Spaces:
Running
Running
from shiny import App, Inputs, Outputs, Session, reactive, render, req, ui | |
import datasets | |
from datasets import load_dataset | |
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
import numpy as np | |
from scipy.stats import gaussian_kde | |
import matplotlib | |
from matplotlib.ticker import MaxNLocator | |
from matplotlib.gridspec import GridSpec | |
from scipy.stats import zscore | |
import math | |
import matplotlib | |
from adjustText import adjust_text | |
import matplotlib.ticker as mtick | |
from shinywidgets import output_widget, render_widget | |
import pandas as pd | |
import shinyswatch | |
import inflect | |
from matplotlib.pyplot import text | |
def percentile(n): | |
def percentile_(x): | |
return np.nanpercentile(x, n) | |
percentile_.__name__ = 'percentile_%s' % n | |
return percentile_ | |
from matplotlib.colors import Normalize | |
print('Running') | |
cmap = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#4285F4","white","#FBBC04"]) | |
import requests | |
url = 'https://baseballsavant.mlb.com/leaderboard/custom?year=2024&type=batter&filter=&min=0&selections=player_age%2Cab%2Cpa%2Chit%2Csingle%2Cdouble%2Ctriple%2Chome_run%2Cstrikeout%2Cwalk%2Ck_percent%2Cbb_percent%2Cbatting_avg%2Cslg_percent%2Con_base_percent%2Con_base_plus_slg%2Cisolated_power%2Cbabip%2Cxba%2Cxslg%2Cwoba%2Cxwoba%2Cxobp%2Cxiso%2Cwobacon%2Cxwobacon%2Cbacon%2Cxbacon%2Cxbadiff%2Cxslgdiff%2Cwobadiff%2Cavg_swing_speed%2Cfast_swing_rate%2Cblasts_contact%2Cblasts_swing%2Csquared_up_contact%2Csquared_up_swing%2Cavg_swing_length%2Cswords%2Cexit_velocity_avg%2Claunch_angle_avg%2Csweet_spot_percent%2Cbarrel%2Cbarrel_batted_rate%2Csolidcontact_percent%2Cflareburner_percent%2Cpoorlyunder_percent%2Cpoorlytopped_percent%2Cpoorlyweak_percent%2Chard_hit_percent%2Cavg_best_speed%2Cavg_hyper_speed%2Cz_swing_percent%2Cz_swing_miss_percent%2Coz_swing_percent%2Coz_swing_miss_percent%2Coz_contact_percent%2Cout_zone_swing_miss%2Cout_zone_swing%2Cout_zone_percent%2Cout_zone%2Cmeatball_swing_percent%2Cmeatball_percent%2Cpitch_count_offspeed%2Cpitch_count_fastball%2Cpitch_count_breaking%2Cpitch_count%2Ciz_contact_percent%2Cin_zone_swing_miss%2Cin_zone_swing%2Cin_zone_percent%2Cin_zone%2Cedge_percent%2Cedge%2Cwhiff_percent%2Cswing_percent%2Cpull_percent%2Cstraightaway_percent%2Copposite_percent%2Cbatted_ball%2Cf_strike_percent%2Cgroundballs_percent%2Cgroundballs%2Cflyballs_percent%2Cflyballs%2Clinedrives_percent%2Clinedrives%2Cpopups_percent%2Cpopups%2Cn_bolts%2Chp_to_1b%2Csprint_speed&chart=false&x=player_age&y=player_age&r=no&chartType=beeswarm&sort=bacon&sortDir=&csv=true' | |
headers = { | |
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3' | |
} | |
response = requests.get(url, headers=headers) | |
from io import StringIO | |
# Assuming response.text contains the CSV formatted string | |
csv_data = response.text | |
# Use StringIO to convert the string into a file-like object | |
data = StringIO(csv_data) | |
# Read the CSV data into a DataFrame | |
df_season = pd.read_csv(data) | |
df_season['swstr_percent'] = df_season['whiff_percent'] * df_season['swing_percent'] | |
# Display the first few rows of the DataFrame | |
df_old = pd.read_csv('statcast_20152023.csv') | |
df = pd.concat([df_old, df_season], axis=0) | |
df['last_name'] = df['last_name, first_name'].str.split(',').str[0] | |
df['first_name'] = df['last_name, first_name'].str.split(',').str[1].str.strip(' ') | |
df['name'] = df['first_name'] +' ' +df['last_name'] | |
df[[x for x in df if x[-7:] == 'percent']] = df[[x for x in df if x[-7:] == 'percent']]/100 | |
df['barrel_batted_rate'] = df['barrel_batted_rate']/100 | |
player_dict = df[['player_id','name']].drop_duplicates().sort_values('name').set_index('player_id').to_dict()['name'] | |
df_median = df[df.pa>=400] | |
format_dict = { | |
'k_percent':{'format':':.1%','average':df.strikeout.sum()/df.pa.sum(),'a_d_good':False,'tab_name':'K%'}, | |
'bb_percent':{'format':':.1%','average':df.walk.sum()/df.pa.sum(),'a_d_good':True,'tab_name':'BB%'}, | |
'batting_avg':{'format':':.3f','average':df.hit.sum()/df.ab.sum(),'a_d_good':True,'tab_name':'AVG'}, | |
'on_base_plus_slg':{'format':':.3f','average':df.on_base_plus_slg.mean()/df.pa.mean(),'a_d_good':True,'tab_name':'OPS'}, | |
'isolated_power':{'format':':.3f','average':(df.single.sum() + df.double.sum()*2 + df.triple.sum()*3 + df.home_run.sum()*4)/df.ab.sum() - df.hit.sum()/df.ab.sum(),'a_d_good':True,'tab_name':'ISO'}, | |
