Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,45 +1,736 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
import shinyswatch
|
9 |
|
10 |
-
|
11 |
-
|
|
|
|
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
#from ev_angle import ev_angle
|
18 |
-
from rolling_batter import rolling_batter
|
19 |
-
from statcast_compare import statcast_compare
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
from pitcher_scatter import pitcher_scatter
|
24 |
|
|
|
25 |
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
routes = [
|
29 |
-
Mount('/home', app=home),
|
30 |
|
31 |
-
|
32 |
-
Mount('/decision_value',app=decision_value),
|
33 |
-
Mount('/damage_model',app=damage),
|
34 |
-
Mount('/batter_scatter',app=batter_scatter),
|
35 |
-
#Mount('/ev_angle',app=ev_angle),
|
36 |
-
Mount('/rolling_batter',app=rolling_batter),
|
37 |
-
Mount('/statcast_compare',app=statcast_compare),
|
38 |
|
39 |
-
Mount('/rolling_pitcher',app=rolling_pitcher),
|
40 |
-
Mount('/pitching_summary_graphic_new',app=pitching_summary_graphic_new),
|
41 |
-
Mount('/pitcher_scatter',app=pitcher_scatter),
|
42 |
-
]
|
43 |
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from shiny import App, Inputs, Outputs, Session, reactive, render, req, ui
|
2 |
+
import datasets
|
3 |
+
from datasets import load_dataset
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import seaborn as sns
|
8 |
+
import numpy as np
|
9 |
+
from scipy.stats import gaussian_kde
|
10 |
+
import matplotlib
|
11 |
+
from matplotlib.ticker import MaxNLocator
|
12 |
+
from matplotlib.gridspec import GridSpec
|
13 |
+
from scipy.stats import zscore
|
14 |
+
import math
|
15 |
+
import matplotlib
|
16 |
+
from adjustText import adjust_text
|
17 |
+
import matplotlib.ticker as mtick
|
18 |
+
from shinywidgets import output_widget, render_widget
|
19 |
+
import pandas as pd
|
20 |
+
from configure import base_url
|
21 |
import shinyswatch
|
22 |
|
23 |
+
### Import Datasets
|
24 |
+
dataset = load_dataset('nesticot/mlb_data', data_files=['mlb_pitch_data_2023.csv' ])
|
25 |
+
dataset_train = dataset['train']
|
26 |
+
df_2023_mlb = dataset_train.to_pandas().set_index(list(dataset_train.features.keys())[0]).reset_index(drop=True)
|
27 |
|
28 |
+
### Import Datasets
|
29 |
+
dataset = load_dataset('nesticot/mlb_data', data_files=['aaa_pitch_data_2023.csv' ])
|
30 |
+
dataset_train = dataset['train']
|
31 |
+
df_2023_aaa = dataset_train.to_pandas().set_index(list(dataset_train.features.keys())[0]).reset_index(drop=True)
|
|
|
|
|
|
|
32 |
|
33 |
+
df_2023_mlb['level'] = 'MLB'
|
34 |
+
df_2023_aaa['level'] = 'AAA'
|
|
|
35 |
|
36 |
+
df_2023 = pd.concat([df_2023_mlb,df_2023_aaa])
|
37 |
|
38 |
+
#print(df_2023)
|
39 |
+
### Normalize Hit Locations
|
40 |
+
import joblib
|
41 |
+
swing_model = joblib.load('swing.joblib')
|
42 |
|
43 |
+
no_swing_model = joblib.load('no_swing.joblib')
|
|
|
|
|
44 |
|
45 |
+
# Now you can use the loaded model for prediction or any other task
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
batter_dict = df_2023.sort_values('batter_name').set_index('batter_id')['batter_name'].to_dict()
|
49 |
+
|
50 |
+
## Make Predictions
|
51 |
+
## Define Features and Target
|
52 |
+
features = ['px','pz','strikes','balls']
|
53 |
+
## Set up 2023 Data for Prediction of Run Expectancy
|
54 |
+
df_model_2023_no_swing = df_2023[df_2023.is_swing != 1].dropna(subset=features)
|
55 |
+
df_model_2023_swing = df_2023[df_2023.is_swing == 1].dropna(subset=features)
|
56 |
+
|
57 |
+
|
58 |
+
import xgboost as xgb
|
59 |
+
df_model_2023_no_swing['y_pred'] = no_swing_model.predict(xgb.DMatrix(df_model_2023_no_swing[features]))
|
60 |
+
df_model_2023_swing['y_pred'] = swing_model.predict(xgb.DMatrix(df_model_2023_swing[features]))
|
61 |
+
|
62 |
+
df_model_2023 = pd.concat([df_model_2023_no_swing,df_model_2023_swing])
|
63 |
+
import joblib
|
64 |
+
# # Dump the model to a file named 'model.joblib'
|
65 |
+
# model = joblib.load('xtb_model.joblib')
|
66 |
+
|
67 |
+
# ## Create a Dataset to calculate xRV/100 Pitches
|
68 |
+
# df_model_2023['pitcher_name'] = df_model_2023.pitcher.map(pitcher_dict)
|
69 |
+
# df_model_2023['player_team'] = df_model_2023.batter.map(team_player_dict)
|
70 |
+
df_model_2023_group = df_model_2023.groupby(['batter_id','batter_name','level']).agg(
|
71 |
+
pitches = ('start_speed','count'),
|
72 |
+
y_pred = ('y_pred','mean'),
|
73 |
+
)
|
74 |
+
|
75 |
+
## Minimum 500 pitches faced
|
76 |
+
#min_pitches = 300
|
77 |
+
#df_model_2023_group = df_model_2023_group[df_model_2023_group.pitches >= min_pitches]
|
78 |
+
## Calculate 20-80 Scale
|
79 |
+
df_model_2023_group['decision_value'] = zscore(df_model_2023_group['y_pred'])
|
80 |
+
