Spaces:
Running
Running
Upload 2 files
Browse files- app.py +554 -0
- rolling_batter_functions.py +338 -0
app.py
CHANGED
@@ -0,0 +1,554 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from shiny import App, Inputs, Outputs, Session, reactive, render, req, ui
|
2 |
+
import datasets
|
3 |
+
from datasets import load_dataset
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import seaborn as sns
|
8 |
+
import numpy as np
|
9 |
+
from scipy.stats import gaussian_kde
|
10 |
+
import matplotlib
|
11 |
+
from matplotlib.ticker import MaxNLocator
|
12 |
+
from matplotlib.gridspec import GridSpec
|
13 |
+
from scipy.stats import zscore
|
14 |
+
import math
|
15 |
+
import matplotlib
|
16 |
+
from adjustText import adjust_text
|
17 |
+
import matplotlib.ticker as mtick
|
18 |
+
from shinywidgets import output_widget, render_widget
|
19 |
+
import pandas as pd
|
20 |
+
#from configure import base_url
|
21 |
+
import shinyswatch
|
22 |
+
import inflect
|
23 |
+
from matplotlib.pyplot import text
|
24 |
+
import rolling_batter_functions as rbf
|
25 |
+
|
26 |
+
def percentile(n):
|
27 |
+
def percentile_(x):
|
28 |
+
return np.nanpercentile(x, n)
|
29 |
+
percentile_.__name__ = 'percentile_%s' % n
|
30 |
+
return percentile_
|
31 |
+
|
32 |
+
colour_palette = ['#FFB000','#648FFF','#785EF0',
|
33 |
+
'#DC267F','#FE6100','#3D1EB2','#894D80','#16AA02','#B5592B','#A3C1ED']
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
print('Starting Everything:')
|
38 |
+
# exit_velo_df = milb_a_ev_df.append([triple_a_ev_df,double_a_ev_df,a_high_a_ev_df,single_a_ev_df]).reset_index(drop=True)
|
39 |
+
# player_df_all = mlb_a_player_df.append([triple_a_player_df,double_a_player_df,a_high_a_player_df,single_a_player_df]).reset_index(drop=True)
|
40 |
+
# exit_velo_df = pd.read_csv('exit_velo_df_all.csv',index_col=[0])
|
41 |
+
# player_df_all = pd.read_csv('player_df_all.csv',index_col=[0])
|
42 |
+
|
43 |
+
# pa_df = pd.read_csv('pa_df_all.csv',index_col=[0])
|
44 |
+
# pa_df_full_na = pa_df.dropna()
|
45 |
+
|
46 |
+
### Import Datasets
|
47 |
+
dataset = load_dataset('nesticot/mlb_data', data_files=['mlb_pitch_data_2024.csv',
|
48 |
+
])
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
dataset_train = dataset['train']
|
53 |
+
exit_velo_df_mlb = dataset_train.to_pandas().set_index(list(dataset_train.features.keys())[0]).reset_index(drop=True)
|
54 |
+
#print(df_2023)
|
55 |
+
exit_velo_df_mlb['level'] = 'MLB'
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
### Import Datasets
|
60 |
+
dataset = load_dataset('nesticot/mlb_data', data_files=['aaa_pitch_data_2024.csv',
|
61 |
+
])
|
62 |
+
dataset_train = dataset['train']
|
63 |
+
exit_velo_df_aaa = dataset_train.to_pandas().set_index(list(dataset_train.features.keys())[0]).reset_index(drop=True)
|
64 |
+
#print(df_2023)
|
65 |
+
exit_velo_df_aaa['level'] = 'AAA'
|
66 |
+
|
67 |
+
# ### Import Datasets
|
68 |
+
# dataset = load_dataset('nesticot/mlb_data', data_files=['aa_pitch_data_2023.csv',
|
69 |
+
# ])
|
70 |
+
# dataset_train = dataset['train']
|
71 |
+
# exit_velo_df_aa = dataset_train.to_pandas().set_index(list(dataset_train.features.keys())[0]).reset_index(drop=True)
|
72 |
+
# #print(df_2023)
|
73 |
+
# exit_velo_df_aa['level'] = 'AA'
|
74 |
+
|
75 |
+
# ### Import Datasets
|
76 |
+
# dataset = load_dataset('nesticot/mlb_data', data_files=['high_a_pitch_data_2023.csv',
|
77 |
+
# ])
|
78 |
+
# dataset_train = dataset['train']
|
79 |
+
# exit_velo_df_ha = dataset_train.to_pandas().set_index(list(dataset_train.features.keys())[0]).reset_index(drop=True)
|
80 |
+
# #print(df_2023)
|
81 |
+
# exit_velo_df_ha['level'] = 'A+'
|
82 |
+
|
83 |
+
# ### Import Datasets
|
84 |
+
# dataset = load_dataset('nesticot/mlb_data', data_files=['a_pitch_data_2023.csv',
|
85 |
+
# ])
|
86 |
+
# dataset_train = dataset['train']
|
87 |
+
# exit_velo_df_a = dataset_train.to_pandas().set_index(list(dataset_train.features.keys())[0]).reset_index(drop=True)
|
88 |
+
# #print(df_2023)
|
89 |
+
# exit_velo_df_a['level'] = 'A'
|
90 |
+
|
91 |
+
# exit_velo_df = pd.concat([exit_velo_df_mlb,exit_velo_df_aaa,exit_velo_df_aa,exit_velo_df_ha,exit_velo_df_a])
|
92 |
+
exit_velo_df = pd.concat([exit_velo_df_mlb,exit_velo_df_aaa])
|
93 |
+
# exit_velo_df_copy = exit_velo_df.copy()
|
94 |
+
|
95 |
+
# exit_velo_df = exit_velo_df_copy.copy()
|
96 |
+
|
97 |
+
end_codes = ['strikeout', 'field_out', 'single', 'walk', 'hit_by_pitch',
|
98 |
+
'double', 'sac_fly', 'force_out', 'home_run',
|
99 |
+
'grounded_into_double_play', 'fielders_choice', 'field_error',
|
100 |
+
'triple', 'sac_bunt', 'double_play', 'intent_walk',
|
101 |
+
'fielders_choice_out', 'strikeout_double_play',
|
102 |
+
'sac_fly_double_play', 'catcher_interf', 'other_out']
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
exit_velo_df['pa'] = exit_velo_df.event_type.isin(end_codes)
|
107 |
+
#exit_velo_df['pa'] = 1
|
108 |
+
exit_velo_df['k'] = exit_velo_df.event_type.isin(list(filter(None, [x if 'strikeout' in x else '' for x in exit_velo_df.event_type.fillna('None').unique()])))
|
109 |
+
exit_velo_df['bb'] = exit_velo_df.event_type.isin(list(filter(None, [x if 'walk' in x else '' for x in exit_velo_df.event_type.fillna('None').unique()])))
|
110 |
+
|
111 |
+
#exit_velo_df['k_minus_bb'] = exit_velo_df['k'].astype(np.float32)-exit_velo_df['bb'].astype(np.float32)
|
112 |
+
exit_velo_df['bb_minus_k'] = exit_velo_df['bb'].astype(np.float32)-exit_velo_df['k'].astype(np.float32)
|
113 |
+
|
114 |
+
|
115 |
+
|
116 |
+
exit_velo_df = exit_velo_df.drop_duplicates(subset=['play_id'])
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
swing_codes = ['Swinging Strike', 'In play, no out',
|
121 |
+
'Foul', 'In play, out(s)',
|
122 |
+
'In play, run(s)', 'Swinging Strike (Blocked)',
|
123 |
+
'Foul Bunt','Foul Tip', 'Missed Bunt','Foul Pitchout','Swinging Pitchout']
|
124 |
+
|
125 |
+
swings_in = ['Swinging Strike', 'In play, no out',
|
126 |
+
'Foul', 'In play, out(s)',
|
127 |
+
'In play, run(s)', 'Swinging Strike (Blocked)',
|
128 |
+
'Foul Bunt','Foul Tip', 'Missed Bunt','Foul Pitchout','Swinging Pitchout']
|
129 |
+
|
130 |
+
swing_strike_codes = ['Swinging Strike',
|
131 |
+
'Swinging Strike (Blocked)','Missed Bunt','Foul Tip','Swinging Pitchout']
|
132 |
+
|
133 |
+
|
134 |
+
contact_codes = ['In play, no out',
|
135 |
+
'Foul', 'In play, out(s)',
|
136 |
+
'In play, run(s)',
|
137 |
+
'Foul Bunt']
|
138 |
+
|
139 |
+
