Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,803 +0,0 @@
|
|
1 |
-
import pandas as pd
|
2 |
-
import numpy as np
|
3 |
-
import matplotlib.pyplot as plt
|
4 |
-
import seaborn as sns
|
5 |
-
import pitch_summary_functions as psf
|
6 |
-
import requests
|
7 |
-
import matplotlib
|
8 |
-
from api_scraper import MLB_Scrape
|
9 |
-
from shinywidgets import output_widget, render_widget
|
10 |
-
import shinyswatch
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
colour_palette = ['#FFB000','#648FFF','#785EF0',
|
15 |
-
'#DC267F','#FE6100','#3D1EB2','#894D80','#16AA02','#B5592B','#A3C1ED']
|
16 |
-
|
17 |
-
import datasets
|
18 |
-
from datasets import load_dataset
|
19 |
-
### Import Datasets
|
20 |
-
dataset = load_dataset('nesticot/mlb_data', data_files=['mlb_pitch_data_2024.csv' ])
|
21 |
-
dataset_train = dataset['train']
|
22 |
-
df_2024 = dataset_train.to_pandas().set_index(list(dataset_train.features.keys())[0]).reset_index(drop=True).drop_duplicates(subset=['play_id'],keep='last')
|
23 |
-
|
24 |
-
# ### Import Datasets
|
25 |
-
# import datasets
|
26 |
-
# from datasets import load_dataset
|
27 |
-
# dataset = load_dataset('nesticot/mlb_data', data_files=['mlb_pitch_data_2020.csv' ])
|
28 |
-
# dataset_train = dataset['train']
|
29 |
-
# df_2024 = dataset_train.to_pandas().set_index(list(dataset_train.features.keys())[0]).reset_index(drop=True)
|
30 |
-
|
31 |
-
### PITCH COLOURS ###
|
32 |
-
pitch_colours = {
|
33 |
-
'Four-Seam Fastball':'#FF007D',#BC136F
|
34 |
-
'Sinker':'#98165D',#DC267F
|
35 |
-
'Cutter':'#BE5FA0',
|
36 |
-
|
37 |
-
'Changeup':'#F79E70',#F75233
|
38 |
-
'Splitter':'#FE6100',#F75233
|
39 |
-
'Screwball':'#F08223',
|
40 |
-
'Forkball':'#FFB000',
|
41 |
-
|
42 |
-
'Slider':'#67E18D',#1BB999#785EF0
|
43 |
-
'Sweeper':'#1BB999',#37CD85#904039
|
44 |
-
'Slurve':'#376748',#785EF0#549C07#BEABD8
|
45 |
-
|
46 |
-
'Knuckle Curve':'#311D8B',
|
47 |
-
'Curveball':'#3025CE',
|
48 |
-
'Slow Curve':'#274BFC',
|
49 |
-
'Eephus':'#648FFF',
|
50 |
-
|
51 |
-
'Knuckleball':'#867A08',
|
52 |
-
|
53 |
-
'Pitch Out':'#472C30',
|
54 |
-
'Other':'#9C8975',
|
55 |
-
}
|
56 |
-
|
57 |
-
spring_teams = df_2024.groupby(['pitcher_id']).tail(1)[['pitcher_id','pitcher_team']].set_index(['pitcher_id'])['pitcher_team'].to_dict()
|
58 |
-
|
59 |
-
season_start = '2024-03-20'
|
60 |
-
season_end = '2024-09-29'
|
61 |
-
season_fg=2024
|
62 |
-
chad_fg = requests.get(f'https://www.fangraphs.com/api/leaders/major-league/data?age=&pos=all&stats=pit&lg=all&qual=0&season={season_fg}&season={season_fg}&month=1000&season1={season_fg}&ind=0&pageitems=2000000000&pagenum=1&ind=0&rost=0&players=&type=36&postseason=&sortdir=default&sortstat=sp_pitching').json()
|
63 |
-
|
64 |
-
|
65 |
-
chadwick_df_small = pd.DataFrame(data={
|
66 |
-
