nesticot's picture
Update app.py
fe7e251 verified
from shiny import App, Inputs, Outputs, Session, reactive, render, req, ui
import datasets
from datasets import load_dataset
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from scipy.stats import gaussian_kde
import matplotlib
from matplotlib.ticker import MaxNLocator
from matplotlib.gridspec import GridSpec
from scipy.stats import zscore
import math
import matplotlib
from adjustText import adjust_text
import matplotlib.ticker as mtick
from shinywidgets import output_widget, render_widget
import pandas as pd
import shinyswatch
import inflect
from matplotlib.pyplot import text
def percentile(n):
def percentile_(x):
return np.nanpercentile(x, n)
percentile_.__name__ = 'percentile_%s' % n
return percentile_
from matplotlib.colors import Normalize
print('Running')
cmap = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#4285F4","white","#FBBC04"])
import requests
url = 'https://baseballsavant.mlb.com/leaderboard/custom?year=2024&type=batter&filter=&min=0&selections=player_age%2Cab%2Cpa%2Chit%2Csingle%2Cdouble%2Ctriple%2Chome_run%2Cstrikeout%2Cwalk%2Ck_percent%2Cbb_percent%2Cbatting_avg%2Cslg_percent%2Con_base_percent%2Con_base_plus_slg%2Cisolated_power%2Cbabip%2Cxba%2Cxslg%2Cwoba%2Cxwoba%2Cxobp%2Cxiso%2Cwobacon%2Cxwobacon%2Cbacon%2Cxbacon%2Cxbadiff%2Cxslgdiff%2Cwobadiff%2Cavg_swing_speed%2Cfast_swing_rate%2Cblasts_contact%2Cblasts_swing%2Csquared_up_contact%2Csquared_up_swing%2Cavg_swing_length%2Cswords%2Cexit_velocity_avg%2Claunch_angle_avg%2Csweet_spot_percent%2Cbarrel%2Cbarrel_batted_rate%2Csolidcontact_percent%2Cflareburner_percent%2Cpoorlyunder_percent%2Cpoorlytopped_percent%2Cpoorlyweak_percent%2Chard_hit_percent%2Cavg_best_speed%2Cavg_hyper_speed%2Cz_swing_percent%2Cz_swing_miss_percent%2Coz_swing_percent%2Coz_swing_miss_percent%2Coz_contact_percent%2Cout_zone_swing_miss%2Cout_zone_swing%2Cout_zone_percent%2Cout_zone%2Cmeatball_swing_percent%2Cmeatball_percent%2Cpitch_count_offspeed%2Cpitch_count_fastball%2Cpitch_count_breaking%2Cpitch_count%2Ciz_contact_percent%2Cin_zone_swing_miss%2Cin_zone_swing%2Cin_zone_percent%2Cin_zone%2Cedge_percent%2Cedge%2Cwhiff_percent%2Cswing_percent%2Cpull_percent%2Cstraightaway_percent%2Copposite_percent%2Cbatted_ball%2Cf_strike_percent%2Cgroundballs_percent%2Cgroundballs%2Cflyballs_percent%2Cflyballs%2Clinedrives_percent%2Clinedrives%2Cpopups_percent%2Cpopups%2Cn_bolts%2Chp_to_1b%2Csprint_speed&chart=false&x=player_age&y=player_age&r=no&chartType=beeswarm&sort=bacon&sortDir=&csv=true'
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'
}
response = requests.get(url, headers=headers)
from io import StringIO
# Assuming response.text contains the CSV formatted string
csv_data = response.text
# Use StringIO to convert the string into a file-like object
data = StringIO(csv_data)
# Read the CSV data into a DataFrame
df_season = pd.read_csv(data)
df_season['swstr_percent'] = df_season['whiff_percent'] * df_season['swing_percent']
# Display the first few rows of the DataFrame
df_old = pd.read_csv('statcast_20152023.csv')
df = pd.concat([df_old, df_season], axis=0)
df['last_name'] = df['last_name, first_name'].str.split(',').str[0]
df['first_name'] = df['last_name, first_name'].str.split(',').str[1].str.strip(' ')
df['name'] = df['first_name'] +' ' +df['last_name']
df[[x for x in df if x[-7:] == 'percent']] = df[[x for x in df if x[-7:] == 'percent']]/100
df['barrel_batted_rate'] = df['barrel_batted_rate']/100
player_dict = df[['player_id','name']].drop_duplicates().sort_values('name').set_index('player_id').to_dict()['name']
df_median = df[df.pa>=400]
format_dict = {
'k_percent':{'format':':.1%','average':df.strikeout.sum()/df.pa.sum(),'a_d_good':False,'tab_name':'K%'},
'bb_percent':{'format':':.1%','average':df.walk.sum()/df.pa.sum(),'a_d_good':True,'tab_name':'BB%'},
'batting_avg':{'format':':.3f','average':df.hit.sum()/df.ab.sum(),'a_d_good':True,'tab_name':'AVG'},
'on_base_plus_slg':{'format':':.3f','average':df.on_base_plus_slg.mean()/df.pa.mean(),'a_d_good':True,'tab_name':'OPS'},
'isolated_power':{'format':':.3f','average':(df.single.sum() + df.double.sum()*2 + df.triple.sum()*3 + df.home_run.sum()*4)/df.ab.sum() - df.hit.sum()/df.ab.sum(),'a_d_good':True,'tab_name':'ISO'},