df_model_2023_group['decision_value'] = (50+df_model_2023_group['decision_value']*10)
|
81 |
+
|
82 |
+
## Create a Dataset to calculate xRV/100 for Pitches Taken
|
83 |
+
df_model_2023_group_no_swing = df_model_2023[df_model_2023.is_swing!=1].groupby(['batter_id','batter_name','level']).agg(
|
84 |
+
pitches = ('start_speed','count'),
|
85 |
+
y_pred = ('y_pred','mean')
|
86 |
+
)
|
87 |
+
|
88 |
+
# Select Pitches with 500 total pitches
|
89 |
+
df_model_2023_group_no_swing = df_model_2023_group_no_swing[df_model_2023_group_no_swing.index.get_level_values(1).isin(df_model_2023_group.index.get_level_values(1))]
|
90 |
+
## Calculate 20-80 Scale
|
91 |
+
df_model_2023_group_no_swing['iz_awareness'] = zscore(df_model_2023_group_no_swing['y_pred'])
|
92 |
+
df_model_2023_group_no_swing['iz_awareness'] = (((50+df_model_2023_group_no_swing['iz_awareness']*10)))
|
93 |
+
|
94 |
+
## Create a Dataset for xRV/100 Pitches Swung At
|
95 |
+
df_model_2023_group_swing = df_model_2023[df_model_2023.is_swing==1].groupby(['batter_id','batter_name','level']).agg(
|
96 |
+
pitches = ('start_speed','count'),
|
97 |
+
y_pred = ('y_pred','mean')
|
98 |
+
)
|
99 |
+
|
100 |
+
# Select Pitches with 500 total pitches
|
101 |
+
df_model_2023_group_swing = df_model_2023_group_swing[df_model_2023_group_swing.index.get_level_values(1).isin(df_model_2023_group.index.get_level_values(1))]
|
102 |
+
## Calculate 20-80 Scale
|
103 |
+
df_model_2023_group_swing['oz_awareness'] = zscore(df_model_2023_group_swing['y_pred'])
|
104 |
+
df_model_2023_group_swing['oz_awareness'] = (((50+df_model_2023_group_swing['oz_awareness']*10)))
|
105 |
+
|
106 |
+
## Create df for plotting
|
107 |
+
# Merge Datasets
|
108 |
+
df_model_2023_group_swing_plus_no = df_model_2023_group_swing.merge(df_model_2023_group_no_swing,left_index=True,right_index=True,suffixes=['_swing','_no_swing'])
|
109 |
+
df_model_2023_group_swing_plus_no['pitches'] = df_model_2023_group_swing_plus_no.pitches_swing + df_model_2023_group_swing_plus_no.pitches_no_swing
|
110 |
+
|
111 |
+
# Calculate xRV/100 Pitches
|
112 |
+
df_model_2023_group_swing_plus_no['y_pred'] = (df_model_2023_group_swing_plus_no.y_pred_swing*df_model_2023_group_swing_plus_no.pitches_swing + \
|
113 |
+
df_model_2023_group_swing_plus_no.y_pred_no_swing*df_model_2023_group_swing_plus_no.pitches_no_swing) / \
|
114 |
+
df_model_2023_group_swing_plus_no.pitches
|
115 |
+
|
116 |
+
df_model_2023_group_swing_plus_no = df_model_2023_group_swing_plus_no.merge(right=df_model_2023_group,
|
117 |
+
left_index=True,
|
118 |
+
right_index=True,
|
119 |
+
suffixes=['','_y'])
|
120 |
+
|
121 |
+
df_model_2023_group_swing_plus_no = df_model_2023_group_swing_plus_no.reset_index()
|
122 |
+
team_dict = df_2023.groupby(['batter_name'])[['batter_id','batter_team']].tail().set_index('batter_id')['batter_team'].to_dict()
|
123 |
+
df_model_2023_group_swing_plus_no['team'] = df_model_2023_group_swing_plus_no['batter_id'].map(team_dict)
|
124 |
+
df_model_2023_group_swing_plus_no = df_model_2023_group_swing_plus_no.set_index(['batter_id','batter_name','level','team'])
|
125 |
+
|
126 |
+
df_model_2023_group_swing_plus_no = df_model_2023_group_swing_plus_no[df_model_2023_group_swing_plus_no['pitches']>=250]
|
127 |
+
df_model_2023_group_swing_plus_no_copy = df_model_2023_group_swing_plus_no.copy()
|
128 |
+
import matplotlib
|
129 |
+
|
130 |
+
colour_palette = ['#FFB000','#648FFF','#785EF0',
|
131 |
+
'#DC267F','#FE6100','#3D1EB2','#894D80','#16AA02','#B5592B','#A3C1ED']
|
132 |
+
|
133 |
+
cmap_hue = matplotlib.colors.LinearSegmentedColormap.from_list("", [colour_palette[1],'#ffffff',colour_palette[0]])
|
134 |
+
cmap_hue2 = matplotlib.colors.LinearSegmentedColormap.from_list("",['#ffffff',colour_palette[0]])
|
135 |
+
|
136 |
+
|
137 |
+
from matplotlib.pyplot import text
|
138 |
+
import inflect
|
139 |
+
from scipy.stats import percentileofscore
|
140 |
+
p = inflect.engine()
|
141 |
+
|
142 |
+
|
143 |
+
|
144 |
+
|
145 |
+
def server(input,output,session):
|
146 |
+
|
147 |
+
@output
|
148 |
+
@render.plot(alt="hex_plot")
|
149 |
+
@reactive.event(input.go, ignore_none=False)
|
150 |
+
def scatter_plot():
|
151 |
+
|
152 |
+
if input.batter_id() is "":
|
153 |
+
fig = plt.figure(figsize=(12, 12))
|
154 |
+
fig.text(s='Please Select a Batter',x=0.5,y=0.5)
|
155 |
+
return
|
156 |
+
print(df_model_2023_group_swing_plus_no_copy)
|
157 |
+
print(input.level_list())
|
158 |
+
df_model_2023_group_swing_plus_no = df_model_2023_group_swing_plus_no_copy[df_model_2023_group_swing_plus_no_copy.index.get_level_values(2) == input.level_list()]
|
159 |
+
print('this one')
|
160 |
+
print(df_model_2023_group_swing_plus_no)
|
161 |
+
batter_select_id = int(input.batter_id())
|
162 |
