)
|
532 |
+
return
|
533 |
+
|
534 |
+
batter_select_id = int(input.batter_id())
|
535 |
+
# batter_select_name = 'Edouard Julien'
|
536 |
+
quant = int(input.quant())/100
|
537 |
+
df_batter_og = df_2023_bip_train[df_2023_bip_train['batter_id']==batter_select_id]
|
538 |
+
# df_batter_og = df_2023_bip_train[df_2023_bip_train['batter_name']==batter_select_name]
|
539 |
+
df_batter = df_batter_og[df_batter_og['launch_speed'] >= df_batter_og['launch_speed'].quantile(quant)]
|
540 |
+
# df_batter_best_speed = df_batter['launch_speed'].mean().round()
|
541 |
+
|
542 |
+
# df_bip_league = df_2023_bip_train[df_2023_bip_train['launch_speed'] >= df_2023_bip_train['launch_speed'].quantile(quant)]
|
543 |
+
|
544 |
+
import pandas as pd
|
545 |
+
import numpy as np
|
546 |
+
|
547 |
+
|
548 |
+
# Create grid coordinates
|
549 |
+
#x = np.arange(30, 121,1 )
|
550 |
+
y_b = np.arange(df_batter['launch_angle'].median()-df_batter['launch_angle'].std(),
|
551 |
+
df_batter['launch_angle'].median()+df_batter['launch_angle'].std(),1 )
|
552 |
+
|
553 |
+
z_b = np.arange(df_batter['h_la'].median()-df_batter['h_la'].std(),
|
554 |
+
df_batter['h_la'].median()+df_batter['h_la'].std(),1 )
|
555 |
+
|
556 |
+
# Create a meshgrid
|
557 |
+
Y_b, Z_b = np.meshgrid( y_b,z_b, indexing='ij')
|
558 |
+
# Flatten the meshgrid to get x and y coordinates
|
559 |
+
|
560 |
+
y_flat_b = Y_b.flatten()
|
561 |
+
z_flat_b = Z_b.flatten()
|
562 |
+
|
563 |
+
# Create a DataFrame
|
564 |
+
df_batter_base = pd.DataFrame({'launch_angle': y_flat_b,'h_la':z_flat_b,'c':[0]*len(y_flat_b)})
|
565 |
+
|
566 |
+
# df_batter_base['y_pred'] = [sum(x) for x in model.predict_proba(df_batter_base[features]) * ([0,1,2,3,4])]
|
567 |
+
|
568 |
+
from matplotlib.gridspec import GridSpec
|
569 |
+
# fig,ax = plt.subplots(figsize=(12, 12),dpi=150)
|
570 |
+
fig = plt.figure(figsize=(12,12))
|
571 |
+
gs = GridSpec(4, 3, height_ratios=[0.5,10,1.5,0.2], width_ratios=[0.05,0.9,0.05])
|
572 |
+
|
573 |
+
axheader = fig.add_subplot(gs[0, :])
|
574 |
+
ax10 = fig.add_subplot(gs[1, 0])
|
575 |
+
ax = fig.add_subplot(gs[1, 1]) # Subplot at the top-right position
|
576 |
+
ax12 = fig.add_subplot(gs[1, 2])
|
577 |
+
ax2_ = fig.add_subplot(gs[2, :])
|
578 |
+
axfooter1 = fig.add_subplot(gs[-1, :])
|
579 |
+
|
580 |
+
axheader.axis('off')
|
581 |
+
ax10.axis('off')
|
582 |
+
ax12.axis('off')
|
583 |
+
ax2_.axis('off')
|
584 |
+
axfooter1.axis('off')
|
585 |
+
|
586 |
+
|
587 |
+
|
588 |
+
extents = [-45,45,-30,60]
|
589 |
+
|
590 |
+
def hexLines(a=None,i=None,off=[0,0]):
|
591 |
+
'''regular hexagon segment lines as `(xy1,xy2)` in clockwise
|
592 |
+
order with points in line sorted top to bottom
|
593 |
+
for irregular hexagon pass both `a` (vertical) and `i` (horizontal)'''
|
594 |
+
if a is None: a = 2 / np.sqrt(3) * i;
|
595 |
+
if i is None: i = np.sqrt(3) / 2 * a;
|
596 |
+
h = a / 2
|
597 |
+
xy = np.array([ [ [ 0, a], [ i, h] ],
|
598 |
+
[ [ i, h], [ i,-h] ],
|
599 |
+
[ [ i,-h], [ 0,-a] ],
|
600 |
+
[ [-i,-h], [ 0,-a] ], #flipped
|
601 |
+
[ [-i, h], [-i,-h] ], #flipped
|
602 |
+
[ [ 0, a], [-i, h] ] #flipped
|
603 |
+
])
|
604 |
+
return xy+off;
|
605 |
+
|
606 |
+
|
607 |
+
h = ax.hexbin(x=df_batter_base['h_la'],
|
608 |
+
y=df_batter_base['launch_angle'],