'xba':{'format':':.3f','average':df_median.xba.median(),'a_d_good':True,'tab_name':'xBA'},
'xslg':{'format':':.3f','average':df_median.xslg.median(),'a_d_good':True,'tab_name':'xSLG'},
'woba':{'format':':.3f','average':df_median.woba.median(),'a_d_good':True,'tab_name':'wOBA'},
'xwoba':{'format':':.3f','average':df_median.xwoba.median(),'a_d_good':True,'tab_name':'xwOBA'},
'xobp':{'format':':.3f','average':df_median.xobp.median(),'a_d_good':True,'tab_name':'xOBP'},
'xiso':{'format':':.3f','average':df_median.xiso.median(),'a_d_good':True,'tab_name':'xISO'},
'wobacon':{'format':':.3f','average':df_median.wobacon.median(),'a_d_good':True,'tab_name':'wOBACON'},
'xwobacon':{'format':':.3f','average':df_median.xwobacon.median(),'a_d_good':True,'tab_name':'xwOBACON'},
'bacon':{'format':':.1f','average':df_median.bacon.median(),'a_d_good':True,'tab_name':'BACON'},
'xbacon':{'format':':.1f','average':df_median.xbacon.median(),'a_d_good':True,'tab_name':'xBACON'},
'xbadiff':{'format':':.3f','average':df_median.xbadiff.median(),'a_d_good':True,'tab_name':'BA-xBA'},
'xslgdiff':{'format':':.3f','average':df_median.xslgdiff.median(),'a_d_good':True,'tab_name':'SLG-xSLG'},
'wobadiff':{'format':':.3f','average':df_median.wobadiff.median(),'a_d_good':True,'tab_name':'wOBA-xwOBA'},
'exit_velocity_avg':{'format':':.1f','average':(df.exit_velocity_avg * df.batted_ball).sum() / (df.batted_ball).sum(),'a_d_good':True,'tab_name':'EV'},
'launch_angle_avg':{'format':':.1f','average':(df.launch_angle_avg * df.batted_ball).sum() / (df.batted_ball).sum(),'a_d_good':True,'tab_name':'LA'},
'barrel':{'format':':.0f','average':df_median.barrel.median(),'a_d_good':True,'tab_name':'Barrel'},
'barrel_batted_rate':{'format':':.1%','average':(df.barrel).sum() / (df.batted_ball).sum(),'a_d_good':True,'tab_name':'Barrel%'},
'avg_best_speed':{'format':':.1f','average':(df.avg_best_speed * df.batted_ball).sum() / (df.batted_ball).sum(),'a_d_good':True,'tab_name':'Best Speed'},
'avg_hyper_speed':{'format':':.1f','average':(df.avg_hyper_speed * df.batted_ball).sum() / (df.batted_ball).sum(),'a_d_good':True,'tab_name':'Hyper Speed'},
'out_zone_swing_miss':{'format':':.0f','average':df_median.out_zone_swing_miss.mean(),'a_d_good':True,'tab_name':'O-Whiff%'},
'out_zone_swing':{'format':':.0f','average':df_median.out_zone_swing.mean(),'a_d_good':True,'tab_name':'O-Swing'},
'out_zone':{'format':':.0f','average':df_median.out_zone.mean(),'a_d_good':True,'tab_name':'O-Zone'},
'pitch_count_offspeed':{'format':':.0f','average':df_median.pitch_count_offspeed.mean(),'a_d_good':True,'tab_name':'Pitch Off-Speed'},
'pitch_count_fastball':{'format':':.0f','average':df_median.pitch_count_fastball.mean(),'a_d_good':True,'tab_name':'Pitch Fastball'},
'pitch_count_breaking':{'format':':.0f','average':df_median.pitch_count_breaking.mean(),'a_d_good':True,'tab_name':'Pitch Breaking'},
'pitch_count':{'format':':.0f','average':df_median.pitch_count.mean(),'a_d_good':True,'tab_name':'Pitches'},
'in_zone_swing_miss':{'format':':.0f','average':df_median.in_zone_swing_miss.mean(),'a_d_good':False,'tab_name':'Z-Whiff'},
'in_zone_swing':{'format':':.0f','average':df_median.in_zone_swing.mean(),'a_d_good':True,'tab_name':'Z-Swing'},
'in_zone':{'format':':.0f','average':df_median.in_zone.mean(),'a_d_good':True,'tab_name':'Zone'},
'edge':{'format':':.0f','average':df_median.edge.mean(),'a_d_good':True,'tab_name':'Edge'},
'batted_ball':{'format':':.0f','average':df_median.batted_ball.mean(),'a_d_good':True,'tab_name':'Batted Balls'},
'groundballs':{'format':':.0f','average':df_median.groundballs.mean(),'a_d_good':True,'tab_name':'Groundballs'},
'flyballs':{'format':':.0f','average':df_median.flyballs.mean(),'a_d_good':True,'tab_name':'Flyballs'},
'linedrives':{'format':':.0f','average':df_median.linedrives.mean(),'a_d_good':True,'tab_name':'Linedrives'},
'popups':{'format':':.0f','average':df_median.popups.mean(),'a_d_good':True,'tab_name':'Popups'},
'n_bolts':{'format':':.0f','average':df_median.n_bolts.mean(),'a_d_good':True,'tab_name':'Bolts'},
'hp_to_1b':{'format':':.2f','average':df_median.hp_to_1b.mean(),'a_d_good':True,'tab_name':'Home Plate to 1st'},
'sprint_speed':{'format':':.1f','average':df_median.sprint_speed.mean(),'a_d_good':True,'tab_name':'Sprint Speed'},