codes_in = ['In play, out(s)',
|
140 |
+
'Swinging Strike',
|
141 |
+
'Ball',
|
142 |
+
'Foul',
|
143 |
+
'In play, no out',
|
144 |
+
'Called Strike',
|
145 |
+
'Foul Tip',
|
146 |
+
'In play, run(s)',
|
147 |
+
'Hit By Pitch',
|
148 |
+
'Ball In Dirt',
|
149 |
+
'Pitchout',
|
150 |
+
'Swinging Strike (Blocked)',
|
151 |
+
'Foul Bunt',
|
152 |
+
'Missed Bunt',
|
153 |
+
'Foul Pitchout',
|
154 |
+
'Intent Ball',
|
155 |
+
'Swinging Pitchout']
|
156 |
+
|
157 |
+
exit_velo_df['in_zone'] = exit_velo_df['zone'] < 10
|
158 |
+
|
159 |
+
|
160 |
+
exit_velo_df = exit_velo_df.drop_duplicates(subset=['play_id'])
|
161 |
+
|
162 |
+
exit_velo_df_codes = exit_velo_df[exit_velo_df.play_description.isin(codes_in)].dropna(subset=['in_zone'])
|
163 |
+
|
164 |
+
exit_velo_df_codes['bip'] = ~exit_velo_df_codes.launch_speed.isna()
|
165 |
+
conditions = [
|
166 |
+
(exit_velo_df_codes['launch_speed'].isna()),
|
167 |
+
(exit_velo_df_codes['launch_speed']*1.5 - exit_velo_df_codes['launch_angle'] >= 117 ) & (exit_velo_df_codes['launch_speed'] + exit_velo_df_codes['launch_angle'] >= 124) & (exit_velo_df_codes['launch_speed'] > 98) & (exit_velo_df_codes['launch_angle'] >= 8) & (exit_velo_df_codes['launch_angle'] <= 50)
|
168 |
+
]
|
169 |
+
|
170 |
+
choices = [False,True]
|
171 |
+
exit_velo_df_codes['barrel'] = np.select(conditions, choices, default=np.nan)
|
172 |
+
|
173 |
+
conditions_ss = [
|
174 |
+
(exit_velo_df_codes['launch_angle'].isna()),
|
175 |
+
(exit_velo_df_codes['launch_angle'] >= 8 ) * (exit_velo_df_codes['launch_angle'] <= 32 )
|
176 |
+
]
|
177 |
+
|
178 |
+
choices_ss = [False,True]
|
179 |
+
exit_velo_df_codes['sweet_spot'] = np.select(conditions_ss, choices_ss, default=np.nan)
|
180 |
+
|
181 |
+
|
182 |
+
conditions_hh = [
|
183 |
+
(exit_velo_df_codes['launch_speed'].isna()),
|
184 |
+
(exit_velo_df_codes['launch_speed'] >= 94.5 )
|
185 |
+
]
|
186 |
+
|
187 |
+
choices_hh = [False,True]
|
188 |
+
exit_velo_df_codes['hard_hit'] = np.select(conditions_hh, choices_hh, default=np.nan)
|
189 |
+
|
190 |
+
|
191 |
+
conditions_tb = [
|
192 |
+
(exit_velo_df_codes['event_type']=='single'),
|
193 |
+
(exit_velo_df_codes['event_type']=='double'),
|
194 |
+
(exit_velo_df_codes['event_type']=='triple'),
|
195 |
+
(exit_velo_df_codes['event_type']=='home_run'),
|
196 |
+
]
|
197 |
+
|
198 |
+
choices_tb = [1,2,3,4]
|
199 |
+
|
200 |
+
exit_velo_df_codes['tb'] = np.select(conditions_tb, choices_tb, default=np.nan)
|
201 |
+
|
202 |
+
conditions_woba = [
|
203 |
+
(exit_velo_df_codes['event_type']=='walk'),
|
204 |
+
(exit_velo_df_codes['event_type']=='hit_by_pitch'),
|
205 |
+
(exit_velo_df_codes['event_type']=='single'),
|
206 |
+
(exit_velo_df_codes['event_type']=='double'),
|
207 |
+
(exit_velo_df_codes['event_type']=='triple'),
|
208 |
+
(exit_velo_df_codes['event_type']=='home_run'),
|
209 |
+
]
|
210 |
+
|
211 |
+
choices_woba = [0.705,
|
212 |
+
0.688,
|
213 |
+
0.897,
|
214 |
+
1.233,
|
215 |
+
1.612,
|
216 |
+
2.013]
|
217 |
+
|
218 |
+
exit_velo_df_codes['woba'] = np.select(conditions_woba, choices_woba, default=np.nan)
|
219 |
+
|
220 |
+
|
221 |
+
woba_codes = ['strikeout', 'field_out', 'single', 'walk', 'hit_by_pitch',
|
222 |
+
'double', 'sac_fly', 'force_out', 'home_run',
|
223 |
+
'grounded_into_double_play', 'fielders_choice', 'field_error',
|
224 |
+
'triple', 'sac_bunt', 'double_play',
|
225 |
+
'fielders_choice_out', 'strikeout_double_play',
|
226 |
+
'sac_fly_double_play', 'other_out']
|
227 |
+
|
228 |
+
|
229 |
+
|
230 |
+
|
231 |
+
|
232 |
+
conditions_woba_code = [
|
233 |
+
(exit_velo_df_codes['event_type'].isin(woba_codes))
|
234 |
+
]
|
235 |
+
|
236 |
+
choices_woba_code = [1]
|
237 |
+
|
238 |
+
exit_velo_df_codes['woba_codes'] = np.select(conditions_woba_code, choices_woba_code, default=np.nan)
|
239 |
+
|
240 |
+
|
241 |
+
#exit_velo_df_codes['barrel'] = (exit_velo_df_codes.launch_speed >= 98) & (exit_velo_df_codes.launch_angle >= (26 - (-98 + exit_velo_df_codes.launch_speed))) & (exit_velo_df_codes.launch_angle <= 30 + (-98 + exit_velo_df_codes.launch_speed)) & (exit_velo_df_codes.launch_angle >= 8) & (exit_velo_df_codes.launch_angle <= 50)
|
242 |
+
|
243 |
+
|
244 |
+
|
245 |
+
|
246 |
+
|
247 |
+
#exit_velo_df_codes['barrel'] = (exit_velo_df_codes.launch_speed >= 98) & (exit_velo_df_codes.launch_angle >= (26 - (-98 + exit_velo_df_codes.launch_speed))) & (exit_velo_df_codes.launch_angle <= 30 + (-98 + exit_velo_df_codes.launch_speed)) & (exit_velo_df_codes.launch_angle >= 8) & (exit_velo_df_codes.launch_angle <= 50)
|
248 |
+
exit_velo_df_codes['pitches'] = 1
|
249 |
+
exit_velo_df_codes['whiffs'] = [1 if ((x == 'S')|(x == 'W')|(x =='T')) else 0 for x in exit_velo_df_codes.play_code]
|
250 |
+
exit_velo_df_codes['csw'] = [1 if ((x == 'S')|(x == 'W')|(x =='T')|(x == 'C')) else 0 for x in exit_velo_df_codes.play_code]
|
251 |
+
exit_velo_df_codes['swings'] = [1 if x in swings_in else 0 for x in exit_velo_df_codes.play_description]
|
252 |
+
|
253 |
+
exit_velo_df_codes['out_zone'] = exit_velo_df_codes.in_zone == False
|
254 |
+
exit_velo_df_codes['zone_swing'] = (exit_velo_df_codes.in_zone == True)&(exit_velo_df_codes.swings == 1)
|
255 |
+
exit_velo_df_codes['zone_contact'] = (exit_velo_df_codes.in_zone == True)&(exit_velo_df_codes.swings == 1)&(exit_velo_df_codes.whiffs == 0)
|
256 |
+
exit_velo_df_codes['ozone_swing'] = (exit_velo_df_codes.in_zone==False)&(exit_velo_df_codes.swings == 1)
|
257 |
+
exit_velo_df_codes['ozone_contact'] = (exit_velo_df_codes.in_zone==False)&(exit_velo_df_codes.swings == 1)&(exit_velo_df_codes.whiffs == 0)
|
258 |
+
|
259 |
+
|
260 |
+
|
261 |
+
exit_velo_df_codes_summ = exit_velo_df_codes.groupby(['batter_id','batter_name','level']).agg(
|
262 |
+
pa = ('pa','sum'),
|
263 |
+
k = ('k','sum'),
|
264 |
+
bb = ('bb','sum'),
|
265 |
+
bb_minus_k = ('bb_minus_k','sum'),
|
266 |
+
csw = ('csw','sum'),
|
267 |
+
bip = ('bip','sum'),
|
268 |
+
tb = ('tb','sum'),
|
269 |
+
woba = ('woba','sum'),
|
270 |
+
woba_codes = ('woba_codes','sum'),
|
271 |
+
hard_hit = ('hard_hit','sum'),
|
272 |
+
barrel = ('barrel','sum'),
|
273 |
+
sweet_spot = ('sweet_spot','sum'),
|
274 |
+
max_launch_speed = ('launch_speed','max'),
|
275 |
+
launch_speed_90 = ('launch_speed',percentile(90)),
|
276 |
+
launch_speed = ('launch_speed','mean'),
|
277 |
+
launch_angle = ('launch_angle','mean'),
|
278 |
+
pitches = ('pitches','sum'),
|
279 |
+
swings = ('swings','sum'),
|
280 |
+
in_zone = ('in_zone','sum'),