|
609 |
+
gridsize=25,
|
610 |
+
edgecolors='k',
|
611 |
+
extent=extents,mincnt=1,lw=2,zorder=-3,)
|
612 |
+
|
613 |
+
# cfg = {**cfg,'vmin':h.get_clim()[0], 'vmax':h.get_clim()[1]}
|
614 |
+
# plt.hexbin( ec="black" ,lw=6,zorder=4,mincnt=2,**cfg,alpha=0.1)
|
615 |
+
# plt.hexbin( ec="#ffffff",lw=1,zorder=5,mincnt=2,**cfg,alpha=0.1)
|
616 |
+
|
617 |
+
|
618 |
+
ax.hexbin(x=df[(df['launch_angle']>=-30)&(df['launch_angle']<=60)&(df['launch_speed']>=df_batter['launch_speed'].median())&(df['launch_speed']<=df_batter['launch_speed'].max())]['h_la'],
|
619 |
+
y=df[(df['launch_angle']>=-30)&(df['launch_angle']<=60)&(df['launch_speed']>=df_batter['launch_speed'].median())&(df['launch_speed']<=df_batter['launch_speed'].max())]['launch_angle'],
|
620 |
+
C=df[(df['launch_angle']>=-30)&(df['launch_angle']<=60)&(df['launch_speed']>=df_batter['launch_speed'].median())&(df['launch_speed']<=df_batter['launch_speed'].max())]['y_pred'],
|
621 |
+
gridsize=25,
|
622 |
+
vmin=0,
|
623 |
+
vmax=4,
|
624 |
+
cmap=cmap_hue2,
|
625 |
+
extent=extents,zorder=-3)
|
626 |
+
|
627 |
+
|
628 |
+
# Get the counts and centers of the hexagons
|
629 |
+
counts = ax.hexbin(x=df[(df['launch_angle']>=-30)&(df['launch_angle']<=60)&(df['launch_speed']>=df_batter['launch_speed'].median())&(df['launch_speed']<=df_batter['launch_speed'].max())]['h_la'],
|
630 |
+
y=df[(df['launch_angle']>=-30)&(df['launch_angle']<=60)&(df['launch_speed']>=df_batter['launch_speed'].median())&(df['launch_speed']<=df_batter['launch_speed'].max())]['launch_angle'],
|
631 |
+
C=df[(df['launch_angle']>=-30)&(df['launch_angle']<=60)&(df['launch_speed']>=df_batter['launch_speed'].median())&(df['launch_speed']<=df_batter['launch_speed'].max())]['y_pred'],
|
632 |
+
gridsize=25,
|
633 |
+
vmin=0,
|
634 |
+
vmax=4,
|
635 |
+
cmap=cmap_hue2,
|
636 |
+
extent=extents).get_array()
|
637 |
+
|
638 |
+
bin_centers = ax.hexbin(x=df[(df['launch_angle']>=-30)&(df['launch_angle']<=60)&(df['launch_speed']>=df_batter['launch_speed'].median())&(df['launch_speed']<=df_batter['launch_speed'].max())]['h_la'],
|
639 |
+
y=df[(df['launch_angle']>=-30)&(df['launch_angle']<=60)&(df['launch_speed']>=df_batter['launch_speed'].median())&(df['launch_speed']<=df_batter['launch_speed'].max())]['launch_angle'],
|
640 |
+
C=df[(df['launch_angle']>=-30)&(df['launch_angle']<=60)&(df['launch_speed']>=df_batter['launch_speed'].median())&(df['launch_speed']<=df_batter['launch_speed'].max())]['y_pred'],
|
641 |
+
gridsize=25,
|
642 |
+
vmin=0,
|
643 |
+
vmax=4,
|
644 |
+
cmap=cmap_hue2,
|
645 |
+
extent=extents).get_offsets()
|
646 |
+
|
647 |
+
# Add text with the values of "C" to each hexagon
|
648 |
+
for count, (x, y) in zip(counts, bin_centers):
|
649 |
+
if count >= 1:
|
650 |
+
ax.text(x, y, f'{count:.1f}', color='black', ha='center', va='center',fontsize=7)
|
651 |
+
|
652 |
+
|
653 |
+
|
654 |
+
#get hexagon centers that should be highlighted
|
655 |
+
verts = h.get_offsets()
|
656 |
+
cnts = h.get_array()
|
657 |
+
highl = verts[cnts > .5*cnts.max()]
|
658 |
+
|
659 |
+
#create hexagon lines
|
660 |
+
a = ((verts[0,1]-verts[1,1])/3).round(6)
|
661 |
+
i = ((verts[1:,0]-verts[:-1,0])/2).round(6)
|
662 |
+
i = i[i>0][0]
|
663 |
+
lines = np.concatenate([hexLines(a,i,off) for off in highl])