'slg_percent':{'format':':.1%','average':(df.single.sum() + df.double.sum()*2 + df.triple.sum()*3 + df.home_run.sum()*4)/df.ab.sum(),'a_d_good':True,'tab_name':'SLG'},
'on_base_percent':{'format':':.1%','average':df_median.on_base_percent.median(),'a_d_good':True,'tab_name':'OBP'},
'sweet_spot_percent':{'format':':.1%','average':df_median.sweet_spot_percent.median(),'a_d_good':True,'tab_name':'SweetSpot%'},
'solidcontact_percent':{'format':':.1%','average':df_median.solidcontact_percent.median(),'a_d_good':True,'tab_name':'Solid%'},
'flareburner_percent':{'format':':.1%','average':df_median.flareburner_percent.median(),'a_d_good':False,'tab_name':'Flare/Burner%'},
'poorlyunder_percent':{'format':':.1%','average':df_median.poorlyunder_percent.median(),'a_d_good':False,'tab_name':'Under%'},
'poorlytopped_percent':{'format':':.1%','average':df_median.poorlytopped_percent.median(),'a_d_good':False,'tab_name':'Topped%'},
'poorlyweak_percent':{'format':':.1%','average':df_median.poorlyweak_percent.median(),'a_d_good':False,'tab_name':'Weak%'},
'hard_hit_percent':{'format':':.1%','average':df_median.hard_hit_percent.median(),'a_d_good':True,'tab_name':'HardHit%'},
'z_swing_percent':{'format':':.1%','average':df.in_zone_swing.sum()/df.in_zone.sum(),'a_d_good':True,'tab_name':'Z-Swing%'},
'z_swing_miss_percent':{'format':':.1%','average':df.in_zone_swing_miss.sum()/df.in_zone_swing.sum(),'a_d_good':False,'tab_name':'Z-Whiff%'},
'out_zone_percent':{'format':':.1%','average':df.out_zone.sum()/df.pitch_count.sum(),'a_d_good':True,'tab_name':'O-Zone%'},
'meatball_swing_percent':{'format':':.1%','average':df_median.meatball_swing_percent.median(),'a_d_good':True,'tab_name':'Meatball Swing%'},
'meatball_percent':{'format':':.1%','average':df_median.meatball_percent.median(),'a_d_good':True,'tab_name':'Meatball%'},
'iz_contact_percent':{'format':':.1%','average':1 - df.in_zone_swing_miss.sum()/df.in_zone_swing.sum(),'a_d_good':True,'tab_name':'Z-Contact%'},
'in_zone_percent':{'format':':.1%','average':df.in_zone.mean()/df.pitch_count.sum(),'a_d_good':True,'tab_name':'Zone%'},
'oz_swing_percent':{'format':':.1%','average':df.out_zone_swing.sum()/df.out_zone.sum(),'a_d_good':False,'tab_name':'O-Swing%'},
'oz_swing_miss_percent':{'format':':.1%','average':df.out_zone_swing_miss.sum()/df.out_zone_swing.sum(),'a_d_good':False,'tab_name':'O-Whiff%'},
'oz_contact_percent':{'format':':.1%','average':1 - df.out_zone_swing_miss.sum()/df.out_zone_swing.sum(),'a_d_good':True,'tab_name':'O-Contact%'},
'edge_percent':{'format':':.1%','average':df_median.edge_percent.median(),'a_d_good':True,'tab_name':'Edge%'},
'whiff_percent':{'format':':.1%','average':(df.in_zone_swing_miss.sum() + df.out_zone_swing_miss.sum()) / (df.in_zone_swing.sum() + df.out_zone_swing.sum()),'a_d_good':False,'tab_name':'Whiff%'},
'swstr_percent':{'format':':.1%','average':(df.in_zone_swing_miss.sum() + df.out_zone_swing_miss.sum()) / (df.pitch_count.sum()),'a_d_good':False,'tab_name':'SwStr%'},
'swing_percent':{'format':':.1%','average':(df.in_zone_swing.sum() + df.out_zone_swing.sum()) / (df.pitch_count.sum()),'a_d_good':True,'tab_name':'Swing%'},
'pull_percent':{'format':':.1%','average':df_median.hit.median(),'a_d_good':True,'tab_name':'Pull%'},
'straightaway_percent':{'format':':.1%','average':df_median.hit.median(),'a_d_good':True,'tab_name':'Straightaway%'},
'opposite_percent':{'format':':.1%','average':df_median.hit.median(),'a_d_good':True,'tab_name':'Opposite%'},
'f_strike_percent':{'format':':.1%','average':df_median.hit.median(),'a_d_good':False,'tab_name':'1st Strike%'},
'groundballs_percent':{'format':':.1%','average':df.groundballs.sum()/df.batted_ball.sum(),'a_d_good':False,'tab_name':'GB%'},
'flyballs_percent':{'format':':.1%','average':df.flyballs.sum()/df.batted_ball.sum(),'a_d_good':True,'tab_name':'FB%'},
'linedrives_percent':{'format':':.1%','average':df.linedrives.sum()/df.batted_ball.sum(),'a_d_good':True,'tab_name':'LD%'},
'popups_percent':{'format':':.1%','average':df.popups.sum()/df.batted_ball.sum(),'a_d_good':False,'tab_name':'PU%'},}
column_dict = pd.DataFrame(format_dict.keys(),[format_dict[x]['tab_name'] for x in format_dict.keys()]).reset_index().set_index(0).to_dict()['index']
def server(input,output,session):
@output
@render.text