'xba':{'format':':.3f','average':df_median.xba.median(),'a_d_good':True,'tab_name':'xBA'}, | |
'xslg':{'format':':.3f','average':df_median.xslg.median(),'a_d_good':True,'tab_name':'xSLG'}, | |
'woba':{'format':':.3f','average':df_median.woba.median(),'a_d_good':True,'tab_name':'wOBA'}, | |
'xwoba':{'format':':.3f','average':df_median.xwoba.median(),'a_d_good':True,'tab_name':'xwOBA'}, | |
'xobp':{'format':':.3f','average':df_median.xobp.median(),'a_d_good':True,'tab_name':'xOBP'}, | |
'xiso':{'format':':.3f','average':df_median.xiso.median(),'a_d_good':True,'tab_name':'xISO'}, | |
'wobacon':{'format':':.3f','average':df_median.wobacon.median(),'a_d_good':True,'tab_name':'wOBACON'}, | |
'xwobacon':{'format':':.3f','average':df_median.xwobacon.median(),'a_d_good':True,'tab_name':'xwOBACON'}, | |
'bacon':{'format':':.1f','average':df_median.bacon.median(),'a_d_good':True,'tab_name':'BACON'}, | |
'xbacon':{'format':':.1f','average':df_median.xbacon.median(),'a_d_good':True,'tab_name':'xBACON'}, | |
'xbadiff':{'format':':.3f','average':df_median.xbadiff.median(),'a_d_good':True,'tab_name':'BA-xBA'}, | |
'xslgdiff':{'format':':.3f','average':df_median.xslgdiff.median(),'a_d_good':True,'tab_name':'SLG-xSLG'}, | |
'wobadiff':{'format':':.3f','average':df_median.wobadiff.median(),'a_d_good':True,'tab_name':'wOBA-xwOBA'}, | |
'exit_velocity_avg':{'format':':.1f','average':(df.exit_velocity_avg * df.batted_ball).sum() / (df.batted_ball).sum(),'a_d_good':True,'tab_name':'EV'}, | |
'launch_angle_avg':{'format':':.1f','average':(df.launch_angle_avg * df.batted_ball).sum() / (df.batted_ball).sum(),'a_d_good':True,'tab_name':'LA'}, | |
'barrel':{'format':':.0f','average':df_median.barrel.median(),'a_d_good':True,'tab_name':'Barrel'}, | |
'barrel_batted_rate':{'format':':.1%','average':(df.barrel).sum() / (df.batted_ball).sum(),'a_d_good':True,'tab_name':'Barrel%'}, | |
'avg_best_speed':{'format':':.1f','average':(df.avg_best_speed * df.batted_ball).sum() / (df.batted_ball).sum(),'a_d_good':True,'tab_name':'Best Speed'}, | |
'avg_hyper_speed':{'format':':.1f','average':(df.avg_hyper_speed * df.batted_ball).sum() / (df.batted_ball).sum(),'a_d_good':True,'tab_name':'Hyper Speed'}, | |
'out_zone_swing_miss':{'format':':.0f','average':df_median.out_zone_swing_miss.mean(),'a_d_good':True,'tab_name':'O-Whiff%'}, | |
'out_zone_swing':{'format':':.0f','average':df_median.out_zone_swing.mean(),'a_d_good':True,'tab_name':'O-Swing'}, | |
'out_zone':{'format':':.0f','average':df_median.out_zone.mean(),'a_d_good':True,'tab_name':'O-Zone'}, | |
'pitch_count_offspeed':{'format':':.0f','average':df_median.pitch_count_offspeed.mean(),'a_d_good':True,'tab_name':'Pitch Off-Speed'}, | |
'pitch_count_fastball':{'format':':.0f','average':df_median.pitch_count_fastball.mean(),'a_d_good':True,'tab_name':'Pitch Fastball'}, | |
'pitch_count_breaking':{'format':':.0f','average':df_median.pitch_count_breaking.mean(),'a_d_good':True,'tab_name':'Pitch Breaking'}, | |
'pitch_count':{'format':':.0f','average':df_median.pitch_count.mean(),'a_d_good':True,'tab_name':'Pitches'}, | |
'in_zone_swing_miss':{'format':':.0f','average':df_median.in_zone_swing_miss.mean(),'a_d_good':False,'tab_name':'Z-Whiff'}, | |
'in_zone_swing':{'format':':.0f','average':df_median.in_zone_swing.mean(),'a_d_good':True,'tab_name':'Z-Swing'}, | |
'in_zone':{'format':':.0f','average':df_median.in_zone.mean(),'a_d_good':True,'tab_name':'Zone'}, | |
'edge':{'format':':.0f','average':df_median.edge.mean(),'a_d_good':True,'tab_name':'Edge'}, | |
'batted_ball':{'format':':.0f','average':df_median.batted_ball.mean(),'a_d_good':True,'tab_name':'Batted Balls'}, | |
'groundballs':{'format':':.0f','average':df_median.groundballs.mean(),'a_d_good':True,'tab_name':'Groundballs'}, | |
'flyballs':{'format':':.0f','average':df_median.flyballs.mean(),'a_d_good':True,'tab_name':'Flyballs'}, | |
'linedrives':{'format':':.0f','average':df_median.linedrives.mean(),'a_d_good':True,'tab_name':'Linedrives'}, | |
'popups':{'format':':.0f','average':df_median.popups.mean(),'a_d_good':True,'tab_name':'Popups'}, | |
'n_bolts':{'format':':.0f','average':df_median.n_bolts.mean(),'a_d_good':True,'tab_name':'Bolts'}, | |
'hp_to_1b':{'format':':.2f','average':df_median.hp_to_1b.mean(),'a_d_good':True,'tab_name':'Home Plate to 1st'}, | |
'sprint_speed':{'format':':.1f','average':df_median.sprint_speed.mean(),'a_d_good':True,'tab_name':'Sprint Speed'}, | |