|
664 |
+
|
665 |
+
#select contour lines and draw
|
666 |
+
uls,c = np.unique(lines.round(4),axis=0,return_counts=True)
|
667 |
+
for l in uls[c==1]: ax.plot(*l.transpose(),'w-',lw=2,scalex=False,scaley=False,color=colour_palette[1],zorder=100)
|
668 |
+
|
669 |
+
|
670 |
+
# Plot filled hexagons
|
671 |
+
for hc in highl:
|
672 |
+
hx = hc[0] + np.array([0, i, i, 0, -i, -i])
|
673 |
+
hy = hc[1] + np.array([a, a/2, -a/2, -a, -a/2, a/2])
|
674 |
+
ax.fill(hx, hy, color=colour_palette[1], alpha=0.15, edgecolor=None) # Adjust color and alpha as needed
|
675 |
+
|
676 |
+
# # Create grid coordinates
|
677 |
+
# #x = np.arange(30, 121,1 )
|
678 |
+
# y_b = np.arange(df_bip_league['launch_angle'].median()-df_bip_league['launch_angle'].std(),
|
679 |
+
# df_bip_league['launch_angle'].median()+df_bip_league['launch_angle'].std(),1 )
|
680 |
+
|
681 |
+
# z_b = np.arange(df_bip_league['h_la'].median()-df_bip_league['h_la'].std(),
|
682 |
+
# df_bip_league['h_la'].median()+df_bip_league['h_la'].std(),1 )
|
683 |
+
|
684 |
+
# # Create a meshgrid
|
685 |
+
# Y_b, Z_b = np.meshgrid( y_b,z_b, indexing='ij')
|
686 |
+
# # Flatten the meshgrid to get x and y coordinates
|
687 |
+
|
688 |
+
# y_flat_b = Y_b.flatten()
|
689 |
+
# z_flat_b = Z_b.flatten()
|
690 |
+
|
691 |
+
# # Create a DataFrame
|
692 |
+
# df_league_base = pd.DataFrame({'launch_angle': y_flat_b,'h_la':z_flat_b,'c':[0]*len(y_flat_b)})
|
693 |
+
|
694 |
+
# h_league = ax.hexbin(x=df_league_base['h_la'],
|
695 |
+
# y=df_league_base['launch_angle'],
|
696 |
+
# gridsize=25,
|
697 |
+
# edgecolors=colour_palette[1],
|
698 |
+
# extent=extents,mincnt=1,lw=2,zorder=-3,)
|
699 |
+
|
700 |
+
# #get hexagon centers that should be highlighted
|
701 |
+
# verts = h_league.get_offsets()
|
702 |
+
# cnts = h_league.get_array()
|
703 |
+
# highl = verts[cnts > .5*cnts.max()]
|
704 |
+
|
705 |
+
# #create hexagon lines
|
706 |
+
# a = ((verts[0,1]-verts[1,1])/3).round(6)
|
707 |
+
# i = ((verts[1:,0]-verts[:-1,0])/2).round(6)
|
708 |
+
# i = i[i>0][0]
|
709 |
+
# lines = np.concatenate([hexLines(a,i,off) for off in highl])
|
710 |
+
|
711 |
+
# #select contour lines and draw
|
712 |
+
# uls,c = np.unique(lines.round(4),axis=0,return_counts=True)
|
713 |
+
# for l in uls[c==1]: ax.plot(*l.transpose(),'w-',lw=2,scalex=False,scaley=False,color=colour_palette[3],zorder=99)
|
714 |
+
|
715 |
+
|
716 |
+
axheader.text(s=f"{df_batter['batter_name'].values[0]} - {int(quant*100)}th% EV and Greater Batted Ball Tendencies",x=0.5,y=0.2,fontsize=20,ha='center',va='bottom')
|
717 |
+
axheader.text(s=f"2023 Season",x=0.5,y=-0.1,fontsize=14,ha='center',va='top')
|
718 |
+
|
719 |
+
ax.set_xlabel(f"Horizontal Spray Angle (°)",fontsize=12)
|
720 |
+
ax.set_ylabel(f"Vertical Launch Angle (°)",fontsize=12)
|
721 |
+
|
722 |
+
ax2_.text(x=0.5,
|
723 |
+
y=0.0,
|
724 |
+
|
725 |
+
s="Notes:\n" \
|
726 |
+
f"- {int(quant*100)}th% EV and Greater BBE is defined as a batter's top {100 - int(quant*100)}% hardest hit BBE\n" \
|
727 |
+
f"- Colour Scale and Number Labels Represents the Expected Total Bases for a batter's range of Best Speeds\n" \
|
728 |
+
f"- Shaded Area Represents the 2-D Region bounded by ±1σ Launch Angle and Horizontal Spray Angle on batter's Best Speed BBE\n"\