@reactive.event(input.go, ignore_none=False)
def txt_title():
if input.player_id() == '':
return 'Select a Player'
player_input = int(input.player_id())
season_1 = max(int(df['year'].min()),int(input.season_1()))
season_2 = min(int(df['year'].max()),int(input.season_2()))
if season_1 < season_2:
season_pick = [season_1,season_2]
elif season_1 > season_2:
season_pick = [season_2,season_1]
if len(str(input.player_id())) == 0:
return 'Select a Batter'
if str(input.season_1()) == str(input.season_2()):
return 'Select Different Seasons'
if len(df[(df.player_id == player_input)&(df.year == season_pick[0])] )== 0 or len(df[(df.player_id == player_input)&(df.year == season_pick[1])] )== 0:
return 'Select Different Seasons'
return f'{player_dict[int(input.player_id())]} Statcast Season Comparison'
@output
@render.text
@reactive.event(input.go, ignore_none=False)
def txt_title_compare():
if type(input.player_id()) is int or input.player_id()=='':
return
if type(input.player_id_2()) is int or input.player_id_2()=='':
return
player_input_1 = int(input.player_id())
player_input_2 = int(input.player_id_2())
# season_pick = [input.season_1(),input.season_2()]
columns_i_want = list(input.row_select())
print(columns_i_want)
season_1 = max(int(df['year'].min()),int(input.season_1()))
season_2 = min(int(df['year'].max()),int(input.season_2()))
player_list = [player_input_1,player_input_2]
name_list = [player_dict[int(player_input_1)],player_dict[int(player_input_2)]]
season_pick_list = [season_1,season_2]
if len(str(input.player_id())) == 0:
return 'Select a Batter'
if len(str(input.player_id_2())) == 0:
return 'Select a Batter'
if str(input.player_id()) == str(input.player_id_2()) and str(input.season_1()) == str(input.season_2()):
return 'Select Different Seasons'
if len(df[(df.player_id == player_list[0])&(df.year == season_pick_list[0])] )== 0 or len(df[(df.player_id == player_list[1])&(df.year == season_pick_list[1])])== 0:
return 'No Data for Specified Batter in Given Season'
return f'Statcast Season Comparison'
@output
@render.text
@reactive.event(input.go, ignore_none=False)
def text_2022():
if input.player_id() == '':
return 'Select a Player'
return f'{int(input.season_1())} Season Results Compares to MLB Average'
@output
@render.text
@reactive.event(input.go, ignore_none=False)
def text_2022_1():
if type(input.player_id()) is int or input.player_id()=='':
return
if type(input.player_id_2()) is int or input.player_id_2()=='':
return
season_1 = max(int(df['year'].min()),int(input.season_1()))
season_2 = min(int(df['year'].max()),int(input.season_2()))
season_pick_list = [season_1,season_2]
player_input_1 = int(input.player_id())
player_input_2 = int(input.player_id_2())
name_list = [player_dict[int(player_input_1)],player_dict[int(player_input_2)]]
return f"{name_list[0]} '{str(season_pick_list[0])[2:]} Season Results Compares to MLB Average"
@output
@render.text
@reactive.event(input.go, ignore_none=False)
def text_2023():
if input.player_id() == '':
return 'Select a Player'
return f'{int(input.season_2())} Season Results Compares to MLB Average'
@output
@render.text
@reactive.event(input.go, ignore_none=False)
def text_2023_1():
if type(input.player_id()) is int or input.player_id()=='':
return
if type(input.player_id_2()) is int or input.player_id_2()=='':
return
season_1 = max(int(df['year'].min()),int(input.season_1()))
season_2 = min(int(df['year'].max()),int(input.season_2()))
season_pick_list = [season_1,season_2]
player_input_1 = int(input.player_id())
player_input_2 = int(input.player_id_2())
name_list = [player_dict[int(player_input_1)],player_dict[int(player_input_2)]]
return f"{name_list[1]} '{str(season_pick_list[1])[2:]} Season Results Compares to MLB Average"
@output
@render.text
@reactive.event(input.go, ignore_none=False)
def text_diff():
if input.player_id() == '':
return 'Select a Player'
return f'Difference Compares {int(input.season_2())} Results to {int(input.season_1())} Results'
@output
@render.text
@reactive.event(input.go, ignore_none=False)
def text_diff_compare():
if type(input.player_id()) is int or input.player_id()=='':
return
if type(input.player_id_2()) is int or input.player_id_2()=='':
return
player_input_1 = int(input.player_id())
player_input_2 = int(input.player_id_2())