+
# batter_select_name = 'Edouard Julien'
|
163 |
+
#max(1,int(input.pitch_min()))
|
164 |
+
plot_min = max(250,int(input.pitch_min()))
|
165 |
+
df_model_2023_group_swing_plus_no = df_model_2023_group_swing_plus_no[df_model_2023_group_swing_plus_no.pitches >= plot_min]
|
166 |
+
## Plot In-Zone vs Out-of-Zone Awareness
|
167 |
+
sns.set_theme(style="whitegrid", palette="pastel")
|
168 |
+
# fig, ax = plt.subplots(1,1,figsize=(12,12))
|
169 |
+
fig = plt.figure(figsize=(12,12))
|
170 |
+
gs = GridSpec(3, 3, height_ratios=[0.6,10,0.2], width_ratios=[0.25,0.50,0.25])
|
171 |
+
|
172 |
+
axheader = fig.add_subplot(gs[0, :])
|
173 |
+
#ax10 = fig.add_subplot(gs[1, 0])
|
174 |
+
ax = fig.add_subplot(gs[1, :]) # Subplot at the top-right position
|
175 |
+
#ax12 = fig.add_subplot(gs[1, 2])
|
176 |
+
axfooter1 = fig.add_subplot(gs[-1, 0])
|
177 |
+
axfooter2 = fig.add_subplot(gs[-1, 1])
|
178 |
+
axfooter3 = fig.add_subplot(gs[-1, 2])
|
179 |
+
|
180 |
+
cmap_hue = matplotlib.colors.LinearSegmentedColormap.from_list("", [colour_palette[1],colour_palette[3],colour_palette[0]])
|
181 |
+
norm = plt.Normalize(df_model_2023_group_swing_plus_no['y_pred'].min()*100, df_model_2023_group_swing_plus_no['y_pred'].max()*100)
|
182 |
+
|
183 |
+
sns.scatterplot(
|
184 |
+
x=df_model_2023_group_swing_plus_no['y_pred_swing']*100,
|
185 |
+
y=df_model_2023_group_swing_plus_no['y_pred_no_swing']*100,
|
186 |
+
hue=df_model_2023_group_swing_plus_no['y_pred']*100,
|
187 |
+
size=df_model_2023_group_swing_plus_no['pitches_swing']/df_model_2023_group_swing_plus_no['pitches'],
|
188 |
+
palette=cmap_hue,ax=ax)
|
189 |
+
|
190 |
+
sm = plt.cm.ScalarMappable(cmap=cmap_hue, norm=norm)
|
191 |
+
cbar = plt.colorbar(sm, cax=axfooter2, orientation='horizontal',shrink=1)
|
192 |
+
cbar.set_label('Decision Value xRV/100 Pitches',fontsize=12)
|
193 |
+
|
194 |
+
ax.hlines(xmin=(math.floor((df_model_2023_group_swing_plus_no['y_pred_swing'].min()*100*100-0.01)/5))*5/100,
|
195 |
+
xmax= (math.ceil((df_model_2023_group_swing_plus_no['y_pred_swing'].max()**100100+0.01)/5))*5/100,
|
196 |
+
y=df_model_2023_group_swing_plus_no['y_pred_no_swing'].mean()*100,color='gray',linewidth=3,linestyle='dotted',alpha=0.4)
|
197 |
+
|
198 |
+
ax.vlines(ymin=(math.floor((df_model_2023_group_swing_plus_no['y_pred_no_swing'].min()*100*100-0.01)/5))*5/100,
|
199 |
+
ymax= (math.ceil((df_model_2023_group_swing_plus_no['y_pred_no_swing'].max()*100*100+0.01)/5))*5/100,
|
200 |
+
x=df_model_2023_group_swing_plus_no['y_pred_swing'].mean()*100,color='gray',linewidth=3,linestyle='dotted',alpha=0.4)
|
201 |
+
|
202 |
+
x_lim_min = (math.floor((df_model_2023_group_swing_plus_no['y_pred_swing'].min()*100*100)/5))*5/100
|
203 |
+
x_lim_max = (math.ceil((df_model_2023_group_swing_plus_no['y_pred_swing'].max()*100*100)/5))*5/100
|
204 |
+
|
205 |
+
y_lim_min = (math.floor((df_model_2023_group_swing_plus_no['y_pred_no_swing'].min()*100*100)/5))*5/100
|
206 |
+
y_lim_max = (math.ceil((df_model_2023_group_swing_plus_no['y_pred_no_swing'].max()*100*100)/5))*5/100
|
207 |
+
|
208 |
+
ax.set_xlim(x_lim_min,x_lim_max)
|
209 |
+
ax.set_ylim(y_lim_min,y_lim_max)
|
210 |
+
|
211 |
+
ax.tick_params(axis='both', which='major', labelsize=12)
|
212 |
+
|
213 |
+
ax.set_xlabel('Out-of-Zone Awareness Value xRV/100 Swings',fontsize=16)
|
214 |
+
ax.set_ylabel('In-Zone Awareness Value xRV/100 Takes',fontsize=16)
|
215 |
+
ax.get_legend().remove()
|
216 |
+
|
217 |
+
|
218 |
+
ts=[]
|
219 |
+
|
220 |
+
|
221 |
+
# thresh = 0.5
|
222 |
+
# thresh_2 = -0.9
|
223 |
+
# for i in range(len(df_model_2023_group_swing_plus_no)):
|
224 |
+
# if (df_model_2023_group_swing_plus_no['y_pred'].values[i]*100) >= thresh or \
|
225 |
+
# (df_model_2023_group_swing_plus_no['y_pred'].values[i]*100) <= thresh_2 or \
|
226 |
+
# (str(df_model_2023_group_swing_plus_no.index.get_level_values(0).values[i]) in (input.name_list())) :
|
227 |
+
# ts.append(ax.text(x=df_model_2023_group_swing_plus_no['y_pred_swing'].values[i]*100,
|
228 |
+
# y=df_model_2023_group_swing_plus_no['y_pred_no_swing'].values[i]*100,
|
229 |
+
# s=df_model_2023_group_swing_plus_no.index.get_level_values(1).values[i],
|
230 |
+
# fontsize=8))
|
231 |
+
thresh = 0.5
|
232 |
+
thresh_2 = -0.9
|
233 |
+
for i in range(len(df_model_2023_group_swing_plus_no)):
|
234 |
+
if (df_model_2023_group_swing_plus_no['y_pred_swing'].values[i]) >= df_model_2023_group_swing_plus_no['y_pred_swing'].quantile(0.98) or \
|
235 |
+
(df_model_2023_group_swing_plus_no['y_pred_swing'].values[i]) <= df_model_2023_group_swing_plus_no['y_pred_swing'].quantile(0.02) or \
|
236 |
+
(df_model_2023_group_swing_plus_no['y_pred_no_swing'].values[i]) >= df_model_2023_group_swing_plus_no['y_pred_no_swing'].quantile(0.98) or \