|
729 |
+
f"- {df_batter['batter_name'].values[0]} {int(quant*100)}th% EV and Greater BBE Range from {df_batter['launch_speed'].min():.0f} to {df_batter['launch_speed'].max():.0f} mph ({len(df_batter)} BBE)\n"\
|
730 |
+
f"- Positive Horizontal Spray Angle Represents a BBE hit in same direction as batter handedness (i.e. Pulled)" ,
|
731 |
+
|
732 |
+
fontsize=11,
|
733 |
+
fontstyle='oblique',
|
734 |
+
va='bottom',
|
735 |
+
ha='center',
|
736 |
+
bbox=dict(facecolor='white', edgecolor='black'),ma='left')
|
737 |
+
|
738 |
+
axfooter1.text(0.05, 0.5, "By: Thomas Nestico\n @TJStats",ha='left', va='bottom',fontsize=12)
|
739 |
+
axfooter1.text(0.95, 0.5, "Data: MLB",ha='right', va='bottom',fontsize=12)
|
740 |
+
|
741 |
+
if df_batter['batter_hand'].values[0] == 'R':
|
742 |
+
ax.invert_xaxis()
|
743 |
+
ax.grid(False)
|
744 |
+
ax.axis('equal')
|
745 |
+
# Adjusting subplot to center it within the figure
|
746 |
+
fig.subplots_adjust(left=0.01, right=0.99, top=0.975, bottom=0.025)
|
747 |
+
|
748 |
+
#ax.text(f"Vertical Spray Angle (°)")
|
749 |
+
|
750 |
+
|
751 |
+
@output
|
752 |
+
@render.plot(alt="roll_plot")
|
753 |
+
@reactive.event(input.go, ignore_none=False)
|
754 |
+
def roll_plot():
|
755 |
+
# player_select = 'Nolan Gorman'
|
756 |
+
# player_select_full =player_select
|
757 |
+
|
758 |
+
if input.batter_id() is "":
|
759 |
+
fig = plt.figure(figsize=(12, 12))
|
760 |
+
fig.text(s='Please Select a Batter',x=0.5,y=0.5)
|
761 |
+
return
|
762 |
+
|
763 |
+
# df_will = df_model_2023[df_model_2023.batter_name == player_select].sort_values(by=['game_date','start_time'])
|
764 |
+
# df_will = df_will[df_will['is_swing'] != 1]
|
765 |
+
batter_select_id = int(input.batter_id())
|
766 |
+
# batter_select_name = 'Edouard Julien'
|
767 |
+
df_batter_og = df_2023_bip_train[df_2023_bip_train['batter_id']==batter_select_id]
|
768 |
+
batter_select_name = df_batter_og['batter_name'].values[0]
|
769 |
+
win = min(int(input.rolling_window()),len(df_batter_og))
|
770 |
+
df_2023_output = df_2023_output_copy[df_2023_output_copy['bip'] >= win]
|
771 |
+
sns.set_theme(style="whitegrid", palette="pastel")
|
772 |
+
#fig, ax = plt.subplots(1, 1, figsize=(10, 10),dpi=300)
|
773 |
+
|
774 |
+
from matplotlib.gridspec import GridSpec
|
775 |
+
# fig,ax = plt.subplots(figsize=(12, 12),dpi=150)
|
776 |
+
fig = plt.figure(figsize=(12,12))
|
777 |
+
gs = GridSpec(3, 3, height_ratios=[0.3,10,0.2], width_ratios=[0.01,2,0.01])
|
778 |
+
|
779 |
+
axheader = fig.add_subplot(gs[0, :])
|
780 |
+
ax10 = fig.add_subplot(gs[1, 0])
|
781 |
+
ax = fig.add_subplot(gs[1, 1]) # Subplot at the top-right position
|
782 |
+
ax12 = fig.add_subplot(gs[1, 2])
|
783 |
+
axfooter1 = fig.add_subplot(gs[-1, :])
|
784 |
+
|
785 |
+
axheader.axis('off')
|
786 |
+
ax10.axis('off')
|
787 |
+
ax12.axis('off')
|
788 |
+
axfooter1.axis('off')
|
789 |
+
|
790 |
+
|
791 |
+
sns.lineplot( x= range(win,len(df_batter_og.y_pred.rolling(window=win).mean())+1),
|
792 |
+
y= df_batter_og.y_pred.rolling(window=win).mean().dropna(),
|
793 |
+
color=colour_palette[0],linewidth=2,ax=ax)
|
794 |
+
|
795 |
+
ax.hlines(y=df_batter_og.y_pred.mean(),xmin=win,xmax=len(df_batter_og),color=colour_palette[0],linestyle='--',