name_list = [player_dict[int(player_input_1)],player_dict[int(player_input_2)]]
return f'Difference Compares {name_list[0]} Results to {name_list[1]} Results'
@output
@render.table
@reactive.event(input.go, ignore_none=False)
def statcast_compare():
if input.player_id() == '':
return
if len(str(input.player_id())) == 0:
return
if len(str(input.player_id_2())) == 0:
return
player_input = int(input.player_id())
# season_pick = [input.season_1(),input.season_2()]
columns_i_want = list(input.row_select())
print(columns_i_want)
season_1 = max(int(df['year'].min()),int(input.season_1()))
season_2 = min(int(df['year'].max()),int(input.season_2()))
if season_1 < season_2:
season_pick = [season_1,season_2]
elif season_1 > season_2:
season_pick = [season_2,season_1]
else:
return
print(df[(df.player_id == player_input)&(df.year == season_pick[0])])
if len(df[(df.player_id == player_input)&(df.year == season_pick[0])] )== 0 or len(df[(df.player_id == player_input)&(df.year == season_pick[1])] )== 0:
return
df_compare = pd.concat([df[(df.player_id == player_input)&(df.year == season_pick[0])][[ 'player_age', 'pa']+columns_i_want],
df[(df.player_id == player_input)&(df.year == season_pick[1])][[ 'player_age', 'pa']+columns_i_want]]).reset_index(drop=True).T
print('test')
print(sum(df.player_id == input.player_id()))
df_compare.columns = season_pick
df_compare['Difference'] = df_compare.loc[columns_i_want][season_pick[1]] - df_compare.loc[columns_i_want][season_pick[0]]
df_compare_style = df_compare.style.format(
"{:.0f}")
df_compare_style = df_compare_style.set_properties(**{'background-color': 'white',
'color': 'white'},subset=(['player_age', 'pa'],df_compare_style.columns[2])).set_properties(
**{'min-width':'100px'},overwrite=False).set_table_styles(
[{'selector': 'th:first-child', 'text-align': 'center','props': [('background-color', 'white')]}],overwrite=False).set_table_styles(
[{'selector': 'tr:first-child','text-align': 'center', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles(
[{'selector': 'index','text-align': 'center', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles(
[{'selector': 'th', 'text-align': 'center','props': [('line-height', '40px'),('min-width', '30px')]}],overwrite=False).set_properties(
**{'Height': '20px'},**{'text-align': 'center'},overwrite=False).set_table_styles([{
'selector': 'caption',
'props': [
('color', ''),
('fontname', 'Century Gothic'),
('font-size', '20px'),
('font-style', 'italic'),
('font-weight', ''),
('text-align', 'centre'),
]
},{'selector' :'th', 'props':[('text-align', 'center'),('font-size', '20px'),('Height','20px'),('min-width','200px')]},{'selector' :'td', 'props':[('text-align', 'center'),('font-size', '20px'),('min-width','100px')]}],overwrite=False)
for r in columns_i_want:
if format_dict[r]['a_d_good']:
cmap = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#4285F4","white","#FBBC04"])
else:
cmap = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FBBC04","white","#4285F4"])
colormap = plt.get_cmap(cmap)
norm = Normalize(vmin=0.7, vmax=1.3)
normalized_value = norm(df_compare[df_compare.columns[0]][r]/format_dict[r]['average'])
df_compare_style.format(
f"{{{format_dict[r]['format']}}}",subset=(r,df_compare_style.columns[0])).set_properties(**{'background-color': '#%02x%02x%02x' % (int(colormap(normalized_value)[0] *255), int(colormap(normalized_value)[1] *255), int(colormap(normalized_value)[2] *255)),
'color': 'black'},subset=(r,df_compare_style.columns[0]))
norm = Normalize(vmin=0.7, vmax=1.3)
normalized_value = norm(df_compare[df_compare.columns[1]][r]/format_dict[r]['average'])
df_compare_style.format(
f"{{{format_dict[r]['format']}}}",subset=(r,df_compare_style.columns[1])).set_properties(**{'background-color': '#%02x%02x%02x' % (int(colormap(normalized_value)[0] *255), int(colormap(normalized_value)[1] *255), int(colormap(normalized_value)[2] *255)),
'color': 'black'},subset=(r,df_compare_style.columns[1]))
norm = Normalize(vmin=0.7, vmax=1.3)
normalized_value = norm(df_compare[df_compare.columns[1]][r]/df_compare[df_compare.columns[0]][r])
df_compare_style.format(
f"{{{format_dict[r]['format']}}}",subset=(r,df_compare_style.columns[2])).set_properties(**{'background-color': '#%02x%02x%02x' % (int(colormap(normalized_value)[0] *255), int(colormap(normalized_value)[1] *255), int(colormap(normalized_value)[2] *255)),