'slg_percent':{'format':':.1%','average':(df.single.sum() + df.double.sum()*2 + df.triple.sum()*3 + df.home_run.sum()*4)/df.ab.sum(),'a_d_good':True,'tab_name':'SLG'}, | |
'on_base_percent':{'format':':.1%','average':df_median.on_base_percent.median(),'a_d_good':True,'tab_name':'OBP'}, | |
'sweet_spot_percent':{'format':':.1%','average':df_median.sweet_spot_percent.median(),'a_d_good':True,'tab_name':'SweetSpot%'}, | |
'solidcontact_percent':{'format':':.1%','average':df_median.solidcontact_percent.median(),'a_d_good':True,'tab_name':'Solid%'}, | |
'flareburner_percent':{'format':':.1%','average':df_median.flareburner_percent.median(),'a_d_good':False,'tab_name':'Flare/Burner%'}, | |
'poorlyunder_percent':{'format':':.1%','average':df_median.poorlyunder_percent.median(),'a_d_good':False,'tab_name':'Under%'}, | |
'poorlytopped_percent':{'format':':.1%','average':df_median.poorlytopped_percent.median(),'a_d_good':False,'tab_name':'Topped%'}, | |
'poorlyweak_percent':{'format':':.1%','average':df_median.poorlyweak_percent.median(),'a_d_good':False,'tab_name':'Weak%'}, | |
'hard_hit_percent':{'format':':.1%','average':df_median.hard_hit_percent.median(),'a_d_good':True,'tab_name':'HardHit%'}, | |
'z_swing_percent':{'format':':.1%','average':df.in_zone_swing.sum()/df.in_zone.sum(),'a_d_good':True,'tab_name':'Z-Swing%'}, | |
'z_swing_miss_percent':{'format':':.1%','average':df.in_zone_swing_miss.sum()/df.in_zone_swing.sum(),'a_d_good':False,'tab_name':'Z-Whiff%'}, | |
'out_zone_percent':{'format':':.1%','average':df.out_zone.sum()/df.pitch_count.sum(),'a_d_good':True,'tab_name':'O-Zone%'}, | |
'meatball_swing_percent':{'format':':.1%','average':df_median.meatball_swing_percent.median(),'a_d_good':True,'tab_name':'Meatball Swing%'}, | |
'meatball_percent':{'format':':.1%','average':df_median.meatball_percent.median(),'a_d_good':True,'tab_name':'Meatball%'}, | |
'iz_contact_percent':{'format':':.1%','average':1 - df.in_zone_swing_miss.sum()/df.in_zone_swing.sum(),'a_d_good':True,'tab_name':'Z-Contact%'}, | |
'in_zone_percent':{'format':':.1%','average':df.in_zone.mean()/df.pitch_count.sum(),'a_d_good':True,'tab_name':'Zone%'}, | |
'oz_swing_percent':{'format':':.1%','average':df.out_zone_swing.sum()/df.out_zone.sum(),'a_d_good':False,'tab_name':'O-Swing%'}, | |
'oz_swing_miss_percent':{'format':':.1%','average':df.out_zone_swing_miss.sum()/df.out_zone_swing.sum(),'a_d_good':False,'tab_name':'O-Whiff%'}, | |
'oz_contact_percent':{'format':':.1%','average':1 - df.out_zone_swing_miss.sum()/df.out_zone_swing.sum(),'a_d_good':True,'tab_name':'O-Contact%'}, | |
'edge_percent':{'format':':.1%','average':df_median.edge_percent.median(),'a_d_good':True,'tab_name':'Edge%'}, | |
'whiff_percent':{'format':':.1%','average':(df.in_zone_swing_miss.sum() + df.out_zone_swing_miss.sum()) / (df.in_zone_swing.sum() + df.out_zone_swing.sum()),'a_d_good':False,'tab_name':'Whiff%'}, | |
'swstr_percent':{'format':':.1%','average':(df.in_zone_swing_miss.sum() + df.out_zone_swing_miss.sum()) / (df.pitch_count.sum()),'a_d_good':False,'tab_name':'SwStr%'}, | |
'swing_percent':{'format':':.1%','average':(df.in_zone_swing.sum() + df.out_zone_swing.sum()) / (df.pitch_count.sum()),'a_d_good':True,'tab_name':'Swing%'}, | |
'pull_percent':{'format':':.1%','average':df_median.hit.median(),'a_d_good':True,'tab_name':'Pull%'}, | |
'straightaway_percent':{'format':':.1%','average':df_median.hit.median(),'a_d_good':True,'tab_name':'Straightaway%'}, | |
'opposite_percent':{'format':':.1%','average':df_median.hit.median(),'a_d_good':True,'tab_name':'Opposite%'}, | |
'f_strike_percent':{'format':':.1%','average':df_median.hit.median(),'a_d_good':False,'tab_name':'1st Strike%'}, | |
'groundballs_percent':{'format':':.1%','average':df.groundballs.sum()/df.batted_ball.sum(),'a_d_good':False,'tab_name':'GB%'}, | |
'flyballs_percent':{'format':':.1%','average':df.flyballs.sum()/df.batted_ball.sum(),'a_d_good':True,'tab_name':'FB%'}, | |
'linedrives_percent':{'format':':.1%','average':df.linedrives.sum()/df.batted_ball.sum(),'a_d_good':True,'tab_name':'LD%'}, | |
'popups_percent':{'format':':.1%','average':df.popups.sum()/df.batted_ball.sum(),'a_d_good':False,'tab_name':'PU%'},} | |
column_dict = pd.DataFrame(format_dict.keys(),[format_dict[x]['tab_name'] for x in format_dict.keys()]).reset_index().set_index(0).to_dict()['index'] | |