|
281 |
+
out_zone = ('out_zone','sum'),
|
282 |
+
whiffs = ('whiffs','sum'),
|
283 |
+
zone_swing = ('zone_swing','sum'),
|
284 |
+
zone_contact = ('zone_contact','sum'),
|
285 |
+
ozone_swing = ('ozone_swing','sum'),
|
286 |
+
ozone_contact = ('ozone_contact','sum'),
|
287 |
+
).reset_index()
|
288 |
+
|
289 |
+
#exit_velo_df_codes_summ['out_zone'] = ~exit_velo_df_codes_summ.in_zone
|
290 |
+
#bip_min_input = int(input())
|
291 |
+
#bip_min = min(bip_min_input,50)
|
292 |
+
#exit_velo_df_codes_summ = exit_velo_df_codes_summ[exit_velo_df_codes_summ.balls_in_play>=bip_min]
|
293 |
+
|
294 |
+
|
295 |
+
exit_velo_df_codes_summ['k_percent'] = [exit_velo_df_codes_summ.k[x]/exit_velo_df_codes_summ.pa[x] if exit_velo_df_codes_summ.pa[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))]
|
296 |
+
exit_velo_df_codes_summ['bb_percent'] =[exit_velo_df_codes_summ.bb[x]/exit_velo_df_codes_summ.pa[x] if exit_velo_df_codes_summ.pa[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))]
|
297 |
+
exit_velo_df_codes_summ['bb_minus_k_percent'] =[exit_velo_df_codes_summ.bb_minus_k[x]/exit_velo_df_codes_summ.pa[x] if exit_velo_df_codes_summ.pa[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))]
|
298 |
+
|
299 |
+
exit_velo_df_codes_summ['csw_percent'] =[exit_velo_df_codes_summ.csw[x]/exit_velo_df_codes_summ.pitches[x] if exit_velo_df_codes_summ.pitches[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))]
|
300 |
+
|
301 |
+
|
302 |
+
exit_velo_df_codes_summ['sweet_spot_percent'] = [exit_velo_df_codes_summ.sweet_spot[x]/exit_velo_df_codes_summ.bip[x] if exit_velo_df_codes_summ.bip[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))]
|
303 |
+
|
304 |
+
exit_velo_df_codes_summ['woba_percent'] = [exit_velo_df_codes_summ.woba[x]/exit_velo_df_codes_summ.woba_codes[x] if exit_velo_df_codes_summ.woba_codes[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))]
|
305 |
+
#exit_velo_df_codes_summ['hard_hit_percent'] = [exit_velo_df_codes_summ.sweet_spot[x]/exit_velo_df_codes_summ.bip[x] if exit_velo_df_codes_summ.bip[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))]
|
306 |
+
exit_velo_df_codes_summ['hard_hit_percent'] = [exit_velo_df_codes_summ.hard_hit[x]/exit_velo_df_codes_summ.bip[x] if exit_velo_df_codes_summ.bip[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))]
|
307 |
+
|
308 |
+
|
309 |
+
exit_velo_df_codes_summ['barrel_percent'] = [exit_velo_df_codes_summ.barrel[x]/exit_velo_df_codes_summ.bip[x] if exit_velo_df_codes_summ.bip[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))]
|
310 |
+
|
311 |
+
exit_velo_df_codes_summ['zone_contact_percent'] = [exit_velo_df_codes_summ.zone_contact[x]/exit_velo_df_codes_summ.zone_swing[x] if exit_velo_df_codes_summ.zone_swing[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))]
|
312 |
+
|
313 |
+
exit_velo_df_codes_summ['zone_swing_percent'] = [exit_velo_df_codes_summ.zone_swing[x]/exit_velo_df_codes_summ.in_zone[x] if exit_velo_df_codes_summ.pitches[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))]
|
314 |
+
|
315 |
+
exit_velo_df_codes_summ['zone_percent'] = [exit_velo_df_codes_summ.in_zone[x]/exit_velo_df_codes_summ.pitches[x] if exit_velo_df_codes_summ.pitches[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))]
|
316 |
+
|
317 |
+
exit_velo_df_codes_summ['chase_percent'] = [exit_velo_df_codes_summ.ozone_swing[x]/(exit_velo_df_codes_summ.pitches[x] - exit_velo_df_codes_summ.in_zone[x]) if (exit_velo_df_codes_summ.pitches[x]- exit_velo_df_codes_summ.in_zone[x]) != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))]
|
318 |
+
|
319 |
+
exit_velo_df_codes_summ['chase_contact'] = [exit_velo_df_codes_summ.ozone_contact[x]/exit_velo_df_codes_summ.ozone_swing[x] if exit_velo_df_codes_summ.ozone_swing[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))]
|
320 |
+
|
321 |
+
exit_velo_df_codes_summ['swing_percent'] = [exit_velo_df_codes_summ.swings[x]/exit_velo_df_codes_summ.pitches[x] if exit_velo_df_codes_summ.pitches[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))]
|
322 |
+
|
323 |
+
exit_velo_df_codes_summ['whiff_rate'] = [exit_velo_df_codes_summ.whiffs[x]/exit_velo_df_codes_summ.swings[x] if exit_velo_df_codes_summ.swings[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))]
|
324 |
+
|
325 |
+
exit_velo_df_codes_summ['swstr_rate'] = [exit_velo_df_codes_summ.whiffs[x]/exit_velo_df_codes_summ.pitches[x] if exit_velo_df_codes_summ.pitches[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))]
|
326 |
+
|
327 |
+
exit_velo_df_codes_summ = exit_velo_df_codes_summ.dropna(subset=['bip'])
|
328 |
+
|
329 |
+
woba_list = ['woba']
|
330 |
+
pa_list = ['k','bb','bb_minus_k']
|
331 |
+
balls_in_play_list = ['hard_hit','launch_speed','launch_speed_90','launch_angle','barrel','sweet_spot']
|
332 |
+
pitches_list = ['zone_percent','swing_percent','sw_str','csw']
|
333 |
+
swings_list = ['whiff_percent']
|
334 |
+
in_zone_pitches_list = ['zone_swing']
|
335 |
+
in_zone_swings_list = ['zone_contact']
|
336 |
+
out_zone_pitches_list = ['chase_percent']
|
337 |
+
out_zone_swings_list = ['chase_contact']
|
338 |
+
|
339 |
+
plot_dict = {
|
340 |
+
'k':{'x_axis':'Plate Appearances','y_axis':'K%','title':'K%','x_value':'k','x_range':[0.0,0.1,0.2,0.3,0.4],'percent':True,'percentile_label':'k_percent','flip_p':True,'percentile':False,'avg_adjust':False},
|
341 |
+
'bb':{'x_axis':'Plate Appearances','y_axis':'BB%','title':'BB%','x_value':'bb','x_range':[0.0,0.1,0.2,0.3],'percent':True,'percentile_label':'bb_percent','flip_p':False,'percentile':False,'avg_adjust':False},
|
342 |
+
'bb_minus_k':{'x_axis':'Plate Appearances','y_axis':'BB-K%','title':'BB-K%','x_value':'bb_minus_k','x_range':[-0.3,-0.2,-0.1,0,0.1,0.2],'percent':True,'percentile_label':'bb_minus_k_percent','flip_p':False,'percentile':False,'avg_adjust':False},
|
343 |
+
'csw':{'x_axis':'Pitches','y_axis':'CSW%','title':'CSW%','x_value':'csw','x_range':[.2,.25,.3,.35,.4],'percent':True,'percentile_label':'csw_percent','flip_p':True,'percentile':False,'avg_adjust':False},
|
344 |
+
'woba':{'x_axis':'wOBA PA','y_axis':'wOBA','title':'wOBA','x_value':'woba','x_range':[.20,.30,.40,.50],'percent':False,'percentile_label':'woba_percent','flip_p':False,'percentile':False,'avg_adjust':True},
|
345 |
+
'launch_speed':{'x_axis':'Balls In Play','y_axis':'Exit Velocity','title':'Exit Velocity','x_value':'launch_speed','x_range':[85,90,95,100],'percent':False,'percentile_label':'launch_speed','flip_p':False,'percentile':False,'avg_adjust':False},