'color': 'black'},subset=(r,df_compare_style.columns[2]))
df_compare_style.relabel_index(['Age', 'PA']+[format_dict[x]['tab_name'] for x in columns_i_want]).set_properties(
**{'border': '1px black solid !important'},overwrite=False).set_table_styles(
[{"selector": "", "props": [("border", "1px solid")]},
{"selector": "tbody td", "props": [("border", "1px solid")]},
{"selector": "th", "props": [("border", "1px solid")]}],overwrite=False)
#df_compare = df_compare.fillna(np.nan)
return df_compare_style
@output
@render.table
@reactive.event(input.go, ignore_none=False)
def statcast_compare_2():
# if input.player_id() == 0:
# return
if type(input.player_id()) is int or input.player_id()=='':
return
if type(input.player_id_2()) is int or input.player_id_2()=='':
return
# if len(str(input.player_id())) == 0:
# return
player_input_1 = int(input.player_id())
player_input_2 = int(input.player_id_2())
# season_pick = [input.season_1(),input.season_2()]
columns_i_want = list(input.row_select())
print(columns_i_want)
season_1 = max(int(df['year'].min()),int(input.season_1()))
season_2 = min(int(df['year'].max()),int(input.season_2()))
# if season_1 < season_2:
# season_pick = [season_1,season_2]
# elif season_1 > season_2:
# season_pick = [season_2,season_1]
# else:
# return
#print(df[(df.player_id == player_input)&(df.year == season_pick[0])])
#player_list = ['Elly De La Cruz','Aaron Judge']
player_list = [player_input_1,player_input_2]
name_list = [player_dict[int(player_input_1)],player_dict[int(player_input_2)]]
season_pick_list = [season_1,season_2]
if len(df[(df.player_id == player_list[0])&(df.year == season_pick_list[0])] )== 0 or len(df[(df.player_id == player_list[1])&(df.year == season_pick_list[1])] )== 0:
return
if str(input.player_id()) == str(input.player_id_2()) and str(input.season_1()) == str(input.season_2()):
return
df_compare = pd.concat([df[(df.player_id == player_list[0])&(df.year == season_pick_list[0])][[ 'year','player_age', 'pa']+columns_i_want],
df[(df.player_id == player_list[1])&(df.year == season_pick_list[1])][[ 'year','player_age', 'pa']+columns_i_want]]).reset_index(drop=True).T
df_compare.columns = [f"{name_list[0]} '{str(season_pick_list[0])[2:]}",f"{name_list[1]} '{str(season_pick_list[1])[2:]}"]
df_compare['Difference'] = df_compare.loc[columns_i_want][df_compare.columns [0]] - df_compare.loc[columns_i_want][df_compare.columns[1]]
#df_compare = df_compare.fillna(np.nan)
df_compare_style = df_compare.style.format(
"{:.0f}")
df_compare_style = df_compare_style.set_properties(**{'background-color': 'white',
'color': 'white'},subset=(['year','player_age', 'pa'],df_compare_style.columns[2])).set_properties(
**{'min-width':'125px'},overwrite=False).set_table_styles(
[{'selector': 'th:first-child', 'text-align': 'center','props': [('background-color', 'white')]}],overwrite=False).set_table_styles(
[{'selector': 'tr:first-child','text-align': 'center', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles(
[{'selector': 'index','text-align': 'center', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles(
[{'selector': 'th', 'text-align': 'center','props': [('line-height', '40px'),('min-width', '30px')]}],overwrite=False).set_properties(
**{'Height': '20px'},**{'text-align': 'center'},overwrite=False).set_table_styles([{
'selector': 'caption',
'props': [
('color', ''),
('fontname', 'Century Gothic'),
('font-size', '20px'),
('font-style', 'italic'),
('font-weight', ''),
('text-align', 'centre'),
]
},{'selector' :'th', 'props':[('text-align', 'center'),('font-size', '20px'),('Height','20px'),('min-width','200px')]},{'selector' :'td', 'props':[('text-align', 'center'),('font-size', '20px'),('min-width','100px')]}],overwrite=False)
for r in columns_i_want:
if format_dict[r]['a_d_good']:
cmap = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#4285F4","white","#FBBC04"])
else:
cmap = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FBBC04","white","#4285F4"])
colormap = plt.get_cmap(cmap)
norm = Normalize(vmin=0.5, vmax=1.5)
normalized_value = norm(df_compare[df_compare.columns[0]][r]/format_dict[r]['average'])
df_compare_style.format(