|
237 |
+
(df_model_2023_group_swing_plus_no['y_pred_no_swing'].values[i]) <= df_model_2023_group_swing_plus_no['y_pred_no_swing'].quantile(0.02) or \
|
238 |
+
(df_model_2023_group_swing_plus_no['y_pred'].values[i]) >= df_model_2023_group_swing_plus_no['y_pred'].quantile(0.98) or \
|
239 |
+
(df_model_2023_group_swing_plus_no['y_pred'].values[i]) <= df_model_2023_group_swing_plus_no['y_pred'].quantile(0.02) or \
|
240 |
+
(str(df_model_2023_group_swing_plus_no.index.get_level_values(0).values[i]) in (input.name_list())) :
|
241 |
+
ts.append(ax.text(x=df_model_2023_group_swing_plus_no['y_pred_swing'].values[i]*100,
|
242 |
+
y=df_model_2023_group_swing_plus_no['y_pred_no_swing'].values[i]*100,
|
243 |
+
s=df_model_2023_group_swing_plus_no.index.get_level_values(1).values[i],
|
244 |
+
fontsize=8))
|
245 |
+
|
246 |
+
ax.text(x=x_lim_min+abs(x_lim_min)*0.02,y=y_lim_max-abs(y_lim_max-y_lim_min)*0.02,s=f'Min. {plot_min} Pitches',fontsize='10',fontstyle='oblique',va='top',
|
247 |
+
bbox=dict(facecolor='white', edgecolor='black'))
|
248 |
+
# ax.text(x=x_lim_min+abs(x_lim_min)*0.02,y=y_lim_max-abs(y_lim_max-y_lim_min)*0.06,s=f'Labels for Batters with\nDescion Value xRV/100 > {thresh:.2f}\nDescion Value xRV/100 < {thresh_2:.2f}',fontsize='10',fontstyle='oblique',va='top',
|
249 |
+
# bbox=dict(facecolor='white', edgecolor='black'))
|
250 |
+
ax.text(x=x_lim_min+abs(x_lim_min)*0.02,y=y_lim_max-abs(y_lim_max-y_lim_min)*0.06,s=f'Point Size Represents Swing%',fontsize='10',fontstyle='oblique',va='top',
|
251 |
+
bbox=dict(facecolor='white', edgecolor='black'))
|
252 |
+
|
253 |
+
adjust_text(ts,
|
254 |
+
arrowprops=dict(arrowstyle="-", color=colour_palette[4], lw=1),ax=ax)
|
255 |
+
|
256 |
+
axfooter1.axis('off')
|
257 |
+
axfooter3.axis('off')
|
258 |
+
axheader.axis('off')
|
259 |
+
|
260 |
+
axheader.text(s=f'{input.level_list()} In-Zone vs Out-of-Zone Awareness Value',fontsize=24,x=0.5,y=0,va='top',ha='center')
|
261 |
+
|
262 |
+
axfooter1.text(0.05, -0.5,"By: Thomas Nestico\n @TJStats",ha='left', va='bottom',fontsize=12)
|
263 |
+
axfooter3.text(0.95, -0.5, "Data: MLB",ha='right', va='bottom',fontsize=12)
|
264 |
+
fig.subplots_adjust(left=0.01, right=0.99, top=0.975, bottom=0.025)
|
265 |
+
|
266 |
+
@output
|
267 |
+
@render.plot(alt="hex_plot")
|
268 |
+
@reactive.event(input.go, ignore_none=False)
|
269 |
+
def dv_plot():
|
270 |
+
|
271 |
+
if input.batter_id() is "":
|
272 |
+
fig = plt.figure(figsize=(12, 12))
|
273 |
+
fig.text(s='Please Select a Batter',x=0.5,y=0.5)
|
274 |
+
return
|
275 |
+
|
276 |
+
player_select = int(input.batter_id())
|
277 |
+
player_select_full = batter_dict[player_select]
|
278 |
+
|
279 |
+
|
280 |
+
df_will = df_model_2023[df_model_2023.batter_id == player_select].sort_values(by=['game_date','start_time'])
|
281 |
+
df_will = df_will[df_will['level']==input.level_list()]
|
282 |
+
# df_will['y_pred'] = df_will['y_pred'] - df_will['y_pred'].mean()
|
283 |
+
|
284 |
+
win = max(1,int(input.rolling_window()))
|
285 |
+
sns.set_theme(style="whitegrid", palette="pastel")
|
286 |
+
#fig, ax = plt.subplots(1, 1, figsize=(10, 10),dpi=300)
|
287 |
+
|
288 |
+
from matplotlib.gridspec import GridSpec
|
289 |
+
# fig,ax = plt.subplots(figsize=(12, 12),dpi=150)
|
290 |
+
fig = plt.figure(figsize=(12,12))
|
291 |
+
gs = GridSpec(3, 3, height_ratios=[0.3,10,0.2], width_ratios=[0.01,2,0.01])
|
292 |
+
|
293 |
+
axheader = fig.add_subplot(gs[0, :])
|
294 |
+
ax10 = fig.add_subplot(gs[1, 0])
|
295 |
+
ax = fig.add_subplot(gs[1, 1]) # Subplot at the top-right position
|
296 |
+
ax12 = fig.add_subplot(gs[1, 2])
|
297 |
+
axfooter1 = fig.add_subplot(gs[-1, :])
|
298 |
+
|
299 |
+
axheader.axis('off')
|
300 |
+
ax10.axis('off')
|
301 |
+
ax12.axis('off')
|
302 |
+
axfooter1.axis('off')
|
303 |
+
|
304 |
+
|
305 |
+
sns.lineplot( x= range(win,len(df_will.y_pred.rolling(window=win).mean())+1),
|
306 |
+
y= df_will.y_pred.rolling(window=win).mean().dropna()*100,
|
307 |
+
color=colour_palette[0],linewidth=2,ax=ax,zorder=100)
|
308 |
+
|
309 |
+
ax.hlines(y=df_will.y_pred.mean()*100,xmin=win,xmax=len(df_will),color=colour_palette[0],linestyle='--',
|
310 |
+
label=f'{player_select_full} Average: {df_will.y_pred.mean()*100:.2} xRV/100 ({p.ordinal(int(np.around(percentileofscore(df_model_2023_group_swing_plus_no.y_pred,df_will.y_pred.mean(), kind="strict"))))} Percentile)')
|
311 |
+
|
312 |
+
# ax.hlines(y=df_model_2023.y_pred.std()*100,xmin=win,xmax=len(df_will))
|
313 |
+
|
314 |
+
# sns.scatterplot( x= [976],
|
315 |
+
# y= df_will.y_pred.rolling(window=win).mean().min()*100,
|
316 |
+
# color=colour_palette[0],linewidth=2,ax=ax,zorder=100,s=100,edgecolor=colour_palette[7])
|
317 |
+
|
318 |
+
|
319 |