'key_mlbam':[x['xMLBAMID'] for x in chad_fg['data']],
|
67 |
-
'key_fangraphs':[x['playerid'] for x in chad_fg['data']],
|
68 |
-
'Name':[x['PlayerName'] for x in chad_fg['data']],
|
69 |
-
})
|
70 |
-
|
71 |
-
pitcher_dicts = chadwick_df_small.set_index('key_mlbam')['Name'].sort_values().to_dict()
|
72 |
-
mlb_fg_dicts = chadwick_df_small.set_index('key_mlbam')['key_fangraphs'].sort_values().to_dict()
|
73 |
-
|
74 |
-
|
75 |
-
statcast_pitch_summary = pd.read_csv('statcast_pitch_summary.csv')
|
76 |
-
cmap_sum = matplotlib.colors.LinearSegmentedColormap.from_list("", ['#648FFF','#FFFFFF','#FFB000',])
|
77 |
-
|
78 |
-
|
79 |
-
df_2024_codes = psf.df_update_code(df_2024)
|
80 |
-
|
81 |
-
df_2024_update = psf.df_clean(df_2024_codes)
|
82 |
-
import joblib
|
83 |
-
model = joblib.load('joblib_model/tjstuff_model_20240318.joblib')
|
84 |
-
y_pred_mean = 0.0011434511
|
85 |
-
y_pred_std = 0.006554768
|
86 |
-
|
87 |
-
features = ['start_speed','spin_rate','extension','ivb','hb','x0','z0','fb_max_velo_diff','fb_max_ivb_diff','fb_max_hb_diff']
|
88 |
-
|
89 |
-
targets = ['delta_run_exp_mean']
|
90 |
-
|
91 |
-
|
92 |
-
df_2024_update['y_pred'] = model.predict(df_2024_update[features])
|
93 |
-
|
94 |
-
df_2024_update['tj_stuff_plus'] = 100 + 10*((-df_2024_update.y_pred +y_pred_mean) / y_pred_std)
|
95 |
-
|
96 |
-
team_logos = pd.read_csv('team_logos.csv')
|
97 |
-
|
98 |
-
mlb_stats = MLB_Scrape()
|
99 |
-
teams_df = mlb_stats.get_teams()
|
100 |
-
team_logo_dict = teams_df.set_index(['team_id'])['parent_org_id'].to_dict()
|
101 |
-
|
102 |
-
font_properties = {'family': 'calibi', 'size': 12}
|
103 |
-
font_properties_titles = {'family': 'calibi', 'size': 20}
|
104 |
-
font_properties_axes = {'family': 'calibi', 'size': 16}
|
105 |
-
df_plot = []
|
106 |
-
ax2_loc = []
|
107 |
-
gs = []
|
108 |
-
fig = []
|
109 |
-
|
110 |
-
function_dict={
|
111 |
-
'velocity_kde':'Velocity Distributions',
|
112 |
-
'break_plot':'Pitch Movement',
|
113 |
-
'rolling_tj_stuff':'Rolling tjStuff+',
|
114 |
-
'location_lhb':'Locations vs LHB',
|
115 |
-
'location_rhb':'Locations vs RHB',
|
116 |
-
}
|
117 |
-
|
118 |
-
split_dict = {'all':'All',
|
119 |
-
'left':'LHB',
|
120 |
-
'right':'RHB'}
|
121 |
-
|
122 |
-
split_dict_hand = {'all':['L','R'],
|
123 |
-
'left':['L'],
|
124 |
-
'right':['R']}
|
125 |
-
|
126 |
-
ball_dict = {'0':'0',
|
127 |
-
'1':'1',
|
128 |
-
'2':'2',
|
129 |
-
'3':'3'}
|
130 |
-
|
131 |
-
strike_dict = {'0':'0',
|
132 |
-
'1':'1',
|
133 |
-
'2':'2'}
|
134 |
-
|
135 |
-
# count_dict = {'0_0':'Through 0-0',
|
136 |
-
# '0_1':'Through 0-1',
|
137 |
-
# '0_2':'Through 0-2',
|
138 |
-
# '1_0':'Through 1-0',
|
139 |
-
# '1_1':'Through 1-1',
|
140 |
-
# '1_2':'Through 1-2',
|
141 |
-
# '2_1':'Through 2-1',
|
142 |
-
# '2_0':'Through 2-0',
|
143 |
-
# '3_0':'Through 3-0',
|