|
346 |
+
'launch_speed_90':{'x_axis':'Balls In Play','y_axis':'90th Percentile Exit Velocity','title':'90th Percentile Exit Velocity','x_value':'launch_speed','x_range':[95,100,105,110,115],'percent':False,'percentile_label':'launch_speed_90','flip_p':False,'percentile':True,'avg_adjust':False},
|
347 |
+
'hard_hit':{'x_axis':'Balls In Play','y_axis':'HardHit%','title':'HardHit%','x_value':'hard_hit','x_range':[0.2,0.3,0.4,0.5,0.6,0.7],'percent':True,'percentile_label':'hard_hit_percent','flip_p':False,'percentile':False,'avg_adjust':False},
|
348 |
+
'sweet_spot':{'x_axis':'Balls In Play','y_axis':'SweetSpot%','title':'SweetSpot%','x_value':'sweet_spot','x_range':[0.2,0.3,0.4,0.5],'percent':True,'percentile_label':'sweet_spot_percent','flip_p':False,'percentile':False,'avg_adjust':False},
|
349 |
+
'launch_angle':{'x_axis':'Balls In Play','y_axis':'Launch Angle','title':'Launch Angle','x_value':'launch_angle','x_range':[-20,-10,0,10,20],'percent':False,'percentile_label':'launch_angle','flip_p':False,'percentile':False,'avg_adjust':False},
|
350 |
+
'barrel':{'x_axis':'Balls In Play','y_axis':'Barrel%','title':'Barrel%','x_value':'barrel','x_range':[0,0.05,0.10,.15,.20],'percent':True,'percentile_label':'barrel_percent','flip_p':False,'percentile':False,'avg_adjust':False},
|
351 |
+
'zone_percent':{'x_axis':'Pitches','y_axis':'Zone%','title':'Zone%','x_value':'in_zone','x_range':[0.3,0.4,0.5,0.6,0.7],'percent':True,'percentile_label':'zone_percent','flip_p':False,'percentile':False,'avg_adjust':False},
|
352 |
+
'swing_percent':{'x_axis':'Pitches','y_axis':'Swing%','title':'Swing%','x_value':'swings','x_range':[0.2,0.3,0.4,0.5,0.6,0.7,0.8],'percent':True,'percentile_label':'swing_percent','flip_p':False,'percentile':False,'avg_adjust':False},
|
353 |
+
'whiff_percent':{'x_axis':'Swings','y_axis':'Whiff%','title':'Whiff%','x_value':'whiffs','x_range':[0.0,0.1,0.2,0.3,0.4,0.5],'percent':True,'percentile_label':'whiff_rate','flip_p':True,'percentile':False,'avg_adjust':False},
|
354 |
+
'sw_str':{'x_axis':'Pitches','y_axis':'SwStr%','title':'SwStr%','x_value':'whiffs','x_range':[0.0,0.05,0.1,0.15,0.2,0.25],'percent':True,'percentile_label':'swstr_rate','flip_p':True,'percentile':False,'avg_adjust':False},
|
355 |
+
'zone_swing':{'x_axis':'In-Zone Pitches','y_axis':'Z-Swing%','title':'Z-Swing%','x_value':'zone_swing','x_range':[0.3,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1],'percent':True,'percentile_label':'zone_swing_percent','flip_p':False,'percentile':False,'avg_adjust':False},
|
356 |
+
'zone_contact':{'x_axis':'In-Zone Swings','y_axis':'Z-Contact%','title':'Z-Contact%','x_value':'zone_contact','x_range':[0.5,0.6,0.7,0.8,0.9,1],'percent':True,'percentile_label':'zone_contact_percent','flip_p':False,'percentile':False,'avg_adjust':False},
|
357 |
+
'chase_percent':{'x_axis':'Out-of-Zone Pitches','y_axis':'O-Swing%','title':'O-Swing%','x_value':'ozone_swing','x_range':[0.0,0.1,0.2,0.3,0.4,0.5],'percent':True,'percentile_label':'chase_percent','flip_p':True,'percentile':False,'avg_adjust':False},
|
358 |
+
'chase_contact':{'x_axis':'Out-of-Zone Swings','y_axis':'O-Contact%','title':'O-Contact%','x_value':'ozone_contact','x_range':[0.2,0.3,0.4,0.5,0.6,0.7,0.8],'percent':True,'percentile_label':'chase_contact','flip_p':False,'percentile':False,'avg_adjust':False},}
|
359 |
+
|
360 |
+
|
361 |
+
|
362 |
+
|
363 |
+
# test_df = exit_velo_df.sort_values(by='batter_name').drop_duplicates(subset='batter_id').reset_index(drop=True)[['batter_id','batter_name']]#['pitcher'].to_dict()
|
364 |
+
# test_df = test_df.dropna()
|
365 |
+
# test_df['batter_id'] = test_df['batter_id'].astype(int)
|
366 |
+
# test_df = test_df.set_index('batter_id')
|
367 |
+
# #test_df = test_df[test_df.pitcher == 'Chris Bassitt'].append(test_df[test_df.pitcher != 'Chris Bassitt'])
|
368 |
+
|
369 |
+
batter_dict_mlb = exit_velo_df_mlb.set_index('batter_id')['batter_name'].to_dict()
|
370 |
+
batter_dict_aaa = exit_velo_df_aaa.set_index('batter_id')['batter_name'].to_dict()
|
371 |
+
|
372 |
+
level_dict = {'MLB':'MLB','AAA':'AAA','AA':'AA','A+':'A+','A':'A'}
|
373 |
+
|
374 |
+
plot_dict_small = {
|
375 |
+
'k':'K%',
|
376 |
+
'bb':'BB%',
|
377 |
+
'bb_minus_k':'BB-K%',
|
378 |
+
'csw':'CSW%',
|
379 |
+
'woba':'wOBA',
|
380 |
+
'launch_speed':'Exit Velocity',
|
381 |
+
'launch_speed_90':'90th Percentile Exit Velocity',
|
382 |
+
'hard_hit':'HardHit%',
|
383 |
+
'sweet_spot':'SweetSpot%',
|
384 |
+
'launch_angle':'Launch Angle',
|
385 |
+
'zone_percent':'Zone%',
|
386 |
+
'barrel':'Barrel%',
|
387 |
+
'swing_percent':'Swing%',
|
388 |
+
'whiff_percent':'Whiff%',
|
389 |
+
'sw_str':'SwStr%',
|
390 |
+
'zone_swing':'Z-Swing%',
|
391 |
+
'zone_contact':'Z-Contact%',
|
392 |
+
'chase_percent':'O-Swing%',
|
393 |
+
'chase_contact':'O-Contact%',}
|
394 |
+
|
395 |
+
|
396 |
+
def server(input,output,session):
|
397 |
+
|
398 |
+
@render.ui
|
399 |
+
def test():
|
400 |
+
|
401 |
+
# @reactive.Effect
|
402 |
+
if input.my_tabs() == 'MLB':
|
403 |
+
|
404 |
+
#test_df = test_df[test_df.pitcher == 'Chris Bassitt'].append(test_df[test_df.pitcher != 'Chris Bassitt'])
|
405 |
+
batter_dict = exit_velo_df_mlb.set_index('batter_id')['batter_name'].to_dict()
|
406 |
+
return ui.input_select("id", "Select Player",batter_dict,selectize=True)
|
407 |
+
|
408 |
+
|
409 |
+
if input.my_tabs() == 'AAA':
|
410 |
+
#test_df = test_df[test_df.pitcher == 'Chris Bassitt'].append(test_df[test_df.pitcher != 'Chris Bassitt'])
|
411 |
+
batter_dict = exit_velo_df_aaa.set_index('batter_id')['batter_name'].to_dict()
|
412 |
+
return ui.input_select("id", "Select Player",batter_dict,selectize=True)
|
413 |
+
|
414 |
+
|
415 |
+
@output
|
416 |
+
@render.plot(alt="A histogram")
|
417 |
+
@reactive.event(input.go, ignore_none=False)
|
418 |
+
def plot_mlb():
|
419 |
+
|
420 |
+
|
421 |
+
rbf.rolling_plot(df = exit_velo_df_codes[exit_velo_df_codes['level']==input.my_tabs()],
|
422 |
+
df_summ = exit_velo_df_codes_summ[exit_velo_df_codes_summ['level']==input.my_tabs()],
|
423 |
+
player_id = input.id(),
|
424 |
+
stat_id = input.stat_id(),
|
425 |
+
batter_dict = batter_dict_mlb,
|
426 |
+
window_select = input.n(),
|
427 |
+
level_id = input.my_tabs())
|
428 |
+
|
429 |
+
|
430 |
+
@output
|
431 |
+
@render.plot(alt="A histogram")
|
432 |
+
@reactive.event(input.go, ignore_none=False)
|
433 |
+
def plot_aaa():
|