def server(input,output,session): | |
def txt_title(): | |
if input.player_id() == '': | |
return 'Select a Player' | |
player_input = int(input.player_id()) | |
season_1 = max(int(df['year'].min()),int(input.season_1())) | |
season_2 = min(int(df['year'].max()),int(input.season_2())) | |
if season_1 < season_2: | |
season_pick = [season_1,season_2] | |
elif season_1 > season_2: | |
season_pick = [season_2,season_1] | |
if len(str(input.player_id())) == 0: | |
return 'Select a Batter' | |
if str(input.season_1()) == str(input.season_2()): | |
return 'Select Different Seasons' | |
if len(df[(df.player_id == player_input)&(df.year == season_pick[0])] )== 0 or len(df[(df.player_id == player_input)&(df.year == season_pick[1])] )== 0: | |
return 'Select Different Seasons' | |
return f'{player_dict[int(input.player_id())]} Statcast Season Comparison' | |
def txt_title_compare(): | |
if type(input.player_id()) is int or input.player_id()=='': | |
return | |
if type(input.player_id_2()) is int or input.player_id_2()=='': | |
return | |
player_input_1 = int(input.player_id()) | |
player_input_2 = int(input.player_id_2()) | |
# season_pick = [input.season_1(),input.season_2()] | |
columns_i_want = list(input.row_select()) | |
print(columns_i_want) | |
season_1 = max(int(df['year'].min()),int(input.season_1())) | |
season_2 = min(int(df['year'].max()),int(input.season_2())) | |
player_list = [player_input_1,player_input_2] | |
name_list = [player_dict[int(player_input_1)],player_dict[int(player_input_2)]] | |
season_pick_list = [season_1,season_2] | |
if len(str(input.player_id())) == 0: | |
return 'Select a Batter' | |
if len(str(input.player_id_2())) == 0: | |
return 'Select a Batter' | |
if str(input.player_id()) == str(input.player_id_2()) and str(input.season_1()) == str(input.season_2()): | |
return 'Select Different Seasons' | |
if len(df[(df.player_id == player_list[0])&(df.year == season_pick_list[0])] )== 0 or len(df[(df.player_id == player_list[1])&(df.year == season_pick_list[1])])== 0: | |
return 'No Data for Specified Batter in Given Season' | |
return f'Statcast Season Comparison' | |
def text_2022(): | |
if input.player_id() == '': | |
return 'Select a Player' | |
return f'{int(input.season_1())} Season Results Compares to MLB Average' | |
def text_2022_1(): | |
if type(input.player_id()) is int or input.player_id()=='': | |
return | |
if type(input.player_id_2()) is int or input.player_id_2()=='': | |
return | |
season_1 = max(int(df['year'].min()),int(input.season_1())) | |
season_2 = min(int(df['year'].max()),int(input.season_2())) | |
season_pick_list = [season_1,season_2] | |
player_input_1 = int(input.player_id()) | |
player_input_2 = int(input.player_id_2()) | |
name_list = [player_dict[int(player_input_1)],player_dict[int(player_input_2)]] | |
return f"{name_list[0]} '{str(season_pick_list[0])[2:]} Season Results Compares to MLB Average" | |
def text_2023(): | |
if input.player_id() == '': | |
return 'Select a Player' | |
return f'{int(input.season_2())} Season Results Compares to MLB Average' | |
def text_2023_1(): | |
if type(input.player_id()) is int or input.player_id()=='': | |
return | |
if type(input.player_id_2()) is int or input.player_id_2()=='': | |
return | |
season_1 = max(int(df['year'].min()),int(input.season_1())) | |
season_2 = min(int(df['year'].max()),int(input.season_2())) | |
season_pick_list = [season_1,season_2] | |
player_input_1 = int(input.player_id()) | |
player_input_2 = int(input.player_id_2()) | |
name_list = [player_dict[int(player_input_1)],player_dict[int(player_input_2)]] | |
return f"{name_list[1]} '{str(season_pick_list[1])[2:]} Season Results Compares to MLB Average" | |
def text_diff(): | |
if input.player_id() == '': | |
return 'Select a Player' | |
return f'Difference Compares {int(input.season_2())} Results to {int(input.season_1())} Results' | |
def text_diff_compare(): | |
if type(input.player_id()) is int or input.player_id()=='': | |
return | |
if type(input.player_id_2()) is int or input.player_id_2()=='': | |
return | |
player_input_1 = int(input.player_id()) | |
player_input_2 = int(input.player_id_2()) | |
name_list = [player_dict[int(player_input_1)],player_dict[int(player_input_2)]] | |
return f'Difference Compares {name_list[0]} Results to {name_list[1]} Results' | |
def statcast_compare(): | |
if input.player_id() == '': | |
return | |
if len(str(input.player_id())) == 0: | |
return | |