|
796 |
+
label=f'{batter_select_name} Average: {df_batter_og.y_pred.mean():.3f} xSLGCON ({p.ordinal(int(np.around(percentileofscore(df_2023_output["xslgcon"],df_batter_og.y_pred.mean(), kind="strict"))))} Percentile)')
|
797 |
+
|
798 |
+
# ax.hlines(y=df_model_2023.y_pred_no_swing.std()*100,xmin=win,xmax=len(df_will))
|
799 |
+
|
800 |
+
# sns.scatterplot( x= [976],
|
801 |
+
# y= df_will.y_pred.rolling(window=win).mean().min()*100,
|
802 |
+
# color=colour_palette[0],linewidth=2,ax=ax,zorder=100,s=100,edgecolor=colour_palette[7])
|
803 |
+
|
804 |
+
|
805 |
+
ax.hlines(y=df_2023_bip_train['y_pred'].mean(),xmin=win,xmax=len(df_batter_og),color=colour_palette[1],linestyle='-.',alpha=1,
|
806 |
+
label = f'MLB Average: {df_2023_bip_train["y_pred"].mean():.3f} xSLGCON')
|
807 |
+
|
808 |
+
ax.legend()
|
809 |
+
|
810 |
+
hard_hit_dates = [df_2023_output['xslgcon'].quantile(0.9),
|
811 |
+
df_2023_output['xslgcon'].quantile(0.75),
|
812 |
+
df_2023_output['xslgcon'].quantile(0.25),
|
813 |
+
df_2023_output['xslgcon'].quantile(0.1)]
|
814 |
+
|
815 |
+
|
816 |
+
|
817 |
+
ax.hlines(y=df_2023_output['xslgcon'].quantile(0.9),xmin=win,xmax=len(df_batter_og),color=colour_palette[2],linestyle='dotted',alpha=0.5,zorder=1)
|
818 |
+
ax.hlines(y=df_2023_output['xslgcon'].quantile(0.75),xmin=win,xmax=len(df_batter_og),color=colour_palette[3],linestyle='dotted',alpha=0.5,zorder=1)
|
819 |
+
ax.hlines(y=df_2023_output['xslgcon'].quantile(0.25),xmin=win,xmax=len(df_batter_og),color=colour_palette[4],linestyle='dotted',alpha=0.5,zorder=1)
|
820 |
+
ax.hlines(y=df_2023_output['xslgcon'].quantile(0.1),xmin=win,xmax=len(df_batter_og),color=colour_palette[5],linestyle='dotted',alpha=0.5,zorder=1)
|
821 |
+
|
822 |
+
hard_hit_text = ['90th %','75th %','25th %','10th %']
|
823 |
+
for i, x in enumerate(hard_hit_dates):
|
824 |
+
ax.text(min(win+win/50,win+win+5), x ,hard_hit_text[i], rotation=0,va='center', ha='left',
|
825 |
+
bbox=dict(facecolor='white',alpha=0.7, edgecolor=colour_palette[2+i], pad=2),zorder=11)
|
826 |
+
|
827 |
+
# # Annotate with an arrow
|
828 |
+
# ax.annotate('June 6, 2023\nSeason Worst Decision Value', xy=(976, df_will.y_pred.rolling(window=win).mean().min()*100-0.03),
|
829 |
+
# xytext=(976 - 150, df_will.y_pred.rolling(window=win).mean().min()*100 - 0.2),
|
830 |
+
# arrowprops=dict(facecolor=colour_palette[7], shrink=0.01),zorder=150,fontsize=10,
|
831 |
+
# bbox=dict(facecolor='white', edgecolor='black'),va='top')
|
832 |
+
|
833 |
+
ax.set_xlim(win,len(df_batter_og))
|
834 |
+
# ax.set_ylim(0.2,max(1,))
|
835 |
+
|
836 |
+
ax.set_yticks([0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1])
|
837 |
+
|
838 |
+
ax.set_xlabel('Balls In Play')
|
839 |
+
ax.set_ylabel('Expected Total Bases per Ball In Play (xSLGCON)')
|
840 |
+
|
841 |
+
from matplotlib.ticker import FormatStrFormatter
|
842 |
+
|
843 |
+
ax.yaxis.set_major_formatter(FormatStrFormatter('%.3f'))
|
844 |
+
|
845 |
+
axheader.text(s=f'{batter_select_name} - MLB - {win} Rolling BIP Expected Slugging on Contact (xSLGCON)',x=0.5,y=-0.5,ha='center',va='bottom',fontsize=14)
|
846 |
+
axfooter1.text(.05, 0.2, "By: Thomas Nestico",ha='left', va='bottom',fontsize=12)
|
847 |
+
axfooter1.text(0.95, 0.2, "Data: MLB",ha='right', va='bottom',fontsize=12)