+
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred.mean()*100,xmin=win,xmax=len(df_will),color=colour_palette[1],linestyle='-.',alpha=1,
|
320 |
+
label = f'{input.level_list()} Average: {df_model_2023_group_swing_plus_no.y_pred.mean()*100:.2f} xRV/100')
|
321 |
+
|
322 |
+
ax.legend()
|
323 |
+
|
324 |
+
hard_hit_dates = [df_model_2023_group_swing_plus_no.y_pred.quantile(0.9)*100,
|
325 |
+
df_model_2023_group_swing_plus_no.y_pred.quantile(0.75)*100,
|
326 |
+
df_model_2023_group_swing_plus_no.y_pred.quantile(0.25)*100,
|
327 |
+
df_model_2023_group_swing_plus_no.y_pred.quantile(0.1)*100]
|
328 |
+
|
329 |
+
|
330 |
+
|
331 |
+
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred.quantile(0.9)*100,xmin=win,xmax=len(df_will),color=colour_palette[2],linestyle='dotted',alpha=0.5,zorder=1)
|
332 |
+
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred.quantile(0.75)*100,xmin=win,xmax=len(df_will),color=colour_palette[3],linestyle='dotted',alpha=0.5,zorder=1)
|
333 |
+
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred.quantile(0.25)*100,xmin=win,xmax=len(df_will),color=colour_palette[4],linestyle='dotted',alpha=0.5,zorder=1)
|
334 |
+
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred.quantile(0.1)*100,xmin=win,xmax=len(df_will),color=colour_palette[5],linestyle='dotted',alpha=0.5,zorder=1)
|
335 |
+
|
336 |
+
hard_hit_text = ['90th %','75th %','25th %','10th %']
|
337 |
+
for i, x in enumerate(hard_hit_dates):
|
338 |
+
ax.text(min(win+win/1000,win+win+5), x ,hard_hit_text[i], rotation=0,va='center', ha='left',
|
339 |
+
bbox=dict(facecolor='white',alpha=0.7, edgecolor=colour_palette[2+i], pad=2),zorder=11)
|
340 |
+
|
341 |
+
# # Annotate with an arrow
|
342 |
+
# ax.annotate('June 6, 2023\nSeason Worst Decision Value', xy=(976, df_will.y_pred.rolling(window=win).mean().min()*100-0.03),
|
343 |
+
# xytext=(976 - 150, df_will.y_pred.rolling(window=win).mean().min()*100 - 0.2),
|
344 |
+
# arrowprops=dict(facecolor=colour_palette[7], shrink=0.01),zorder=150,fontsize=10,
|
345 |
+
# bbox=dict(facecolor='white', edgecolor='black'),va='top')
|
346 |
+
|
347 |
+
ax.set_xlim(win,len(df_will))
|
348 |
+
#ax.set_ylim(-1.5,1.5)
|
349 |
+
ax.set_yticks([-1.5,-1,-0.5,0,0.5,1,1.5])
|
350 |
+
ax.set_xlabel('Pitch')
|
351 |
+
ax.set_ylabel('Expected Run Value Added per 100 Pitches (xRV/100)')
|
352 |
+
|
353 |
+
axheader.text(s=f'{player_select_full} - {input.level_list()} - {win} Pitch Rolling Swing Decision Expected Run Value Added',x=0.5,y=-0.5,ha='center',va='bottom',fontsize=14)
|
354 |
+
axfooter1.text(.05, 0.2, "By: Thomas Nestico",ha='left', va='bottom',fontsize=12)
|
355 |
+
axfooter1.text(0.95, 0.2, "Data: MLB",ha='right', va='bottom',fontsize=12)
|
356 |
+
|
357 |
+
fig.subplots_adjust(left=0.01, right=0.99, top=0.98, bottom=0.02)
|
358 |
+
#fig.set_facecolor(colour_palette[5])
|
359 |
+
|
360 |
+
@output
|
361 |
+
@render.plot(alt="hex_plot")
|
362 |
+
@reactive.event(input.go, ignore_none=False)
|
363 |
+
def iz_plot():
|
364 |
+
|
365 |
+
if input.batter_id() is "":
|
366 |
+
fig = plt.figure(figsize=(12, 12))
|
367 |
+
fig.text(s='Please Select a Batter',x=0.5,y=0.5)
|
368 |
+
return
|
369 |
+
|
370 |
+
player_select = int(input.batter_id())
|
371 |
+
player_select_full = batter_dict[player_select]
|
372 |
+
|
373 |
+
|
374 |
+
df_will = df_model_2023[df_model_2023.batter_id == player_select].sort_values(by=['game_date','start_time'])
|
375 |
+
df_will = df_will[df_will['level']==input.level_list()]
|
376 |
+
df_will = df_will[df_will['is_swing'] != 1]
|
377 |
+
|
378 |
+
win = max(1,int(input.rolling_window()))
|
379 |
+
sns.set_theme(style="whitegrid", palette="pastel")
|
380 |
+
#fig, ax = plt.subplots(1, 1, figsize=(10, 10),dpi=300)
|
381 |
+
|
382 |
+
from matplotlib.gridspec import GridSpec
|
383 |
+
# fig,ax = plt.subplots(figsize=(12, 12),dpi=150)
|
384 |
+
fig = plt.figure(figsize=(12,12))
|
385 |
+
gs = GridSpec(3, 3, height_ratios=[0.3,10,0.2], width_ratios=[0.01,2,0.01])
|
386 |
+
|
387 |
+
axheader = fig.add_subplot(gs[0, :])
|
388 |
+
ax10 = fig.add_subplot(gs[1, 0])
|
389 |
+
ax = fig.add_subplot(gs[1, 1]) # Subplot at the top-right position
|
390 |
+
ax12 = fig.add_subplot(gs[1, 2])
|
391 |
+
axfooter1 = fig.add_subplot(gs[-1, :])
|
392 |
+
|
393 |
+
axheader.axis('off')
|
394 |
+
ax10.axis('off')
|
395 |
+
ax12.axis('off')
|
396 |
+
axfooter1.axis('off')
|
397 |
+
|
398 |
+
|
399 |
+
sns.lineplot( x= range(win,len(df_will.y_pred.rolling(window=win).mean())+1),
|
400 |
+
y= df_will.y_pred.rolling(window=win).mean().dropna()*100,
|
401 |
+
color=colour_palette[0],linewidth=2,ax=ax,zorder=100)
|
402 |
+
|
403 |
+
ax.hlines(y=df_will.y_pred.mean()*100,xmin=win,xmax=len(df_will),color=colour_palette[0],linestyle='--',