f"{{{format_dict[r]['format']}}}",subset=(r,df_compare_style.columns[0])).set_properties(**{'background-color': '#%02x%02x%02x' % (int(colormap(normalized_value)[0] *255), int(colormap(normalized_value)[1] *255), int(colormap(normalized_value)[2] *255)),
'color': 'black'},subset=(r,df_compare_style.columns[0]))
norm = Normalize(vmin=0.5, vmax=1.5)
normalized_value = norm(df_compare[df_compare.columns[1]][r]/format_dict[r]['average'])
df_compare_style.format(
f"{{{format_dict[r]['format']}}}",subset=(r,df_compare_style.columns[1])).set_properties(**{'background-color': '#%02x%02x%02x' % (int(colormap(normalized_value)[0] *255), int(colormap(normalized_value)[1] *255), int(colormap(normalized_value)[2] *255)),
'color': 'black'},subset=(r,df_compare_style.columns[1]))
norm = Normalize(vmin=0.8, vmax=1.2)
normalized_value = norm(df_compare[df_compare.columns[0]][r]/df_compare[df_compare.columns[1]][r])
df_compare_style.format(
f"{{{format_dict[r]['format']}}}",subset=(r,df_compare_style.columns[2])).set_properties(**{'background-color': '#%02x%02x%02x' % (int(colormap(normalized_value)[0] *255), int(colormap(normalized_value)[1] *255), int(colormap(normalized_value)[2] *255)),
'color': 'black'},subset=(r,df_compare_style.columns[2]))
df_compare_style = df_compare_style
df_compare_style.relabel_index(['Year','Age', 'PA']+[format_dict[x]['tab_name'] for x in columns_i_want]).set_properties(
**{'border': '1px black solid !important'},overwrite=False).set_table_styles(
[{"selector": "", "props": [("border", "1px solid")]},
{"selector": "tbody td", "props": [("border", "1px solid")]},
{"selector": "th", "props": [("border", "1px solid")]}],overwrite=False)
#df_compare = df_compare.fillna(np.nan)
return df_compare_style
@output
@render.table
@reactive.event(input.go, ignore_none=False)
def colour_scale():
off_b2b_df = pd.DataFrame(data={'one':-0.30,'two':0,'three':0.30},index=[0])
off_b2b_df_style = off_b2b_df.style.set_properties(**{'border': '3 px'},overwrite=False).set_table_styles([{
'selector': 'caption',
'props': [
('color', ''),
('fontname', 'Century Gothic'),
('font-size', '20px'),
('font-style', 'italic'),
('font-weight', ''),
('text-align', 'centre'),
]
},{'selector' :'th', 'props':[('text-align', 'center'),('Height','px'),('color','black'),(
'border', '1px black solid !important')]},{'selector' :'td', 'props':[('text-align', 'center'),('font-size', '18px'),('color','black')]}],overwrite=False).set_properties(
**{'background-color':'White','index':'White','min-width':'150px'},overwrite=False).set_table_styles(
[{'selector': 'th:first-child', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles(
[{'selector': 'tr:first-child', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles(
[{'selector': 'tr', 'props': [('line-height', '20px')]}],overwrite=False).set_properties(
**{'Height': '8px'},**{'text-align': 'center'},overwrite=False).set_properties(
**{'background-color':'#4285F4'},subset=off_b2b_df.columns[0]).set_properties(
**{'background-color':'white'},subset=off_b2b_df.columns[1]).set_properties(
**{'background-color':'#FBBC04'},subset=off_b2b_df.columns[2]).set_properties(
**{'color':'black'},subset=off_b2b_df.columns[:]).hide_index().set_table_styles([
{'selector': 'thead', 'props': [('display', 'none')]}
]).set_properties(**{'border': '3 px','color':'black'},overwrite=False).set_properties(
**{'border': '1px black solid !important'},subset = ((list(off_b2b_df.index[:]),off_b2b_df.columns[:]))).set_properties(
**{'min-width':'130'},subset = ((list(off_b2b_df.index[:]),off_b2b_df.columns[:])),overwrite=False).set_properties(**{
'color': 'black'},overwrite=False).set_properties(
**{'border': '1px black solid !important'},subset = ((list(off_b2b_df.index[:]),off_b2b_df.columns[:]))) .format(
"{:+.0%}")
return off_b2b_df_style
@output
@render.table
@reactive.event(input.go, ignore_none=False)
def colour_scale_2():
off_b2b_df = pd.DataFrame(data={'one':-0.30,'two':0,'three':0.30},index=[0])
off_b2b_df_style = off_b2b_df.style.set_properties(**{'border': '3 px'},overwrite=False).set_table_styles([{
'selector': 'caption',
'props': [
('color', ''),
('fontname', 'Century Gothic'),
('font-size', '20px'),
('font-style', 'italic'),
('font-weight', ''),
('text-align', 'centre'),
]
},{'selector' :'th', 'props':[('text-align', 'center'),('Height','px'),('color','black'),(