144 |
-
# '3_1':'Through 3-1',
|
145 |
-
# '2_2':'Through 2-2',
|
146 |
-
# '3_2':'Through 3-2'}
|
147 |
-
|
148 |
-
# count_dict_fg = {'0_0':'',
|
149 |
-
# '0_1':'61',
|
150 |
-
# '0_2':'62',
|
151 |
-
# '1_0':'63',
|
152 |
-
# '1_1':'64',
|
153 |
-
# '1_2':'65',
|
154 |
-
# '2_1':'66',
|
155 |
-
# '2_0':'67',
|
156 |
-
# '3_0':'68',
|
157 |
-
# '3_1':'69',
|
158 |
-
# '2_2':'70',
|
159 |
-
# '3_2':'71'}
|
160 |
-
|
161 |
-
from urllib.request import Request, urlopen
|
162 |
-
from shiny import App, reactive, ui, render
|
163 |
-
from shiny.ui import h2, tags
|
164 |
-
# importing OpenCV(cv2) module
|
165 |
-
app_ui = ui.page_fluid(
|
166 |
-
ui.tags.div(
|
167 |
-
{"style": "width:90%;margin: 0 auto;max-width: 1600px;"},
|
168 |
-
ui.tags.style(
|
169 |
-
"""
|
170 |
-
h4 {
|
171 |
-
margin-top: 1em;font-size:35px;
|
172 |
-
}
|
173 |
-
h2{
|
174 |
-
font-size:25px;
|
175 |
-
}
|
176 |
-
"""
|
177 |
-
),
|
178 |
-
shinyswatch.theme.simplex(),
|
179 |
-
ui.tags.h4("TJStats"),
|
180 |
-
ui.tags.i("Baseball Analytics and Visualizations"),
|
181 |
-
ui.row(
|
182 |
-
|
183 |
-
|
184 |
-
ui.layout_sidebar(
|
185 |
-
|
186 |
-
ui.panel_sidebar(
|
187 |
-
ui.row(
|
188 |
-
ui.column(6,
|
189 |
-
ui.input_select('player_id','Select Player',pitcher_dicts,selectize=True,multiple=False)),
|
190 |
-
ui.column(6, ui.output_ui('test','Select Game'))),
|
191 |
-
|
192 |
-
ui.row(
|
193 |
-
ui.column(4,
|
194 |
-
ui.input_select('plot_id_1','Plot Left',function_dict,multiple=False,selected='velocity_kde')),
|
195 |
-
ui.column(4,
|
196 |
-
ui.input_select('plot_id_2','Plot Middle',function_dict,multiple=False,selected='rolling_tj_stuff')),
|
197 |
-
ui.column(4,
|
198 |
-
ui.input_select('plot_id_3','Plot Right',function_dict,multiple=False,selected='break_plot'))),
|
199 |
-
|
200 |
-
# ui.input_select('count_id','Count',count_dict,multiple=True,selectize=True,selected='0_0'),
|
201 |
-
|
202 |
-
ui.row(
|
203 |
-
ui.column(6,
|
204 |
-
ui.input_select('ball_id','Balls',ball_dict,multiple=False,selected='0'),
|
205 |
-
ui.input_radio_buttons(
|
206 |
-
"count_id_balls",
|
207 |
-
"Count Filter Balls",
|
208 |
-
{
|
209 |
-
"exact": "Exact Balls",
|
210 |
-
"greater": ">= Balls",
|
211 |
-
"lesser": "<= Balls",
|
212 |
-
},selected='greater')),
|
213 |
-
ui.column(6,
|
214 |
-
ui.input_select('strike_id','Strikes',strike_dict,multiple=False,selected='0'),
|
215 |
-
ui.input_radio_buttons(
|
216 |
-
"count_id_strikes",
|
217 |
-
"Count Filter Strikes",
|
218 |
-
{
|
219 |
-
"exact": "Exact Strikes",
|
220 |
-
"greater": ">= Strikes",
|
221 |
-
"lesser": "<= Strikes",
|
222 |
-
},selected='greater'))),
|
223 |
-
ui.row(
|
224 |
-
ui.column(6,
|
225 |
-
ui.input_select('split_id','Select Split',split_dict,multiple=False)),
|
226 |
-
ui.column(6,
|
227 |
-