|
404 |
+
label=f'{player_select_full} Average: {df_will.y_pred.mean()*100:.2} xRV/100 ({p.ordinal(int(np.around(percentileofscore(df_model_2023_group_swing_plus_no.y_pred_no_swing,df_will.y_pred.mean(), kind="strict"))))} Percentile)')
|
405 |
+
|
406 |
+
# ax.hlines(y=df_model_2023.y_pred_no_swing.std()*100,xmin=win,xmax=len(df_will))
|
407 |
+
|
408 |
+
# sns.scatterplot( x= [976],
|
409 |
+
# y= df_will.y_pred.rolling(window=win).mean().min()*100,
|
410 |
+
# color=colour_palette[0],linewidth=2,ax=ax,zorder=100,s=100,edgecolor=colour_palette[7])
|
411 |
+
|
412 |
+
|
413 |
+
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred_no_swing.mean()*100,xmin=win,xmax=len(df_will),color=colour_palette[1],linestyle='-.',alpha=1,
|
414 |
+
label = f'{input.level_list()} Average: {df_model_2023_group_swing_plus_no.y_pred_no_swing.mean()*100:.2} xRV/100')
|
415 |
+
|
416 |
+
ax.legend()
|
417 |
+
|
418 |
+
hard_hit_dates = [df_model_2023_group_swing_plus_no.y_pred_no_swing.quantile(0.9)*100,
|
419 |
+
df_model_2023_group_swing_plus_no.y_pred_no_swing.quantile(0.75)*100,
|
420 |
+
df_model_2023_group_swing_plus_no.y_pred_no_swing.quantile(0.25)*100,
|
421 |
+
df_model_2023_group_swing_plus_no.y_pred_no_swing.quantile(0.1)*100]
|
422 |
+
|
423 |
+
|
424 |
+
|
425 |
+
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred_no_swing.quantile(0.9)*100,xmin=win,xmax=len(df_will),color=colour_palette[2],linestyle='dotted',alpha=0.5,zorder=1)
|
426 |
+
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred_no_swing.quantile(0.75)*100,xmin=win,xmax=len(df_will),color=colour_palette[3],linestyle='dotted',alpha=0.5,zorder=1)
|
427 |
+
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred_no_swing.quantile(0.25)*100,xmin=win,xmax=len(df_will),color=colour_palette[4],linestyle='dotted',alpha=0.5,zorder=1)
|
428 |
+
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred_no_swing.quantile(0.1)*100,xmin=win,xmax=len(df_will),color=colour_palette[5],linestyle='dotted',alpha=0.5,zorder=1)
|
429 |
+
|
430 |
+
hard_hit_text = ['90th %','75th %','25th %','10th %']
|
431 |
+
for i, x in enumerate(hard_hit_dates):
|
432 |
+
ax.text(min(win+win/1000,win+win+5), x ,hard_hit_text[i], rotation=0,va='center', ha='left',
|
433 |
+
bbox=dict(facecolor='white',alpha=0.7, edgecolor=colour_palette[2+i], pad=2),zorder=11)
|
434 |
+
|
435 |
+
# # Annotate with an arrow
|
436 |
+
# ax.annotate('June 6, 2023\nSeason Worst Decision Value', xy=(976, df_will.y_pred.rolling(window=win).mean().min()*100-0.03),
|
437 |
+
# xytext=(976 - 150, df_will.y_pred.rolling(window=win).mean().min()*100 - 0.2),
|
438 |
+
# arrowprops=dict(facecolor=colour_palette[7], shrink=0.01),zorder=150,fontsize=10,
|
439 |
+
# bbox=dict(facecolor='white', edgecolor='black'),va='top')
|
440 |
+
|
441 |
+
ax.set_xlim(win,len(df_will))
|
442 |
+
ax.set_yticks([1.0,1.5,2.0,2.5,3.0])
|
443 |
+
# ax.set_ylim(1,3)
|
444 |
+
|
445 |
+
ax.set_xlabel('Takes')
|
446 |
+
ax.set_ylabel('Expected Run Value Added per 100 Pitches (xRV/100)')
|
447 |
+
|
448 |
+
axheader.text(s=f'{player_select_full} - {input.level_list()} - {win} Pitch Rolling In-Zone Awareness Expected Run Value Added',x=0.5,y=-0.5,ha='center',va='bottom',fontsize=14)
|
449 |
+
axfooter1.text(.05, 0.2, "By: Thomas Nestico",ha='left', va='bottom',fontsize=12)
|
450 |
+
axfooter1.text(0.95, 0.2, "Data: MLB",ha='right', va='bottom',fontsize=12)
|
451 |
+
|
452 |
+
fig.subplots_adjust(left=0.01, right=0.99, top=0.98, bottom=0.02)
|
453 |
+
|
454 |
+
@output
|
455 |
+
@render.plot(alt="hex_plot")
|
456 |
+
@reactive.event(input.go, ignore_none=False)
|
457 |
+
def oz_plot():
|
458 |
+
if input.batter_id() is "":
|
459 |
+
fig = plt.figure(figsize=(12, 12))
|
460 |
+
fig.text(s='Please Select a Batter',x=0.5,y=0.5)
|
461 |
+
return
|
462 |
+
|
463 |
+
player_select = int(input.batter_id())
|
464 |
+
player_select_full = batter_dict[player_select]
|
465 |
+
|
466 |
+
|
467 |
+
|
468 |
+
df_will = df_model_2023[df_model_2023.batter_id == player_select].sort_values(by=['game_date','start_time'])
|
469 |
+
df_will = df_will[df_will['level']==input.level_list()]
|
470 |
+
df_will = df_will[df_will['is_swing'] == 1]
|
471 |
+
|
472 |
+
win = max(1,int(input.rolling_window()))
|
473 |
+
sns.set_theme(style="whitegrid", palette="pastel")
|
474 |
+
#fig, ax = plt.subplots(1, 1, figsize=(10, 10),dpi=300)
|
475 |
+
|
476 |
+
from matplotlib.gridspec import GridSpec
|
477 |
+
# fig,ax = plt.subplots(figsize=(12, 12),dpi=150)
|
478 |
+
fig = plt.figure(figsize=(12,12))
|
479 |
+
gs = GridSpec(3, 3, height_ratios=[0.3,10,0.2], width_ratios=[0.01,2,0.01])
|
480 |
+
|
481 |
+
axheader = fig.add_subplot(gs[0, :])
|
482 |
+