if len(str(input.player_id_2())) == 0: | |
return | |
player_input = int(input.player_id()) | |
# season_pick = [input.season_1(),input.season_2()] | |
columns_i_want = list(input.row_select()) | |
print(columns_i_want) | |
season_1 = max(int(df['year'].min()),int(input.season_1())) | |
season_2 = min(int(df['year'].max()),int(input.season_2())) | |
if season_1 < season_2: | |
season_pick = [season_1,season_2] | |
elif season_1 > season_2: | |
season_pick = [season_2,season_1] | |
else: | |
return | |
print(df[(df.player_id == player_input)&(df.year == season_pick[0])]) | |
if len(df[(df.player_id == player_input)&(df.year == season_pick[0])] )== 0 or len(df[(df.player_id == player_input)&(df.year == season_pick[1])] )== 0: | |
return | |
df_compare = pd.concat([df[(df.player_id == player_input)&(df.year == season_pick[0])][[ 'player_age', 'pa']+columns_i_want], | |
df[(df.player_id == player_input)&(df.year == season_pick[1])][[ 'player_age', 'pa']+columns_i_want]]).reset_index(drop=True).T | |
print('test') | |
print(sum(df.player_id == input.player_id())) | |
df_compare.columns = season_pick | |
df_compare['Difference'] = df_compare.loc[columns_i_want][season_pick[1]] - df_compare.loc[columns_i_want][season_pick[0]] | |
df_compare_style = df_compare.style.format( | |
"{:.0f}") | |
df_compare_style = df_compare_style.set_properties(**{'background-color': 'white', | |
'color': 'white'},subset=(['player_age', 'pa'],df_compare_style.columns[2])).set_properties( | |
**{'min-width':'100px'},overwrite=False).set_table_styles( | |
[{'selector': 'th:first-child', 'text-align': 'center','props': [('background-color', 'white')]}],overwrite=False).set_table_styles( | |
[{'selector': 'tr:first-child','text-align': 'center', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles( | |
[{'selector': 'index','text-align': 'center', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles( | |
[{'selector': 'th', 'text-align': 'center','props': [('line-height', '40px'),('min-width', '30px')]}],overwrite=False).set_properties( | |
**{'Height': '20px'},**{'text-align': 'center'},overwrite=False).set_table_styles([{ | |
'selector': 'caption', | |
'props': [ | |
('color', ''), | |
('fontname', 'Century Gothic'), | |
('font-size', '20px'), | |
('font-style', 'italic'), | |
('font-weight', ''), | |
('text-align', 'centre'), | |
] | |
},{'selector' :'th', 'props':[('text-align', 'center'),('font-size', '20px'),('Height','20px'),('min-width','200px')]},{'selector' :'td', 'props':[('text-align', 'center'),('font-size', '20px'),('min-width','100px')]}],overwrite=False) | |
for r in columns_i_want: | |
if format_dict[r]['a_d_good']: | |
cmap = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#4285F4","white","#FBBC04"]) | |
else: | |
cmap = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FBBC04","white","#4285F4"]) | |
colormap = plt.get_cmap(cmap) | |
norm = Normalize(vmin=0.7, vmax=1.3) | |
normalized_value = norm(df_compare[df_compare.columns[0]][r]/format_dict[r]['average']) | |
df_compare_style.format( | |
f"{{{format_dict[r]['format']}}}",subset=(r,df_compare_style.columns[0])).set_properties(**{'background-color': '#%02x%02x%02x' % (int(colormap(normalized_value)[0] *255), int(colormap(normalized_value)[1] *255), int(colormap(normalized_value)[2] *255)), | |
'color': 'black'},subset=(r,df_compare_style.columns[0])) | |
norm = Normalize(vmin=0.7, vmax=1.3) | |
normalized_value = norm(df_compare[df_compare.columns[1]][r]/format_dict[r]['average']) | |
df_compare_style.format( | |
f"{{{format_dict[r]['format']}}}",subset=(r,df_compare_style.columns[1])).set_properties(**{'background-color': '#%02x%02x%02x' % (int(colormap(normalized_value)[0] *255), int(colormap(normalized_value)[1] *255), int(colormap(normalized_value)[2] *255)), | |
'color': 'black'},subset=(r,df_compare_style.columns[1])) | |
norm = Normalize(vmin=0.7, vmax=1.3) | |
normalized_value = norm(df_compare[df_compare.columns[1]][r]/df_compare[df_compare.columns[0]][r]) | |
df_compare_style.format( | |
f"{{{format_dict[r]['format']}}}",subset=(r,df_compare_style.columns[2])).set_properties(**{'background-color': '#%02x%02x%02x' % (int(colormap(normalized_value)[0] *255), int(colormap(normalized_value)[1] *255), int(colormap(normalized_value)[2] *255)), | |
'color': 'black'},subset=(r,df_compare_style.columns[2])) | |
df_compare_style.relabel_index(['Age', 'PA']+[format_dict[x]['tab_name'] for x in columns_i_want]).set_properties( | |