434 |
+
|
435 |
+
|
436 |
+
rbf.rolling_plot(df = exit_velo_df_codes[exit_velo_df_codes['level']==input.my_tabs()],
|
437 |
+
df_summ = exit_velo_df_codes_summ[exit_velo_df_codes_summ['level']==input.my_tabs()],
|
438 |
+
player_id = input.id(),
|
439 |
+
stat_id = input.stat_id(),
|
440 |
+
batter_dict = batter_dict_aaa,
|
441 |
+
window_select = input.n(),
|
442 |
+
level_id = input.my_tabs())
|
443 |
+
|
444 |
+
|
445 |
+
|
446 |
+
app = App(ui.page_fluid(
|
447 |
+
# ui.tags.base(href=base_url),
|
448 |
+
ui.tags.div(
|
449 |
+
{"style": "width:90%;margin: 0 auto;max-width: 1600px;"},
|
450 |
+
ui.tags.style(
|
451 |
+
"""
|
452 |
+
h4 {
|
453 |
+
margin-top: 1em;font-size:35px;
|
454 |
+
}
|
455 |
+
h2{
|
456 |
+
font-size:25px;
|
457 |
+
}
|
458 |
+
"""
|
459 |
+
),
|
460 |
+
shinyswatch.theme.simplex(),
|
461 |
+
ui.tags.h4("TJStats"),
|
462 |
+
ui.tags.i("Baseball Analytics and Visualizations"),
|
463 |
+
# ui.markdown("""<a href='https://www.patreon.com/tj_stats'>Support me on Patreon for Access to 2024 Apps</a><sup>1</sup>"""),
|
464 |
+
|
465 |
+
# ui.navset_tab(
|
466 |
+
# ui.nav_control(
|
467 |
+
# ui.a(
|
468 |
+
# "Home",
|
469 |
+
# href="https://nesticot-tjstats-site.hf.space/home/"
|
470 |
+
# ),
|
471 |
+
# ),
|
472 |
+
# ui.nav_menu(
|
473 |
+
# "Batter Charts",
|
474 |
+
# ui.nav_control(
|
475 |
+
# ui.a(
|
476 |
+
# "Batting Rolling",
|
477 |
+
# href="https://nesticot-tjstats-site-rolling-batter.hf.space/"
|
478 |
+
# ),
|
479 |
+
# ui.a(
|
480 |
+
# "Spray",
|
481 |
+
# href="https://nesticot-tjstats-site-spray.hf.space/"
|
482 |
+
# ),
|
483 |
+
# ui.a(
|
484 |
+
# "Decision Value",
|
485 |
+
# href="https://nesticot-tjstats-site-decision-value.hf.space/"
|
486 |
+
# ),
|
487 |
+
# ui.a(
|
488 |
+
# "Damage Model",
|
489 |
+
# href="https://nesticot-tjstats-site-damage.hf.space/"
|
490 |
+
# ),
|
491 |
+
# ui.a(
|
492 |
+
# "Batter Scatter",
|
493 |
+
# href="https://nesticot-tjstats-site-batter-scatter.hf.space/"
|
494 |
+
# ),
|
495 |
+
# ui.a(
|
496 |
+
# "EV vs LA Plot",
|
497 |
+
# href="https://nesticot-tjstats-site-ev-angle.hf.space/"
|
498 |
+
# ),
|
499 |
+
# ui.a(
|
500 |
+
# "Statcast Compare",
|
501 |
+
# href="https://nesticot-tjstats-site-statcast-compare.hf.space/"
|
502 |
+
# ),
|
503 |
+
# ui.a(
|
504 |
+
# "MLB/MiLB Cards",
|
505 |
+
# href="https://nesticot-tjstats-site-mlb-cards.hf.space/"
|
506 |
+
# )
|
507 |
+
# ),
|
508 |
+
# ),
|
509 |
+
# ui.nav_menu(
|
510 |
+
# "Pitcher Charts",
|
511 |
+
# ui.nav_control(
|
512 |
+
# ui.a(
|
513 |
+
# "Pitcher Rolling",
|
514 |
+
# href="https://nesticot-tjstats-site-rolling-pitcher.hf.space/"
|
515 |
+
# ),
|
516 |
+
# ui.a(
|
517 |
+
# "Pitcher Summary",
|
518 |
+
# href="https://nesticot-tjstats-site-pitching-summary-graphic-new.hf.space/"
|
519 |
+
# ),
|
520 |
+
# ui.a(
|
521 |
+
# "Pitcher Scatter",
|
522 |
+
# href="https://nesticot-tjstats-site-pitcher-scatter.hf.space"
|
523 |
+
# )
|
524 |
+
# ),
|
525 |
+
# )),
|
526 |
+
ui.row(
|
527 |
+
ui.layout_sidebar(
|
528 |
+
|
529 |
+
ui.panel_sidebar(
|
530 |
+
ui.output_ui('test','Select Player'),
|
531 |
+
#ui.input_select("id", "Select Pitcher",batter_dict,selected=675911,width=1,size=1,selectize=True),
|
532 |
+
#ui.input_select("level_id", "Select Level",level_dict,width=1,size=1),
|
533 |
+
ui.input_select("stat_id", "Select Stat",plot_dict_small,width=1,size=1),
|
534 |
+
ui.input_numeric("n", "Rolling Window Size", value=50),
|
535 |
+
ui.input_action_button("go", "Generate",class_="btn-primary"),
|
536 |
+
ui.output_table("result")
|
537 |
+
),
|
538 |
+
|
539 |
+
ui.panel_main(
|
540 |
+
ui.navset_tab(
|
541 |
+
# ui.nav("Raw Data",
|
542 |
+
# ui.output_data_frame("raw_table")),
|
543 |
+
# ui.nav("Season Summary",
|
544 |
+
# ui.output_plot('plot',
|
545 |
+
# width='2000px',
|
546 |
+
# height='2000px')),
|
547 |
+
ui.nav("MLB",
|
548 |
+
ui.output_plot("plot_mlb",height = "1000px",width="1000px")),
|
549 |
+
ui.nav("AAA",
|
550 |
+
ui.output_plot("plot_aaa",height = "1000px",width="1000px"))
|
551 |
+
|
552 |
+
|
553 |
+
|
554 |
+
,id="my_tabs")))))),server)
|
rolling_batter_functions.py
ADDED
@@ -0,0 +1,338 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import seaborn as sns
|
5 |
+
import numpy as np
|
6 |
+
from scipy.stats import gaussian_kde
|
7 |
+
import matplotlib
|
8 |
+
from matplotlib.ticker import MaxNLocator
|
9 |
+
from matplotlib.gridspec import GridSpec
|
10 |
+
from scipy.stats import zscore
|
11 |
+
import math
|
12 |
+
import matplotlib
|
13 |
+
from adjustText import adjust_text
|
14 |
+
import matplotlib.ticker as mtick
|
15 |
+
import pandas as pd
|
16 |
+
from matplotlib.pyplot import text
|
17 |
+
import inflect
|
18 |
+
|
19 |
+
|
20 |
+
colour_palette = ['#FFB000','#648FFF','#785EF0',
|
21 |
+
'#DC267F','#FE6100','#3D1EB2','#894D80','#16AA02','#B5592B','#A3C1ED']
|
22 |
+
|
23 |
+
plot_dict = {
|
24 |
+
'k':{'x_axis':'Plate Appearances','y_axis':'K%','title':'K%','x_value':'k','x_range':[0.0,0.1,0.2,0.3,0.4],'percent':True,'percentile_label':'k_percent','flip_p':True,'percentile':False,'avg_adjust':False},
|
25 |
+
'bb':{'x_axis':'Plate Appearances','y_axis':'BB%','title':'BB%','x_value':'bb','x_range':[0.0,0.1,0.2,0.3],'percent':True,'percentile_label':'bb_percent','flip_p':False,'percentile':False,'avg_adjust':False},
|
26 |
+
'bb_minus_k':{'x_axis':'Plate Appearances','y_axis':'BB-K%','title':'BB-K%','x_value':'bb_minus_k','x_range':[-0.3,-0.2,-0.1,0,0.1,0.2],'percent':True,'percentile_label':'bb_minus_k_percent','flip_p':False,'percentile':False,'avg_adjust':False},
|
27 |
+
'csw':{'x_axis':'Pitches','y_axis':'CSW%','title':'CSW%','x_value':'csw','x_range':[.2,.25,.3,.35,.4],'percent':True,'percentile_label':'csw_percent','flip_p':True,'percentile':False,'avg_adjust':False},
|
28 |
+
'woba':{'x_axis':'wOBA PA','y_axis':'wOBA','title':'wOBA','x_value':'woba','x_range':[.20,.30,.40,.50],'percent':False,'percentile_label':'woba_percent','flip_p':False,'percentile':False,'avg_adjust':True},
|
29 |
+
'launch_speed':{'x_axis':'Balls In Play','y_axis':'Exit Velocity','title':'Exit Velocity','x_value':'launch_speed','x_range':[85,90,95,100],'percent':False,'percentile_label':'launch_speed','flip_p':False,'percentile':False,'avg_adjust':False},
|
30 |
+
'launch_speed_90':{'x_axis':'Balls In Play','y_axis':'90th Percentile Exit Velocity','title':'90th Percentile Exit Velocity','x_value':'launch_speed','x_range':[95,100,105,110,115],'percent':False,'percentile_label':'launch_speed_90','flip_p':False,'percentile':True,'avg_adjust':False},