ax10 = fig.add_subplot(gs[1, 0])
|
483 |
+
ax = fig.add_subplot(gs[1, 1]) # Subplot at the top-right position
|
484 |
+
ax12 = fig.add_subplot(gs[1, 2])
|
485 |
+
axfooter1 = fig.add_subplot(gs[-1, :])
|
486 |
+
|
487 |
+
axheader.axis('off')
|
488 |
+
ax10.axis('off')
|
489 |
+
ax12.axis('off')
|
490 |
+
axfooter1.axis('off')
|
491 |
+
|
492 |
+
|
493 |
+
sns.lineplot( x= range(win,len(df_will.y_pred.rolling(window=win).mean())+1),
|
494 |
+
y= df_will.y_pred.rolling(window=win).mean().dropna()*100,
|
495 |
+
color=colour_palette[0],linewidth=2,ax=ax,zorder=100)
|
496 |
+
|
497 |
+
ax.hlines(y=df_will.y_pred.mean()*100,xmin=win,xmax=len(df_will),color=colour_palette[0],linestyle='--',
|
498 |
+
label=f'{player_select_full} Average: {df_will.y_pred.mean()*100:.2} xRV/100 ({p.ordinal(int(np.around(percentileofscore(df_model_2023_group_swing_plus_no.y_pred_swing,df_will.y_pred.mean(), kind="strict"))))} Percentile)')
|
499 |
+
|
500 |
+
# ax.hlines(y=df_model_2023.y_pred_swing.std()*100,xmin=win,xmax=len(df_will))
|
501 |
+
|
502 |
+
# sns.scatterplot( x= [976],
|
503 |
+
# y= df_will.y_pred.rolling(window=win).mean().min()*100,
|
504 |
+
# color=colour_palette[0],linewidth=2,ax=ax,zorder=100,s=100,edgecolor=colour_palette[7])
|
505 |
+
|
506 |
+
|
507 |
+
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred_swing.mean()*100,xmin=win,xmax=len(df_will),color=colour_palette[1],linestyle='-.',alpha=1,
|
508 |
+
label = f'{input.level_list()} Average: {df_model_2023_group_swing_plus_no.y_pred_swing.mean()*100:.2} xRV/100')
|
509 |
+
|
510 |
+
ax.legend()
|
511 |
+
|
512 |
+
hard_hit_dates = [df_model_2023_group_swing_plus_no.y_pred_swing.quantile(0.9)*100,
|
513 |
+
df_model_2023_group_swing_plus_no.y_pred_swing.quantile(0.75)*100,
|
514 |
+
df_model_2023_group_swing_plus_no.y_pred_swing.quantile(0.25)*100,
|
515 |
+
df_model_2023_group_swing_plus_no.y_pred_swing.quantile(0.1)*100]
|
516 |
+
|
517 |
+
|
518 |
+
|
519 |
+
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred_swing.quantile(0.9)*100,xmin=win,xmax=len(df_will),color=colour_palette[2],linestyle='dotted',alpha=0.5,zorder=1)
|
520 |
+
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred_swing.quantile(0.75)*100,xmin=win,xmax=len(df_will),color=colour_palette[3],linestyle='dotted',alpha=0.5,zorder=1)
|
521 |
+
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred_swing.quantile(0.25)*100,xmin=win,xmax=len(df_will),color=colour_palette[4],linestyle='dotted',alpha=0.5,zorder=1)
|
522 |
+
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred_swing.quantile(0.1)*100,xmin=win,xmax=len(df_will),color=colour_palette[5],linestyle='dotted',alpha=0.5,zorder=1)
|
523 |
+
|
524 |
+
hard_hit_text = ['90th %','75th %','25th %','10th %']
|
525 |
+
for i, x in enumerate(hard_hit_dates):
|
526 |
+
ax.text(min(win+win/1000,win+win+5), x ,hard_hit_text[i], rotation=0,va='center', ha='left',
|
527 |
+
bbox=dict(facecolor='white',alpha=0.7, edgecolor=colour_palette[2+i], pad=2),zorder=11)
|
528 |
+
|
529 |
+
# # Annotate with an arrow
|
530 |
+
# ax.annotate('June 6, 2023\nSeason Worst Decision Value', xy=(976, df_will.y_pred.rolling(window=win).mean().min()*100-0.03),
|
531 |
+
# xytext=(976 - 150, df_will.y_pred.rolling(window=win).mean().min()*100 - 0.2),
|
532 |
+
# arrowprops=dict(facecolor=colour_palette[7], shrink=0.01),zorder=150,fontsize=10,
|
533 |
+
# bbox=dict(facecolor='white', edgecolor='black'),va='top')
|
534 |
+
|
535 |
+
ax.set_xlim(win,len(df_will))
|
536 |
+
#ax.set_ylim(-3.25,-1.25)
|
537 |
+
ax.set_yticks([-3.25,-2.75,-2.25,-1.75,-1.25])
|
538 |
+
ax.set_xlabel('Swing')
|
539 |
+
ax.set_ylabel('Expected Run Value Added per 100 Pitches (xRV/100)')
|
540 |
+
|
541 |
+
axheader.text(s=f'{player_select_full} - {input.level_list()} - {win} Pitch Rolling Out of Zone Awareness Expected Run Value Added',x=0.5,y=-0.5,ha='center',va='bottom',fontsize=14)
|
542 |
+
axfooter1.text(.05, 0.2, "By: Thomas Nestico",ha='left', va='bottom',fontsize=12)
|
543 |
+
axfooter1.text(0.95, 0.2, "Data: MLB",ha='right', va='bottom',fontsize=12)
|
544 |
+
|
545 |
+
fig.subplots_adjust(left=0.01, right=0.99, top=0.98, bottom=0.02)
|
546 |
+
|
547 |
+
app = App(ui.page_fluid(
|
548 |
+
ui.tags.base(href=base_url),
|
549 |
+
ui.tags.div(
|
550 |
+
{"style": "width:90%;margin: 0 auto;max-width: 1600px;"},
|
551 |
+
ui.tags.style(
|
552 |
+
"""
|
553 |
+
h4 {
|
554 |
+
margin-top: 1em;font-size:35px;
|
555 |
+
}
|
556 |
+
h2{
|
557 |
+
font-size:25px;
|
558 |
+
}
|
559 |
+
"""
|
560 |
+
),
|
561 |
+
shinyswatch.theme.simplex(),
|
562 |
+
ui.tags.h4("TJStats"),
|
563 |
+
ui.tags.i("Baseball Analytics and Visualizations"),
|
564 |
+
ui.markdown("""<a href='https://www.patreon.com/tj_stats'>Support me on Patreon for Access to 2024 Apps</a><sup>1</sup>"""),