**{'border': '1px black solid !important'},overwrite=False).set_table_styles( | |
[{"selector": "", "props": [("border", "1px solid")]}, | |
{"selector": "tbody td", "props": [("border", "1px solid")]}, | |
{"selector": "th", "props": [("border", "1px solid")]}],overwrite=False) | |
#df_compare = df_compare.fillna(np.nan) | |
return df_compare_style | |
def statcast_compare_2(): | |
# if input.player_id() == 0: | |
# return | |
if type(input.player_id()) is int or input.player_id()=='': | |
return | |
if type(input.player_id_2()) is int or input.player_id_2()=='': | |
return | |
# if len(str(input.player_id())) == 0: | |
# return | |
player_input_1 = int(input.player_id()) | |
player_input_2 = int(input.player_id_2()) | |
# season_pick = [input.season_1(),input.season_2()] | |
columns_i_want = list(input.row_select()) | |
print(columns_i_want) | |
season_1 = max(int(df['year'].min()),int(input.season_1())) | |
season_2 = min(int(df['year'].max()),int(input.season_2())) | |
# if season_1 < season_2: | |
# season_pick = [season_1,season_2] | |
# elif season_1 > season_2: | |
# season_pick = [season_2,season_1] | |
# else: | |
# return | |
#print(df[(df.player_id == player_input)&(df.year == season_pick[0])]) | |
#player_list = ['Elly De La Cruz','Aaron Judge'] | |
player_list = [player_input_1,player_input_2] | |
name_list = [player_dict[int(player_input_1)],player_dict[int(player_input_2)]] | |
season_pick_list = [season_1,season_2] | |
if len(df[(df.player_id == player_list[0])&(df.year == season_pick_list[0])] )== 0 or len(df[(df.player_id == player_list[1])&(df.year == season_pick_list[1])] )== 0: | |
return | |
if str(input.player_id()) == str(input.player_id_2()) and str(input.season_1()) == str(input.season_2()): | |
return | |
df_compare = pd.concat([df[(df.player_id == player_list[0])&(df.year == season_pick_list[0])][[ 'year','player_age', 'pa']+columns_i_want], | |
df[(df.player_id == player_list[1])&(df.year == season_pick_list[1])][[ 'year','player_age', 'pa']+columns_i_want]]).reset_index(drop=True).T | |
df_compare.columns = [f"{name_list[0]} '{str(season_pick_list[0])[2:]}",f"{name_list[1]} '{str(season_pick_list[1])[2:]}"] | |
df_compare['Difference'] = df_compare.loc[columns_i_want][df_compare.columns [0]] - df_compare.loc[columns_i_want][df_compare.columns[1]] | |
#df_compare = df_compare.fillna(np.nan) | |
df_compare_style = df_compare.style.format( | |
"{:.0f}") | |
df_compare_style = df_compare_style.set_properties(**{'background-color': 'white', | |
'color': 'white'},subset=(['year','player_age', 'pa'],df_compare_style.columns[2])).set_properties( | |
**{'min-width':'125px'},overwrite=False).set_table_styles( | |
[{'selector': 'th:first-child', 'text-align': 'center','props': [('background-color', 'white')]}],overwrite=False).set_table_styles( | |
[{'selector': 'tr:first-child','text-align': 'center', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles( | |
[{'selector': 'index','text-align': 'center', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles( | |
[{'selector': 'th', 'text-align': 'center','props': [('line-height', '40px'),('min-width', '30px')]}],overwrite=False).set_properties( | |
**{'Height': '20px'},**{'text-align': 'center'},overwrite=False).set_table_styles([{ | |
'selector': 'caption', | |
'props': [ | |
('color', ''), | |
('fontname', 'Century Gothic'), | |
('font-size', '20px'), | |
('font-style', 'italic'), | |
('font-weight', ''), | |
('text-align', 'centre'), | |
] | |
},{'selector' :'th', 'props':[('text-align', 'center'),('font-size', '20px'),('Height','20px'),('min-width','200px')]},{'selector' :'td', 'props':[('text-align', 'center'),('font-size', '20px'),('min-width','100px')]}],overwrite=False) | |
for r in columns_i_want: | |
if format_dict[r]['a_d_good']: | |
cmap = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#4285F4","white","#FBBC04"]) | |
else: | |
cmap = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FBBC04","white","#4285F4"]) | |
colormap = plt.get_cmap(cmap) | |
norm = Normalize(vmin=0.5, vmax=1.5) | |
normalized_value = norm(df_compare[df_compare.columns[0]][r]/format_dict[r]['average']) | |
df_compare_style.format( | |
f"{{{format_dict[r]['format']}}}",subset=(r,df_compare_style.columns[0])).set_properties(**{'background-color': '#%02x%02x%02x' % (int(colormap(normalized_value)[0] *255), int(colormap(normalized_value)[1] *255), int(colormap(normalized_value)[2] *255)), | |