|
848 |
+
|
849 |
+
fig.subplots_adjust(left=0.01, right=0.99, top=0.98, bottom=0.02)
|
850 |
+
|
851 |
+
@output
|
852 |
+
@render.plot(alt="A histogram")
|
853 |
+
@reactive.event(input.go, ignore_none=False)
|
854 |
+
def ev_plot():
|
855 |
+
data_df = df_2023_bip_train[df_2023_bip_train.batter_id==int(input.batter_id())]
|
856 |
+
#pitch_list = df_2023_small.pitch_type.unique()
|
857 |
+
sns.set_theme(style="whitegrid", palette="pastel")
|
858 |
+
fig, ax = plt.subplots(1, 1, figsize=(10, 10))
|
859 |
+
|
860 |
+
|
861 |
+
|
862 |
+
# if input.plot_id() == 'dist':
|
863 |
+
# sns.histplot(x=data_df.launch_angle,y=data_df.launch_speed,cbar=colour_palette,binwidth=(5,2.5),ax=ax,cbar_kws=dict(shrink=.75,label='Count'),binrange=(
|
864 |
+
# (math.floor((min(data_df.launch_angle.dropna())/5))*5,math.ceil((max(data_df.launch_angle.dropna())/5))*5),(math.floor((min(data_df.launch_speed.dropna())/5))*5,math.ceil((max(data_df.launch_speed.dropna())/5))*5)))
|
865 |
+
|
866 |
+
sns.scatterplot(x=data_df.launch_angle,y=data_df.launch_speed,color=colour_palette[1])
|
867 |
+
ax.set_xlim(math.floor((min(data_df.launch_angle.dropna())/10))*10,math.ceil((max(data_df.launch_angle.dropna())/10))*10)
|
868 |
+
#ticks=np.arange(revels.values.min(),revels.values.max()+1 )
|
869 |
+
sns.lineplot(x=angle_ev_list_df.launch_angle,y=angle_ev_list_df.launch_speed,color=colour_palette[0])
|
870 |
+
ax.vlines(x=angle_ev_list_df.launch_angle[0],ymin=angle_ev_list_df.launch_speed[0],ymax=ev_ranges[-1],color=colour_palette[0])
|
871 |
+
ax.vlines(x=angle_ev_list_df.launch_angle[len(angle_ev_list_df)-1],ymin=angle_ev_list_df.launch_speed[len(angle_ev_list_df)-1],ymax=ev_ranges[-1],color=colour_palette[0])
|
872 |
+
|
873 |
+
groundball = f'{sum(data_df.launch_angle.dropna()<=10)/len(data_df.launch_angle.dropna()):.1%}'
|
874 |
+
linedrive = f'{sum((data_df.launch_angle.dropna()<=25) & (data_df.launch_angle.dropna()>10))/len(data_df.launch_angle.dropna()):.1%}'
|
875 |
+
flyball = f'{sum((data_df.launch_angle.dropna()<=50) & (data_df.launch_angle.dropna()>25))/len(data_df.launch_angle.dropna()):.1%}'
|
876 |
+
popup = f'{sum(data_df.launch_angle.dropna()>50)/len(data_df.launch_angle.dropna()):.1%}'
|
877 |
+
percentages_list = [groundball,linedrive,flyball,popup]
|
878 |
+
|
879 |
+
hard_hit_percent = f'{sum(data_df.launch_speed.dropna()>=95)/len(data_df.launch_speed.dropna()):.1%}'
|
880 |
+
|
881 |
+
barrel_percentage = f'{data_df.barrel.dropna().sum()/len(data_df.launch_angle.dropna()):.1%}'
|
882 |
+
|
883 |
+
plt.text(x=27, y=math.ceil((max(data_df.launch_speed.dropna())/5))*5+5-3, s=f'Barrel% {barrel_percentage}',ha='left',bbox=dict(facecolor='white',alpha=0.8, edgecolor=colour_palette[4], pad=5))
|
884 |
+
|
885 |
+
|
886 |
+
sample_dates = np.array([math.floor((min(data_df.launch_angle.dropna())/10))*10,10,25,50])
|
887 |
+
sample_text = [f'Groundball ({groundball})',f'Line Drive ({linedrive})',f'Fly Ball ({flyball})',f'Pop-up ({popup})']
|
888 |
+
|
889 |
+
hard_hit_dates = [95]
|
890 |
+
hard_hit_text = [f'Hard Hit% ({hard_hit_percent})']
|
891 |
+
|
892 |
+
|
893 |
+
|
894 |
+
#sample_dates = mdates.date2num(sample_dates)
|
895 |
+