'border', '1px black solid !important')]},{'selector' :'td', 'props':[('text-align', 'center'),('font-size', '18px'),('color','black')]}],overwrite=False).set_properties(
**{'background-color':'White','index':'White','min-width':'150px'},overwrite=False).set_table_styles(
[{'selector': 'th:first-child', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles(
[{'selector': 'tr:first-child', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles(
[{'selector': 'tr', 'props': [('line-height', '20px')]}],overwrite=False).set_properties(
**{'Height': '8px'},**{'text-align': 'center'},overwrite=False).set_properties(
**{'background-color':'#4285F4'},subset=off_b2b_df.columns[0]).set_properties(
**{'background-color':'white'},subset=off_b2b_df.columns[1]).set_properties(
**{'background-color':'#FBBC04'},subset=off_b2b_df.columns[2]).set_properties(
**{'color':'black'},subset=off_b2b_df.columns[:]).hide_index().set_table_styles([
{'selector': 'thead', 'props': [('display', 'none')]}
]).set_properties(**{'border': '3 px','color':'black'},overwrite=False).set_properties(
**{'border': '1px black solid !important'},subset = ((list(off_b2b_df.index[:]),off_b2b_df.columns[:]))).set_properties(
**{'min-width':'130'},subset = ((list(off_b2b_df.index[:]),off_b2b_df.columns[:])),overwrite=False).set_properties(**{
'color': 'black'},overwrite=False).set_properties(
**{'border': '1px black solid !important'},subset = ((list(off_b2b_df.index[:]),off_b2b_df.columns[:]))) .format(
"{:+.0%}")
return off_b2b_df_style
# test = test.fillna(0)
#test['PP TOI'] = ["%d:%02d" % (int(x),(x*60)%60) if x>0 else '0:00' for x in test['PP TOI']]
app = App(ui.page_fluid(
# ui.tags.base(href=base_url),
ui.tags.div(
{"style": "width:90%;margin: 0 auto;max-width: 1600px;"},
ui.tags.style(
"""
h4 {
margin-top: 1em;font-size:35px;
}
h2{
font-size:25px;
}
"""
),
shinyswatch.theme.simplex(),
ui.tags.h4("TJStats"),
ui.tags.i("Baseball Analytics and Visualizations"),
ui.markdown("""<a href='https://www.patreon.com/tj_stats'>Support me on Patreon for Access to 2024 Apps</a><sup>1</sup>"""),
ui.row(
ui.layout_sidebar(
ui.panel_sidebar(
#ui.input_date_range("date_range_id", "Date range input",start = statcast_df.game_date.min(), end = statcast_df.game_date.max()),
ui.input_select("player_id", "Select Player 1",player_dict,width=1,size=1,selectize=True,multiple=False,selected=592450),
ui.input_select("player_id_2", "Select Player 2 (For Player Compare Tab)",player_dict,width=1,size=1,selectize=True,multiple=False,selected=592450),
ui.input_numeric("season_1", "Season 1", value=2023,min=int(df['year'].min()),max=int(df['year'].max())),
ui.input_numeric("season_2", "Season 2", value=2024,min=int(df['year'].min()),max=int(df['year'].max())),
ui.input_select("row_select", "Select Stats",
column_dict,width=1,size=1,selectize=True,
multiple=True,
selected=['k_percent','bb_percent','woba','xwoba','iz_contact_percent','oz_swing_percent','whiff_percent']),
ui.input_action_button("go", "Generate",class_="btn-primary",
)),
ui.panel_main(ui.tags.h3(""),
ui.navset_tab(
ui.nav("Single Player",
ui.card(
ui.div({"style": "font-size:2.1em;"},ui.output_text("txt_title")),
#ui.tags.h2("Fantasy Hockey Schedule Summary"),
ui.tags.h5("Created By: @TJStats, Data: MLB"),
#ui.div({"style": "font-size:1.6em;"},ui.output_text("txt")),
ui.output_table("statcast_compare"),
#ui.tags.h5('Legend'),
ui.tags.h3(""),
ui.tags.h5('Colour Scale:'),
ui.output_table("colour_scale"),
ui.div({"style": "font-size:1em;"},ui.output_text("text_2022")),
ui.div({"style": "font-size:1em;"},ui.output_text("text_2023")),
ui.div({"style": "font-size:1em;"},ui.output_text("text_diff")))),
ui.nav("Player Compare",
ui.card(
ui.div({"style": "font-size:2.1em;"},ui.output_text("txt_title_compare")),
#ui.tags.h2("Fantasy Hockey Schedule Summary"),
ui.tags.h5("Created By: @TJStats, Data: MLB"),
#ui.div({"style": "font-size:1.6em;"},ui.output_text("txt")),
ui.output_table("statcast_compare_2"),
ui.tags.h3(""),
ui.tags.h5('Colour Scale:'),
ui.output_table("colour_scale_2"),
ui.div({"style": "font-size:1em;"},ui.output_text("text_2022_1")),
ui.div({"style": "font-size:1em;"},ui.output_text("text_2023_1")),
ui.div({"style": "font-size:1em;"},ui.output_text("text_diff_compare"))))
)
),
)),)),server)