|
31 |
+
'hard_hit':{'x_axis':'Balls In Play','y_axis':'HardHit%','title':'HardHit%','x_value':'hard_hit','x_range':[0.2,0.3,0.4,0.5,0.6,0.7],'percent':True,'percentile_label':'hard_hit_percent','flip_p':False,'percentile':False,'avg_adjust':False},
|
32 |
+
'sweet_spot':{'x_axis':'Balls In Play','y_axis':'SweetSpot%','title':'SweetSpot%','x_value':'sweet_spot','x_range':[0.2,0.3,0.4,0.5],'percent':True,'percentile_label':'sweet_spot_percent','flip_p':False,'percentile':False,'avg_adjust':False},
|
33 |
+
'launch_angle':{'x_axis':'Balls In Play','y_axis':'Launch Angle','title':'Launch Angle','x_value':'launch_angle','x_range':[-20,-10,0,10,20],'percent':False,'percentile_label':'launch_angle','flip_p':False,'percentile':False,'avg_adjust':False},
|
34 |
+
'barrel':{'x_axis':'Balls In Play','y_axis':'Barrel%','title':'Barrel%','x_value':'barrel','x_range':[0,0.05,0.10,.15,.20],'percent':True,'percentile_label':'barrel_percent','flip_p':False,'percentile':False,'avg_adjust':False},
|
35 |
+
'zone_percent':{'x_axis':'Pitches','y_axis':'Zone%','title':'Zone%','x_value':'in_zone','x_range':[0.3,0.4,0.5,0.6,0.7],'percent':True,'percentile_label':'zone_percent','flip_p':False,'percentile':False,'avg_adjust':False},
|
36 |
+
'swing_percent':{'x_axis':'Pitches','y_axis':'Swing%','title':'Swing%','x_value':'swings','x_range':[0.2,0.3,0.4,0.5,0.6,0.7,0.8],'percent':True,'percentile_label':'swing_percent','flip_p':False,'percentile':False,'avg_adjust':False},
|
37 |
+
'whiff_percent':{'x_axis':'Swings','y_axis':'Whiff%','title':'Whiff%','x_value':'whiffs','x_range':[0.0,0.1,0.2,0.3,0.4,0.5],'percent':True,'percentile_label':'whiff_rate','flip_p':True,'percentile':False,'avg_adjust':False},
|
38 |
+
'sw_str':{'x_axis':'Pitches','y_axis':'SwStr%','title':'SwStr%','x_value':'whiffs','x_range':[0.0,0.05,0.1,0.15,0.2,0.25],'percent':True,'percentile_label':'swstr_rate','flip_p':True,'percentile':False,'avg_adjust':False},
|
39 |
+
'zone_swing':{'x_axis':'In-Zone Pitches','y_axis':'Z-Swing%','title':'Z-Swing%','x_value':'zone_swing','x_range':[0.3,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1],'percent':True,'percentile_label':'zone_swing_percent','flip_p':False,'percentile':False,'avg_adjust':False},
|
40 |
+
'zone_contact':{'x_axis':'In-Zone Swings','y_axis':'Z-Contact%','title':'Z-Contact%','x_value':'zone_contact','x_range':[0.5,0.6,0.7,0.8,0.9,1],'percent':True,'percentile_label':'zone_contact_percent','flip_p':False,'percentile':False,'avg_adjust':False},
|
41 |
+
'chase_percent':{'x_axis':'Out-of-Zone Pitches','y_axis':'O-Swing%','title':'O-Swing%','x_value':'ozone_swing','x_range':[0.0,0.1,0.2,0.3,0.4,0.5],'percent':True,'percentile_label':'chase_percent','flip_p':True,'percentile':False,'avg_adjust':False},
|
42 |
+
'chase_contact':{'x_axis':'Out-of-Zone Swings','y_axis':'O-Contact%','title':'O-Contact%','x_value':'ozone_contact','x_range':[0.2,0.3,0.4,0.5,0.6,0.7,0.8],'percent':True,'percentile_label':'chase_contact','flip_p':False,'percentile':False,'avg_adjust':False},}
|
43 |
+
|
44 |
+
|
45 |
+
level_dict = {'MLB':'MLB','AAA':'AAA','AA':'AA','A+':'A+','A':'A'}
|
46 |
+
|
47 |
+
|
48 |
+
woba_list = ['woba']
|
49 |
+
pa_list = ['k','bb','bb_minus_k']
|
50 |
+
balls_in_play_list = ['hard_hit','launch_speed','launch_speed_90','launch_angle','barrel','sweet_spot']
|
51 |
+
pitches_list = ['zone_percent','swing_percent','sw_str','csw']
|
52 |
+
swings_list = ['whiff_percent']
|
53 |
+
in_zone_pitches_list = ['zone_swing']
|
54 |
+
in_zone_swings_list = ['zone_contact']
|
55 |
+
out_zone_pitches_list = ['chase_percent']
|
56 |
+
out_zone_swings_list = ['chase_contact']
|
57 |
+
|
58 |
+
plot_dict_small = {
|
59 |
+
'k':'K%',
|
60 |
+
'bb':'BB%',
|
61 |
+
'bb_minus_k':'BB-K%',
|
62 |
+
'csw':'CSW%',
|
63 |
+
'woba':'wOBA',
|
64 |
+
'launch_speed':'Exit Velocity',
|
65 |
+
'launch_speed_90':'90th Percentile Exit Velocity',
|
66 |
+
'hard_hit':'HardHit%',
|
67 |
+
'sweet_spot':'SweetSpot%',
|
68 |
+
'launch_angle':'Launch Angle',
|
69 |
+
'zone_percent':'Zone%',
|
70 |
+
'barrel':'Barrel%',
|
71 |
+
'swing_percent':'Swing%',
|
72 |
+
'whiff_percent':'Whiff%',
|
73 |
+
'sw_str':'SwStr%',
|
74 |
+
'zone_swing':'Z-Swing%',
|
75 |
+
'zone_contact':'Z-Contact%',
|
76 |
+
'chase_percent':'O-Swing%',
|
77 |
+
'chase_contact':'O-Contact%',}
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
def rolling_plot(df,df_summ,player_id,stat_id,batter_dict,window_select,level_id):
|
82 |
+
season_title = df['game_date'].str[0:4].values[0]
|
83 |
+
sns.set_theme(style="whitegrid", palette="pastel")
|
84 |
+
if player_id == "":
|
85 |
+
fig = plt.figure(figsize=(12, 12))
|
86 |
+
fig.text(s='Please Select a Pitcher',x=0.5,y=0.5)
|
87 |
+
return
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
swing_min = int(window_select)
|
92 |
+
fig, ax = plt.subplots(1, 1, figsize=(10, 10))
|
93 |
+
|
94 |
+
fig.set_facecolor('white')
|
95 |
+
#ax.set_facecolor('white')
|
96 |
+
#fig.patch.set_facecolor('lightblue')
|
97 |
+
|
98 |
+
print(stat_id)
|
99 |
+
|
100 |
+
if stat_id in pa_list:
|
101 |
+
print('we hAVE MADE IT TO THIS PART OF THE CODE')
|
102 |
+
|
103 |
+
|
104 |
+
if stat_id in pa_list:
|
105 |
+
elly_zone_df = df[(df.pa==1)&(df.batter_id == int(player_id))&(df.level==level_id)]
|
106 |
+
divisor_x = 'pa'
|
107 |
+
print('this is short')
|
108 |
+
print(elly_zone_df)
|
109 |
+
|
110 |
+
|
111 |
+
if stat_id in balls_in_play_list:
|
112 |
+
elly_zone_df = df[(df.bip)&(df.batter_id == int(player_id))&(df.level==level_id)]
|
113 |
+
divisor_x = 'bip'
|
114 |
+
#print('this is short')
|
115 |
+
|
116 |
+
if stat_id in balls_in_play_list:
|
117 |
+
elly_zone_df = df[(df.bip)&(df.batter_id == int(player_id))&(df.level==level_id)]
|
118 |
+
divisor_x = 'bip'
|
119 |
+
print('this is short')
|
120 |
+
|
121 |
+
if stat_id in pitches_list:
|
122 |
+
elly_zone_df = df[(df.pitches == 1)&(df.batter_id == int(player_id))&(df.level==level_id)]
|
123 |
+
divisor_x = 'pitches'
|
124 |
+
|
125 |
+
if stat_id in swings_list:
|
126 |
+
elly_zone_df = df[(df.swings == 1)&(df.batter_id == int(player_id))&(df.level==level_id)]
|
127 |
+
divisor_x = 'swings'
|
128 |
+
|
129 |
+
|
130 |
+
if stat_id in in_zone_pitches_list:
|
131 |
+
elly_zone_df = df[(df.in_zone)&(df.batter_id == int(player_id))&(df.level==level_id)]
|
132 |
+
divisor_x = 'in_zone'