|
565 |
+
# ui.navset_tab(
|
566 |
+
# ui.nav_control(
|
567 |
+
# ui.a(
|
568 |
+
# "Home",
|
569 |
+
# href="home/"
|
570 |
+
# ),
|
571 |
+
# ),
|
572 |
+
# ui.nav_menu(
|
573 |
+
# "Batter Charts",
|
574 |
+
# ui.nav_control(
|
575 |
+
# ui.a(
|
576 |
+
# "Batting Rolling",
|
577 |
+
# href="rolling_batter/"
|
578 |
+
# ),
|
579 |
+
# ui.a(
|
580 |
+
# "Spray & Damage",
|
581 |
+
# href="https://nesticot-tjstats-site-spray.hf.space/"
|
582 |
+
# ),
|
583 |
+
# ui.a(
|
584 |
+
# "Decision Value",
|
585 |
+
# href="decision_value/"
|
586 |
+
# ),
|
587 |
+
# # ui.a(
|
588 |
+
# # "Damage Model",
|
589 |
+
# # href="damage_model/"
|
590 |
+
# # ),
|
591 |
+
# ui.a(
|
592 |
+
# "Batter Scatter",
|
593 |
+
# href="batter_scatter/"
|
594 |
+
# ),
|
595 |
+
# # ui.a(
|
596 |
+
# # "EV vs LA Plot",
|
597 |
+
# # href="ev_angle/"
|
598 |
+
# # ),
|
599 |
+
# ui.a(
|
600 |
+
# "Statcast Compare",
|
601 |
+
# href="statcast_compare/"
|
602 |
+
# )
|
603 |
+
# ),
|
604 |
+
# ),
|
605 |
+
# ui.nav_menu(
|
606 |
+
# "Pitcher Charts",
|
607 |
+
# ui.nav_control(
|
608 |
+
# ui.a(
|
609 |
+
# "Pitcher Rolling",
|
610 |
+
# href="rolling_pitcher/"
|
611 |
+
# ),
|
612 |
+
# ui.a(
|
613 |
+
# "Pitcher Summary",
|
614 |
+
# href="pitching_summary_graphic_new/"
|
615 |
+
# ),
|
616 |
+
# ui.a(
|
617 |
+
# "Pitcher Scatter",
|
618 |
+
# href="pitcher_scatter/"
|
619 |
+
# )
|
620 |
+
# ),
|
621 |
+
# )),
|
622 |
+
ui.navset_tab(
|
623 |
+
ui.nav_control(
|
624 |
+
ui.a(
|
625 |
+
"Home",
|
626 |
+
href="home/"
|
627 |
+
),
|
628 |
+
),
|
629 |
+
ui.nav_menu(
|
630 |
+
"Batter Charts",
|
631 |
+
ui.nav_control(
|
632 |
+
ui.a(
|
633 |
+
"Batting Rolling",
|
634 |
+
href="https://nesticot-tjstats-site-rolling-batter.hf.space/"
|
635 |
+
),
|
636 |
+
ui.a(
|
637 |
+
"Spray",
|
638 |
+
href="https://nesticot-tjstats-site-spray.hf.space/"
|
639 |
+
),
|
640 |
+
ui.a(
|
641 |
+
"Decision Value",
|
642 |
+
href="https://nesticot-tjstats-site-decision-value.hf.space/"
|
643 |
+
),
|
644 |
+
ui.a(
|
645 |
+
"Damage Model",
|
646 |
+
href="https://nesticot-tjstats-site-damage.hf.space/"
|
647 |
+
),
|
648 |
+
ui.a(
|
649 |
+
"Batter Scatter",
|
650 |
+
href="https://nesticot-tjstats-site-batter-scatter.hf.space/"
|
651 |
+
),
|
652 |
+
ui.a(
|
653 |
+
"EV vs LA Plot",
|
654 |
+
href="https://nesticot-tjstats-site-ev-angle.hf.space/"
|
655 |
+
),
|
656 |
+
ui.a(
|
657 |
+
"Statcast Compare",
|
658 |
+
href="https://nesticot-tjstats-site-statcast-compare.hf.space/"
|
659 |
+
),
|
660 |
+
ui.a(
|
661 |
+
"MLB/MiLB Cards",
|
662 |
+
href="https://nesticot-tjstats-site-mlb-cards.hf.space/"
|
663 |
+
)
|
664 |
+
),
|
665 |
+
),
|
666 |
+
ui.nav_menu(
|
667 |
+
"Pitcher Charts",
|
668 |
+
ui.nav_control(
|
669 |
+
ui.a(
|
670 |
+
"Pitcher Rolling",
|
671 |
+
href="https://nesticot-tjstats-site-rolling-pitcher.hf.space/"
|
672 |
+
),
|
673 |
+
ui.a(
|
674 |
+
"Pitcher Summary",
|
675 |
+
href="https://nesticot-tjstats-site-pitching-summary-graphic-new.hf.space/"
|
676 |
+
),
|
677 |
+
ui.a(
|
678 |
+
"Pitcher Scatter",
|
679 |
+
href="https://nesticot-tjstats-site-pitcher-scatter.hf.space"
|
680 |
+
)
|
681 |
+
),
|
682 |
+
)), ui.row(
|
683 |
+
ui.layout_sidebar(
|
684 |
+
|
685 |
+
ui.panel_sidebar(
|
686 |
+
|
687 |
+
|
688 |
+
ui.input_numeric("pitch_min",
|
689 |
+
"Select Pitch Minimum [min. 250] (Scatter)",
|
690 |
+
value=500,
|
691 |
+
min=250),
|
692 |
+
|
693 |
+
ui.input_select("name_list",
|
694 |
+
"Select Players to List (Scatter)",
|
695 |
+
batter_dict,
|
696 |
+
selectize=True,
|
697 |
+
multiple=True),
|
698 |
+
ui.input_select("batter_id",
|
699 |
+
"Select Batter (Rolling)",
|
700 |
+
batter_dict,
|
701 |
+
width=1,
|
702 |
+
size=1,
|
703 |
+
selectize=True),
|
704 |
+
ui.input_numeric("rolling_window",
|
705 |
+
"Select Rolling Window (Rolling)",
|
706 |
+
value=100,
|
707 |
+
min=1),
|
708 |
+
|
709 |
+
ui.input_select("level_list",
|
710 |
+
"Select Level",
|
711 |
+
['MLB','AAA'],
|
712 |
+
selected='MLB'),
|
713 |
+
ui.input_action_button("go", "Generate",class_="btn-primary"),
|
714 |
+
),
|
715 |
+
|
716 |
+
ui.panel_main(
|
717 |
+
ui.navset_tab(
|
718 |
+
|
719 |
+
ui.nav("Scatter Plot",
|
720 |
+
ui.output_plot('scatter_plot',
|
721 |
+
width='1000px',
|
722 |
+
height='1000px')),
|
723 |
+
ui.nav("Rolling DV",
|
724 |
+
ui.output_plot('dv_plot',
|
725 |
+
width='1000px',
|
726 |
+
height='1000px')),
|
727 |
+
ui.nav("Rolling In-Zone",
|
728 |
+
ui.output_plot('iz_plot',
|
729 |
+
width='1000px',
|
730 |
+
height='1000px')),
|
731 |
+
ui.nav("Rolling Out-of-Zone",
|
732 |
+
ui.output_plot('oz_plot',
|
733 |
+
width='1000px',
|
734 |
+
height='1000px'))
|
735 |
+
))
|
736 |
+
)),)),server)
|