plt.hlines(y=hard_hit_dates,xmin=math.floor((min(data_df.launch_angle.dropna())/10))*10, xmax=math.ceil((max(data_df.launch_angle.dropna())/10))*10, color = colour_palette[4],linestyles='--')
|
896 |
+
plt.vlines(x=sample_dates, ymin=0, ymax=130, color = colour_palette[3],linestyles='--')
|
897 |
+
|
898 |
+
|
899 |
+
# ax.vlines(x=10,ymin=0,ymax=ev_ranges[-1],color=colour_palette[3],linestyles='--')
|
900 |
+
# ax.vlines(x=25,ymin=0,ymax=ev_ranges[-1],color=colour_palette[3],linestyles='--')
|
901 |
+
# ax.vlines(x=50,ymin=0,ymax=ev_ranges[-1],color=colour_palette[3],linestyles='--')
|
902 |
+
|
903 |
+
|
904 |
+
|
905 |
+
for i, x in enumerate(hard_hit_dates):
|
906 |
+
text(math.ceil((max(data_df.launch_angle.dropna())/10))*10-2.5, x+1.25,hard_hit_text[i], rotation=0, ha='right',
|
907 |
+
bbox=dict(facecolor='white',alpha=0.5, edgecolor=colour_palette[4], pad=5))
|
908 |
+
|
909 |
+
|
910 |
+
for i, x in enumerate(sample_dates):
|
911 |
+
text(x+0.75, (math.floor((min(data_df.launch_speed.dropna())/5))*5)+1,sample_text[i], rotation=90, verticalalignment='bottom',
|
912 |
+
bbox=dict(facecolor='white',alpha=0.5, edgecolor=colour_palette[3], pad=5))
|
913 |
+
#ax.vlines(x=math.floor((min(data_df.launch_angle.dropna())/10))*10+1,ymin=0,ymax=ev_ranges[-1],color=colour_palette[3],linestyles='--')
|
914 |
+
|
915 |
+
ax.set_xlim((math.floor((min(data_df.launch_angle.dropna())/10))*10,math.ceil((max(data_df.launch_angle.dropna())/10))*10))
|
916 |
+
ax.set_ylim((math.floor((min(data_df.launch_speed.dropna())/5))*5,math.ceil((max(data_df.launch_speed.dropna())/5))*5+5))
|
917 |
+
# ax.set_xlim(-90,90)
|
918 |
+
# ax.set_ylim(0,125)
|
919 |
+
ax.set_title(f'MLB - {data_df.batter_name.unique()[0]} Launch Angle vs EV Plot', fontsize=18,fontname='Century Gothic',)
|
920 |
+
#vals = ax.get_yticks()
|
921 |
+
ax.set_xlabel('Launch Angle', fontsize=16,fontname='Century Gothic')
|
922 |
+
ax.set_ylabel('Exit Velocity', fontsize=16,fontname='Century Gothic')
|
923 |
+
ax.fill_between(angle_ev_list_df.launch_angle, 130, angle_ev_list_df.launch_speed, interpolate=True, color=colour_palette[3],alpha=0.1,label='Barrel')
|
924 |
+
#fig.colorbar(plot_dist, ax=ax)
|
925 |
+
#fig.colorbar(plot_dist)
|
926 |
+
#fig.axes[0].invert_yaxis()
|
927 |
+
ax.legend(fontsize='16',loc='upper left')
|
928 |
+
fig.text(x=0.03,y=0.02,s='By: @TJStats')
|
929 |
+
fig.text(x=1-0.03,y=0.02,s='Data: MLB',ha='right')
|
930 |
+
|
931 |
+
# fig.text(x=0.25,y=0.02,s='Data: MLB',ha='right')
|
932 |
+
# fig.text(x=0.25,y=0.02,s='Data: MLB',ha='right')
|
933 |
+
# fig.text(x=0.25,y=0.02,s='Data: MLB',ha='right')
|
934 |
+
#cbar = plt.colorbar()
|
935 |
+
#fig.subplots_adjust(wspace=.02, hspace=.02)
|
936 |
+
#ax.xaxis.set_major_formatter(FuncFormatter(lambda x, _: int(x)))
|
937 |
+
fig.set_facecolor('white')
|
938 |
+
fig.tight_layout()
|
939 |
+
|
940 |
+
spray = App(ui.page_fluid(
|
941 |
+
ui.tags.base(href=base_url),
|
942 |
+
ui.tags.div(
|
943 |
+
{"style": "width:90%;margin: 0 auto;max-width: 1600px;"},
|
944 |
+
ui.tags.style(
|
945 |
+
"""
|
946 |
+
h4 {
|
947 |
+
margin-top: 1em;font-size:35px;
|
948 |
+
}
|
949 |
+
h2{
|
950 |
+
font-size:25px;
|
951 |
+
}
|
952 |
+
"""
|
953 |
+
),
|
954 |
+
shinyswatch.theme.simplex(),
|
955 |
+
ui.tags.h4("TJStats"),
|
956 |