|
133 |
+
|
134 |
+
|
135 |
+
if stat_id in in_zone_swings_list:
|
136 |
+
elly_zone_df = df[(df.zone_swing)&(df.batter_id == int(player_id))&(df.level==level_id)]
|
137 |
+
divisor_x = 'zone_swing'
|
138 |
+
|
139 |
+
|
140 |
+
if stat_id in out_zone_pitches_list:
|
141 |
+
elly_zone_df = df[(df.in_zone == False)&(df.batter_id == int(player_id))&(df.level==level_id)]
|
142 |
+
divisor_x = 'out_zone'
|
143 |
+
|
144 |
+
|
145 |
+
if stat_id in out_zone_swings_list:
|
146 |
+
elly_zone_df = df[(df.ozone_swing)&(df.batter_id == int(player_id))&(df.level==level_id)]
|
147 |
+
divisor_x = 'ozone_swing'
|
148 |
+
|
149 |
+
if stat_id in woba_list:
|
150 |
+
elly_zone_df = df[(df.woba_codes==1)&(df.batter_id == int(player_id))&(df.level==level_id)]
|
151 |
+
divisor_x = 'woba_codes'
|
152 |
+
|
153 |
+
# penguins = sns.load_dataset("penguins")
|
154 |
+
# sns.histplot(data=penguins, x="flipper_length_mm")
|
155 |
+
# print('we made it here:')
|
156 |
+
# print(int(player_id))
|
157 |
+
# print(stat_id)
|
158 |
+
# print(level_id)
|
159 |
+
# print(df[(df.batter_id == int(player_id))&(df.level==level_id)])
|
160 |
+
# print(df.columns)
|
161 |
+
# print(elly_zone_df[plot_dict[stat_id]["x_value"]].sum())
|
162 |
+
|
163 |
+
df_summ_new = df_summ.copy()
|
164 |
+
df_summ_new = df_summ_new.set_index('batter_id','batter_name','level')
|
165 |
+
df_summ_new = df_summ_new[df_summ_new[divisor_x] >= int(window_select)]
|
166 |
+
df_summ_new = df_summ_new[df_summ_new.level==level_id]
|
167 |
+
|
168 |
+
df_summ_rank = df_summ_new.rank(method='max',ascending=False)
|
169 |
+
df_summ_rank.columns = df_summ_rank.columns+['_rank']
|
170 |
+
|
171 |
+
df_summ_rank_percent = df_summ_new.rank(pct=True)
|
172 |
+
df_summ_rank_percent.columns = df_summ_rank_percent.columns+['_percent']
|
173 |
+
|
174 |
+
|
175 |
+
df_summ_new = df_summ_new.reset_index()
|
176 |
+
df_summ_rank = df_summ_rank.reset_index()
|
177 |
+
df_summ_rank_percent = df_summ_rank_percent.reset_index()
|
178 |
+
print('Table columns:')
|
179 |
+
|
180 |
+
df_summ_new.batter_id = df_summ_new.batter_id.astype(int)
|
181 |
+
df_summ_rank.batter_id = df_summ_rank.batter_id.astype(int)
|
182 |
+
df_summ_rank_percent.batter_id = df_summ_rank_percent.batter_id.astype(int)
|
183 |
+
|
184 |
+
print('Table columns2:')
|
185 |
+
df_summ_new = df_summ_new.merge(df_summ_rank,left_on=['batter_id'],right_on=['batter_id'],how='left',suffixes=['','_rank'])
|
186 |
+
|
187 |
+
df_summ_new = df_summ_new.merge(df_summ_rank_percent,left_on=['batter_id'],right_on=['batter_id'],how='left',suffixes=['','_percent'])
|
188 |
+
|
189 |
+
|
190 |
+
print(df_summ_new)
|
191 |
+
print(df_summ_rank)
|
192 |
+
print(df_summ_rank_percent)
|
193 |
+
|
194 |
+
|
195 |
+
|
196 |
+
|
197 |
+
#sns.scatterplot(x=data_df.launch_speed_90,y=data_df.zone_contact,color=colour_palette[0],s=75,label=int(player_id))
|
198 |
+
|
199 |
+
df_summ_new_select = df_summ_new[df_summ_new.batter_id == int(player_id)].reset_index(drop=True)
|
200 |
+
print('whiffing')
|
201 |
+
print(df)
|
202 |
+
print('Player _df:')
|
203 |
+
print(df_summ_new_select)
|
204 |
+
|
205 |
+
if len(df_summ_new_select) < 1:
|
206 |
+
ax.text(x=0.5,y=0.5,s='Please Select Different Parameters to Produce a plot',fontsize=18,ha='center')
|
207 |
+
return
|
208 |
+
|
209 |
+
p = inflect.engine()
|
210 |
+
|
211 |
+
df_summ_new_select = df_summ_new_select.loc[:,~df_summ_new_select.columns.duplicated(keep='last')].copy()
|
212 |
+
print('Table for the player:')
|
213 |
+
print(list(df_summ_new_select.columns))
|
214 |
+
print(plot_dict[stat_id]["percentile_label"])
|
215 |
+
print(plot_dict[stat_id]["percentile_label"]+'_percent')
|
216 |
+
print(df_summ_new_select)
|
217 |
+
print(1*plot_dict[stat_id]["flip_p"])
|
218 |
+
print(round(df_summ_new_select[plot_dict[stat_id]["percentile_label"]+"_percent"][0],2))
|
219 |
+
print((1*plot_dict[stat_id]["flip_p"]-round(df_summ_new_select[plot_dict[stat_id]["percentile_label"]+"_percent"][0],2))*100)
|
220 |
+
|
221 |
+
# print(df_summ_new_select[plot_dict[stat_id]["percentile_label"]+'_percent'])
|
222 |
+
|
223 |
+
if plot_dict[stat_id]['percent']:
|
224 |
+
label_1=f'{level_id} Average {df[df.level == level_id][plot_dict[stat_id]["x_value"]].sum()/df[df.level == level_id][divisor_x].sum():.1%}'
|
225 |
+
label_2=f'{batter_dict[int(player_id)]} Average {elly_zone_df[plot_dict[stat_id]["x_value"]].sum()/elly_zone_df[divisor_x].sum():.1%} ({p.ordinal(abs(int((1*plot_dict[stat_id]["flip_p"]-round(df_summ_new_select[plot_dict[stat_id]["percentile_label"]+"_percent"][0],2))*100)))} Percentile)'
|
226 |
+
#label_2=f'{batter_dict[int(player_id)]} Average {elly_zone_df[plot_dict[stat_id]["x_value"]].sum()/elly_zone_df[divisor_x].sum():.1%}'
|
227 |
+
ax.yaxis.set_major_formatter(mtick.PercentFormatter(1))
|
228 |
+
|
229 |
+
else:
|
230 |
+
label_1=f'{level_id} Average {df[df.level == level_id][plot_dict[stat_id]["x_value"]].sum()/df[df.level == level_id][divisor_x].sum():.1f}'
|
231 |
+
label_2=f'{batter_dict[int(player_id)]} Average {elly_zone_df[plot_dict[stat_id]["x_value"]].sum()/elly_zone_df[divisor_x].sum():.1f} ({p.ordinal(abs(int((1*plot_dict[stat_id]["flip_p"]-round(df_summ_new_select[plot_dict[stat_id]["percentile_label"]+"_percent"][0],2))*100)))} Percentile)'
|
232 |
+
#label_2=f'{batter_dict[int(player_id)]} Average {elly_zone_df[plot_dict[stat_id]["x_value"]].sum()/elly_zone_df[divisor_x].sum():.1f}'
|
233 |
+
#ax.yaxis.set_major_formatter(mtick.int)
|
234 |
+
|
235 |
+
|
236 |
+
if plot_dict[stat_id]['percentile']:
|
237 |
+
label_1=f'{level_id} Average {df[df.level == level_id][plot_dict[stat_id]["x_value"]].quantile(0.9):.1f}'
|
238 |
+
label_2=f'{batter_dict[int(player_id)]} Average {elly_zone_df[plot_dict[stat_id]["x_value"]].quantile(0.9):.1f} ({p.ordinal(abs(int((1*plot_dict[stat_id]["flip_p"]-round(df_summ_new_select[plot_dict[stat_id]["percentile_label"]+"_percent"][0],2))*100)))} Percentile)'
|
239 |
+
#label_2=f'{batter_dict[int(player_id)]} Average {elly_zone_df[plot_dict[stat_id]["x_value"]].sum()/elly_zone_df[divisor_x].sum():.1%}'
|
240 |
+
#ax.yaxis.set_major_formatter(mtick.int)
|
241 |
+
|
242 |
+
if plot_dict[stat_id]['avg_adjust']:
|
243 |
+
label_1=f'{level_id} Average {df[df.level == level_id][plot_dict[stat_id]["x_value"]].sum()/df[df.level == level_id][divisor_x].sum():.3f}'
|
244 |
+