'color': 'black'},subset=(r,df_compare_style.columns[0])) | |
norm = Normalize(vmin=0.5, vmax=1.5) | |
normalized_value = norm(df_compare[df_compare.columns[1]][r]/format_dict[r]['average']) | |
df_compare_style.format( | |
f"{{{format_dict[r]['format']}}}",subset=(r,df_compare_style.columns[1])).set_properties(**{'background-color': '#%02x%02x%02x' % (int(colormap(normalized_value)[0] *255), int(colormap(normalized_value)[1] *255), int(colormap(normalized_value)[2] *255)), | |
'color': 'black'},subset=(r,df_compare_style.columns[1])) | |
norm = Normalize(vmin=0.8, vmax=1.2) | |
normalized_value = norm(df_compare[df_compare.columns[0]][r]/df_compare[df_compare.columns[1]][r]) | |
df_compare_style.format( | |
f"{{{format_dict[r]['format']}}}",subset=(r,df_compare_style.columns[2])).set_properties(**{'background-color': '#%02x%02x%02x' % (int(colormap(normalized_value)[0] *255), int(colormap(normalized_value)[1] *255), int(colormap(normalized_value)[2] *255)), | |
'color': 'black'},subset=(r,df_compare_style.columns[2])) | |
df_compare_style = df_compare_style | |
df_compare_style.relabel_index(['Year','Age', 'PA']+[format_dict[x]['tab_name'] for x in columns_i_want]).set_properties( | |
**{'border': '1px black solid !important'},overwrite=False).set_table_styles( | |
[{"selector": "", "props": [("border", "1px solid")]}, | |
{"selector": "tbody td", "props": [("border", "1px solid")]}, | |
{"selector": "th", "props": [("border", "1px solid")]}],overwrite=False) | |
#df_compare = df_compare.fillna(np.nan) | |
return df_compare_style | |
def colour_scale(): | |
off_b2b_df = pd.DataFrame(data={'one':-0.30,'two':0,'three':0.30},index=[0]) | |
off_b2b_df_style = off_b2b_df.style.set_properties(**{'border': '3 px'},overwrite=False).set_table_styles([{ | |
'selector': 'caption', | |
'props': [ | |
('color', ''), | |
('fontname', 'Century Gothic'), | |
('font-size', '20px'), | |
('font-style', 'italic'), | |
('font-weight', ''), | |
('text-align', 'centre'), | |
] | |
},{'selector' :'th', 'props':[('text-align', 'center'),('Height','px'),('color','black'),( | |
'border', '1px black solid !important')]},{'selector' :'td', 'props':[('text-align', 'center'),('font-size', '18px'),('color','black')]}],overwrite=False).set_properties( | |
**{'background-color':'White','index':'White','min-width':'150px'},overwrite=False).set_table_styles( | |
[{'selector': 'th:first-child', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles( | |
[{'selector': 'tr:first-child', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles( | |
[{'selector': 'tr', 'props': [('line-height', '20px')]}],overwrite=False).set_properties( | |
**{'Height': '8px'},**{'text-align': 'center'},overwrite=False).set_properties( | |
**{'background-color':'#4285F4'},subset=off_b2b_df.columns[0]).set_properties( | |
**{'background-color':'white'},subset=off_b2b_df.columns[1]).set_properties( | |
**{'background-color':'#FBBC04'},subset=off_b2b_df.columns[2]).set_properties( | |
**{'color':'black'},subset=off_b2b_df.columns[:]).hide_index().set_table_styles([ | |
{'selector': 'thead', 'props': [('display', 'none')]} | |
]).set_properties(**{'border': '3 px','color':'black'},overwrite=False).set_properties( | |
**{'border': '1px black solid !important'},subset = ((list(off_b2b_df.index[:]),off_b2b_df.columns[:]))).set_properties( | |
**{'min-width':'130'},subset = ((list(off_b2b_df.index[:]),off_b2b_df.columns[:])),overwrite=False).set_properties(**{ | |
'color': 'black'},overwrite=False).set_properties( | |
**{'border': '1px black solid !important'},subset = ((list(off_b2b_df.index[:]),off_b2b_df.columns[:]))) .format( | |
"{:+.0%}") | |
return off_b2b_df_style | |
def colour_scale_2(): | |
off_b2b_df = pd.DataFrame(data={'one':-0.30,'two':0,'three':0.30},index=[0]) | |
off_b2b_df_style = off_b2b_df.style.set_properties(**{'border': '3 px'},overwrite=False).set_table_styles([{ | |
'selector': 'caption', | |
'props': [ | |
('color', ''), | |
('fontname', 'Century Gothic'), | |
('font-size', '20px'), | |
('font-style', 'italic'), | |
('font-weight', ''), | |
('text-align', 'centre'), | |
] | |
},{'selector' :'th', 'props':[('text-align', 'center'),('Height','px'),('color','black'),( | |
'border', '1px black solid !important')]},{'selector' :'td', 'props':[('text-align', 'center'),('font-size', '18px'),('color','black')]}],overwrite=False).set_properties( | |