+
ui.tags.i("Baseball Analytics and Visualizations"),
|
957 |
+
ui.markdown("""<a href='https://www.patreon.com/tj_stats'>Support me on Patreon for Access to 2024 Apps</a><sup>1</sup>"""),
|
958 |
+
ui.navset_tab(
|
959 |
+
ui.nav_control(
|
960 |
+
ui.a(
|
961 |
+
"Home",
|
962 |
+
href="home/"
|
963 |
+
),
|
964 |
+
),
|
965 |
+
ui.nav_menu(
|
966 |
+
"Batter Charts",
|
967 |
+
ui.nav_control(
|
968 |
+
ui.a(
|
969 |
+
"Batting Rolling",
|
970 |
+
href="rolling_batter/"
|
971 |
+
),
|
972 |
+
ui.a(
|
973 |
+
"Spray & Damage",
|
974 |
+
href="spray/"
|
975 |
+
),
|
976 |
+
ui.a(
|
977 |
+
"Decision Value",
|
978 |
+
href="decision_value/"
|
979 |
+
),
|
980 |
+
# ui.a(
|
981 |
+
# "Damage Model",
|
982 |
+
# href="damage_model/"
|
983 |
+
# ),
|
984 |
+
ui.a(
|
985 |
+
"Batter Scatter",
|
986 |
+
href="batter_scatter/"
|
987 |
+
),
|
988 |
+
# ui.a(
|
989 |
+
# "EV vs LA Plot",
|
990 |
+
# href="ev_angle/"
|
991 |
+
# ),
|
992 |
+
ui.a(
|
993 |
+
"Statcast Compare",
|
994 |
+
href="statcast_compare/"
|
995 |
+
)
|
996 |
+
),
|
997 |
+
),
|
998 |
+
ui.nav_menu(
|
999 |
+
"Pitcher Charts",
|
1000 |
+
ui.nav_control(
|
1001 |
+
ui.a(
|
1002 |
+
"Pitcher Rolling",
|
1003 |
+
href="rolling_pitcher/"
|
1004 |
+
),
|
1005 |
+
ui.a(
|
1006 |
+
"Pitcher Summary",
|
1007 |
+
href="pitching_summary_graphic_new/"
|
1008 |
+
),
|
1009 |
+
ui.a(
|
1010 |
+
"Pitcher Scatter",
|
1011 |
+
href="pitcher_scatter/"
|
1012 |
+
)
|
1013 |
+
),
|
1014 |
+
)),ui.row(
|
1015 |
+
ui.layout_sidebar(
|
1016 |
+
|
1017 |
+
ui.panel_sidebar(
|
1018 |
+
ui.input_select("batter_id",
|
1019 |
+
"Select Batter",
|
1020 |
+
batter_dict,
|
1021 |
+
width=1,
|
1022 |
+
size=1,
|
1023 |
+
selectize=True),
|
1024 |
+
ui.input_action_button("go", "Generate",class_="btn-primary",
|
1025 |
+
),
|
1026 |
+
ui.input_action_button("update_ui", "Update UI",class_="btn-secondary",
|
1027 |
+
)),
|
1028 |
+
|
1029 |
+
ui.page_navbar(
|
1030 |
+
|
1031 |
+
|
1032 |
+
ui.nav("2023 vs MLB",
|
1033 |
+
ui.output_plot('plot',
|
1034 |
+
width='1000px',
|
1035 |
+
height='1000px')),
|
1036 |
+
ui.nav("Damage Hex",
|
1037 |
+
ui.output_plot('hex_plot',
|
1038 |
+
width='1200px',
|
1039 |
+
height='1200px')),
|
1040 |
+
ui.nav("Damage Roll",
|
1041 |
+
ui.output_plot('roll_plot',
|
1042 |
+
width='1200px',
|
1043 |
+
height='1200px')),
|
1044 |
+
ui.nav("EV vs LA",
|
1045 |
+
ui.output_plot("ev_plot",height = "1000px",width="1000px")),id="my_tabs",
|
1046 |
+
)
|
1047 |
+
)),)),server)
|
statcast_compare.py
CHANGED
@@ -609,17 +609,17 @@ statcast_compare = App(ui.page_fluid(
|
|
609 |
href="rolling_batter/"
|
610 |
),
|
611 |
ui.a(
|
612 |
-
"Spray",
|
613 |
href="spray/"
|
614 |
),
|
615 |
ui.a(
|
616 |
"Decision Value",
|
617 |
href="decision_value/"
|
618 |
),
|
619 |
-
ui.a(
|
620 |
-
|
621 |
-
|
622 |
-
),
|
623 |
ui.a(
|
624 |
"Batter Scatter",
|
625 |
href="batter_scatter/"
|
|
|
609 |
href="rolling_batter/"
|
610 |
),
|
611 |
ui.a(
|
612 |
+
"Spray & Damage",
|
613 |
href="spray/"
|
614 |
),
|
615 |
ui.a(
|
616 |
"Decision Value",
|
617 |
href="decision_value/"
|
618 |
),
|
619 |
+
# ui.a(
|
620 |
+
# "Damage Model",
|
621 |
+
# href="damage_model/"
|
622 |
+
# ),
|
623 |
ui.a(
|
624 |
"Batter Scatter",
|
625 |
href="batter_scatter/"
|