label_2=f'{batter_dict[int(player_id)]} Average {elly_zone_df[plot_dict[stat_id]["x_value"]].sum()/elly_zone_df[divisor_x].sum():.3f} ({p.ordinal(abs(int((1*plot_dict[stat_id]["flip_p"]-round(df_summ_new_select[plot_dict[stat_id]["percentile_label"]+"_percent"][0],2))*100)))} Percentile)'
|
245 |
+
#label_2=f'{batter_dict[int(player_id)]} Average {elly_zone_df[plot_dict[stat_id]["x_value"]].sum()/elly_zone_df[divisor_x].sum():.1%}'
|
246 |
+
#ax.yaxis.set_major_formatter(mtick.int)
|
247 |
+
|
248 |
+
print(plot_dict[stat_id]["x_value"])
|
249 |
+
print(divisor_x)
|
250 |
+
|
251 |
+
# df_summ_new = df_summ.copy()
|
252 |
+
# df_summ_new = df_summ_new[df_summ_new.balls_in_play >= int(window_select)]
|
253 |
+
# df_summ_new = df_summ_new[df_summ_new.level==level_id]
|
254 |
+
|
255 |
+
|
256 |
+
print('this is here:')
|
257 |
+
print(df_summ_new.head())
|
258 |
+
print(df_summ_new.columns)
|
259 |
+
|
260 |
+
|
261 |
+
if plot_dict[stat_id]["flip_p"] == False:
|
262 |
+
ax.hlines(y=(df_summ_new[plot_dict[stat_id]["percentile_label"]]).quantile(0.9),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[2],linestyle='dotted',alpha=0.5)
|
263 |
+
ax.hlines(y=(df_summ_new[plot_dict[stat_id]["percentile_label"]]).quantile(0.75),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[3],linestyle='dotted',alpha=0.5)
|
264 |
+
ax.hlines(y=(df_summ_new[plot_dict[stat_id]["percentile_label"]]).quantile(0.25),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[4],linestyle='dotted',alpha=0.5)
|
265 |
+
ax.hlines(y=(df_summ_new[plot_dict[stat_id]["percentile_label"]]).quantile(0.1),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[5],linestyle='dotted',alpha=0.5)
|
266 |
+
|
267 |
+
|
268 |
+
hard_hit_dates = [(df_summ_new[plot_dict[stat_id]["percentile_label"]]).quantile(0.9),
|
269 |
+
(df_summ_new[plot_dict[stat_id]["percentile_label"]]).quantile(0.75),
|
270 |
+
(df_summ_new[plot_dict[stat_id]["percentile_label"]]).quantile(0.25),
|
271 |
+
(df_summ_new[plot_dict[stat_id]["percentile_label"]]).quantile(0.1)]
|
272 |
+
hard_hit_text = ['90th %','75th %','25th %','10th %']
|
273 |
+
for i, x in enumerate(hard_hit_dates):
|
274 |
+
text(min(window_select+window_select/100,+window_select+1), x ,hard_hit_text[i], rotation=0, ha='left',
|
275 |
+
bbox=dict(facecolor='white',alpha=0.5, edgecolor=colour_palette[2+i], pad=2))
|
276 |
+
|
277 |
+
|
278 |
+
|
279 |
+
if plot_dict[stat_id]["flip_p"] == True:
|
280 |
+
ax.hlines(y=(df_summ_new[plot_dict[stat_id]["percentile_label"]]).quantile(0.1),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[2],linestyle='dotted',alpha=0.5)
|
281 |
+
ax.hlines(y=(df_summ_new[plot_dict[stat_id]["percentile_label"]]).quantile(0.25),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[3],linestyle='dotted',alpha=0.5)
|
282 |
+
ax.hlines(y=(df_summ_new[plot_dict[stat_id]["percentile_label"]]).quantile(0.75),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[4],linestyle='dotted',alpha=0.5)
|
283 |
+
ax.hlines(y=(df_summ_new[plot_dict[stat_id]["percentile_label"]]).quantile(0.9),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[5],linestyle='dotted',alpha=0.5)
|
284 |
+
|
285 |
+
hard_hit_dates = [(df_summ_new[plot_dict[stat_id]["percentile_label"]]).quantile(0.9),
|
286 |
+
(df_summ_new[plot_dict[stat_id]["percentile_label"]]).quantile(0.75),
|
287 |
+
(df_summ_new[plot_dict[stat_id]["percentile_label"]]).quantile(0.25),
|
288 |
+
(df_summ_new[plot_dict[stat_id]["percentile_label"]]).quantile(0.1)]
|
289 |
+
hard_hit_text = ['10th %','25th %','75th %','90th %']
|
290 |
+
for i, x in enumerate(hard_hit_dates):
|
291 |
+
text(min(window_select+window_select/100,window_select+window_select+3), x ,hard_hit_text[i], rotation=0, ha='left',
|
292 |
+
bbox=dict(facecolor='white',alpha=0.5, edgecolor=colour_palette[2+i], pad=2))
|
293 |
+
|
294 |
+
|
295 |
+
|
296 |
+
|
297 |
+
|
298 |
+
|
299 |
+
if plot_dict[stat_id]["percentile"] == False:
|
300 |
+
ax.hlines(y=df[df.level == level_id][plot_dict[stat_id]["x_value"]].sum()/df[df.level == level_id][divisor_x].sum(),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[1],linestyle='-.',label=label_1)
|
301 |
+
|
302 |
+
ax.hlines(y=elly_zone_df[plot_dict[stat_id]["x_value"]].sum()/elly_zone_df[divisor_x].sum(),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[0],linestyle='--',label=label_2)
|
303 |
+
|
304 |
+
sns.lineplot(x=range(1,len(elly_zone_df)+1),y=elly_zone_df[plot_dict[stat_id]["x_value"]].fillna(0).rolling(window=swing_min).sum()/swing_min,color=colour_palette[0],linewidth=3,ax=ax)
|
305 |
+
|
306 |
+
|
307 |
+
|
308 |
+
if plot_dict[stat_id]["percentile"] == True:
|
309 |
+
|
310 |
+
ax.hlines(y=df[df.level == level_id][plot_dict[stat_id]["x_value"]].quantile(0.9),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[1],linestyle='-.',label=label_1)
|
311 |
+
|
312 |
+
ax.hlines(y=elly_zone_df[plot_dict[stat_id]["x_value"]].fillna(0).quantile(0.9),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[0],linestyle='--',label=label_2)
|
313 |
+
|
314 |
+
sns.lineplot(x=range(1,len(elly_zone_df)+1),y=elly_zone_df[plot_dict[stat_id]["x_value"]].fillna(0).rolling(window=swing_min).quantile(0.9),color=colour_palette[0],linewidth=3,ax=ax)
|
315 |
+
|
316 |
+
|
317 |
+
#ax.set_xlim(window_select,exit_velo_df_small.pitch.max())
|
318 |
+
#plt.yticks([0,0.2,0.4,0.6,0.8,1])
|
319 |
+
#ax.set_ylim(math.floor((min(df_summ.zone_contact)/5)*100)*5/100,1)
|
320 |
+
ax.set_xlim(math.floor(swing_min),len(elly_zone_df))
|
321 |
+
ax.set_title(f'{batter_dict[int(player_id)]} - {season_title} - {level_id} - {swing_min} {plot_dict[stat_id]["x_axis"]} Rolling {plot_dict[stat_id]["title"]}', fontsize=16,fontname='Century Gothic',)
|
322 |
+
#vals = ax.get_yticks()
|
323 |
+
ax.set_xlabel(plot_dict[stat_id]['x_axis'], fontsize=16,fontname='Century Gothic')
|
324 |
+
ax.set_ylabel(plot_dict[stat_id]['y_axis'], fontsize=16,fontname='Century Gothic')
|
325 |
+
|
326 |
+
#fig.axes[0].invert_yaxis()
|
327 |
+
|
328 |
+
#fig.subplots_adjust(wspace=.02, hspace=.02)
|
329 |
+
#ax.xaxis.set_major_formatter(FuncFormatter(lambda x, _: int(x)))
|
330 |
+
ax.set_yticks(plot_dict[stat_id]["x_range"])
|
331 |
+
#fig.colorbar(plot_dist, ax=ax)
|
332 |
+
#fig.colorbar(plot_dist)
|
333 |
+
#fig.axes[0].invert_yaxis()
|
334 |
+
ax.legend(fontsize='16')
|
335 |
+
fig.text(x=0.03,y=0.02,s='By: @TJStats',fontname='Century Gothic')
|
336 |
+
fig.text(x=1-0.03,y=0.02,s='Data: MLB',ha='right',fontname='Century Gothic')
|
337 |
+
fig.tight_layout()
|
338 |
+
return
|