**{'background-color':'White','index':'White','min-width':'150px'},overwrite=False).set_table_styles( | |
[{'selector': 'th:first-child', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles( | |
[{'selector': 'tr:first-child', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles( | |
[{'selector': 'tr', 'props': [('line-height', '20px')]}],overwrite=False).set_properties( | |
**{'Height': '8px'},**{'text-align': 'center'},overwrite=False).set_properties( | |
**{'background-color':'#4285F4'},subset=off_b2b_df.columns[0]).set_properties( | |
**{'background-color':'white'},subset=off_b2b_df.columns[1]).set_properties( | |
**{'background-color':'#FBBC04'},subset=off_b2b_df.columns[2]).set_properties( | |
**{'color':'black'},subset=off_b2b_df.columns[:]).hide_index().set_table_styles([ | |
{'selector': 'thead', 'props': [('display', 'none')]} | |
]).set_properties(**{'border': '3 px','color':'black'},overwrite=False).set_properties( | |
**{'border': '1px black solid !important'},subset = ((list(off_b2b_df.index[:]),off_b2b_df.columns[:]))).set_properties( | |
**{'min-width':'130'},subset = ((list(off_b2b_df.index[:]),off_b2b_df.columns[:])),overwrite=False).set_properties(**{ | |
'color': 'black'},overwrite=False).set_properties( | |
**{'border': '1px black solid !important'},subset = ((list(off_b2b_df.index[:]),off_b2b_df.columns[:]))) .format( | |
"{:+.0%}") | |
return off_b2b_df_style | |
# test = test.fillna(0) | |
#test['PP TOI'] = ["%d:%02d" % (int(x),(x*60)%60) if x>0 else '0:00' for x in test['PP TOI']] | |
app = App(ui.page_fluid( | |
# ui.tags.base(href=base_url), | |
ui.tags.div( | |
{"style": "width:90%;margin: 0 auto;max-width: 1600px;"}, | |
ui.tags.style( | |
""" | |
h4 { | |
margin-top: 1em;font-size:35px; | |
} | |
h2{ | |
font-size:25px; | |
} | |
""" | |
), | |
shinyswatch.theme.simplex(), | |
ui.tags.h4("TJStats"), | |
ui.tags.i("Baseball Analytics and Visualizations"), | |
ui.markdown("""<a href='https://www.patreon.com/tj_stats'>Support me on Patreon for Access to 2024 Apps</a><sup>1</sup>"""), | |
ui.row( | |
ui.layout_sidebar( | |
ui.panel_sidebar( | |
#ui.input_date_range("date_range_id", "Date range input",start = statcast_df.game_date.min(), end = statcast_df.game_date.max()), | |
ui.input_select("player_id", "Select Player 1",player_dict,width=1,size=1,selectize=True,multiple=False,selected=592450), | |
ui.input_select("player_id_2", "Select Player 2 (For Player Compare Tab)",player_dict,width=1,size=1,selectize=True,multiple=False,selected=592450), | |
ui.input_numeric("season_1", "Season 1", value=2023,min=int(df['year'].min()),max=int(df['year'].max())), | |
ui.input_numeric("season_2", "Season 2", value=2024,min=int(df['year'].min()),max=int(df['year'].max())), | |
ui.input_select("row_select", "Select Stats", | |
column_dict,width=1,size=1,selectize=True, | |
multiple=True, | |
selected=['k_percent','bb_percent','woba','xwoba','iz_contact_percent','oz_swing_percent','whiff_percent']), | |
ui.input_action_button("go", "Generate",class_="btn-primary", | |
)), | |
ui.panel_main(ui.tags.h3(""), | |
ui.navset_tab( | |
ui.nav("Single Player", | |
ui.card( | |
ui.div({"style": "font-size:2.1em;"},ui.output_text("txt_title")), | |
#ui.tags.h2("Fantasy Hockey Schedule Summary"), | |
ui.tags.h5("Created By: @TJStats, Data: MLB"), | |
#ui.div({"style": "font-size:1.6em;"},ui.output_text("txt")), | |
ui.output_table("statcast_compare"), | |
#ui.tags.h5('Legend'), | |
ui.tags.h3(""), | |
ui.tags.h5('Colour Scale:'), | |
ui.output_table("colour_scale"), | |
ui.div({"style": "font-size:1em;"},ui.output_text("text_2022")), | |
ui.div({"style": "font-size:1em;"},ui.output_text("text_2023")), | |
ui.div({"style": "font-size:1em;"},ui.output_text("text_diff")))), | |
ui.nav("Player Compare", | |
ui.card( | |
ui.div({"style": "font-size:2.1em;"},ui.output_text("txt_title_compare")), | |
#ui.tags.h2("Fantasy Hockey Schedule Summary"), | |
ui.tags.h5("Created By: @TJStats, Data: MLB"), | |
#ui.div({"style": "font-size:1.6em;"},ui.output_text("txt")), | |
ui.output_table("statcast_compare_2"), | |
ui.tags.h3(""), | |
ui.tags.h5('Colour Scale:'), | |
ui.output_table("colour_scale_2"), | |
ui.div({"style": "font-size:1em;"},ui.output_text("text_2022_1")), | |
ui.div({"style": "font-size:1em;"},ui.output_text("text_2023_1")), | |
ui.div({"style": "font-size:1em;"},ui.output_text("text_diff_compare")))) | |
) | |
), | |
)),)),server) |