ui.input_numeric('rolling_window','Rolling Window (for tjStuff+ Plot)',min=1,value=10))),
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
ui.input_action_button("go", "Generate",class_="btn-primary"),
|
232 |
-
|
233 |
-
|
234 |
-
width=4)
|
235 |
-
,
|
236 |
-
ui.panel_main(
|
237 |
-
ui.navset_tab(
|
238 |
-
# ui.nav("Raw Data",
|
239 |
-
# ui.output_data_frame("raw_table")),
|
240 |
-
ui.nav("Season Summary",
|
241 |
-
ui.output_plot('plot',
|
242 |
-
width='2000px',
|
243 |
-
height='2000px')),
|
244 |
-
ui.nav("Game Summary",
|
245 |
-
ui.output_plot('plot_game',
|
246 |
-
width='2000px',
|
247 |
-
height='2000px'))
|
248 |
-
,id="my_tabs"))))))
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
#print(app_ui)
|
260 |
-
def server(input, output, session):
|
261 |
-
|
262 |
-
@render.ui
|
263 |
-
def test():
|
264 |
-
|
265 |
-
# @reactive.Effect
|
266 |
-
if input.my_tabs() == 'Season Summary':
|
267 |
-
|
268 |
-
return ui.input_date_range("date_range_id", "Date range input",start = df_2024.game_date.min(),
|
269 |
-
end = df_2024.game_date.max(),width=2,min=df_2024.game_date.min(),
|
270 |
-
max=df_2024.game_date.max()),
|
271 |
-
# @reactive.Effect
|
272 |
-
if input.my_tabs() == 'Game Summary':
|
273 |
-
pitcher_id_select = int(input.player_id())
|
274 |
-
df_plot = df_2024_update[(df_2024_update['pitcher_id']==pitcher_id_select)]
|
275 |
-
|
276 |
-
|
277 |
-
# ax0.text(x=0.5,y=0.30,s=f'2024 Spring Training',fontname='Calibri',ha='center',fontsize=30,va='top')
|
278 |
-
df_plot['game_opp'] = df_plot['game_date'].astype(str) + ' vs ' + df_plot['batter_team'].astype(str)
|
279 |
-
#print(df_plot['game_opp'])
|
280 |
-
|
281 |
-
date_dict = pd.concat([df_plot.drop_duplicates(subset=['pitcher_id','game_id','game_opp'])[['game_id','game_opp']]]).set_index('game_id').to_dict()
|
282 |
-
return ui.input_select("game_id", "Select Game",date_dict,selectize=True)
|
283 |
-
|
284 |
-
@output
|
285 |
-
@render.plot
|
286 |
-
@reactive.event(input.go, ignore_none=False)
|
287 |
-
def plot():
|
288 |
-
#fig, ax = plt.subplots(3, 2, figsize=(9, 9))
|
289 |
-
|
290 |
-
font_properties = {'family': 'calibi', 'size': 12}
|
291 |
-
font_properties_titles = {'family': 'calibi', 'size': 20}
|
292 |
-
font_properties_axes = {'family': 'calibi', 'size': 16}
|
293 |
-
|
294 |
-
if len((input.player_id()))<1:
|
295 |
-
fig, ax = plt.subplots(1, 1, figsize=(9, 9))
|
296 |
-
ax.text(x=0.5,y=0.5,s='Please Select\nA Player',fontsize=150,ha='center')
|
297 |
-
ax.grid('off')
|
298 |
-
return
|
299 |
-
|
300 |
-
pitcher_id_select = int(input.player_id())
|
301 |
-
|
302 |
-
|
303 |
-
df_plot = df_2024_update[(df_2024_update['pitcher_id']==pitcher_id_select)]
|
304 |
-
|
305 |
-
df_plot = df_plot[df_plot['batter_hand'].isin(split_dict_hand[input.split_id()])]
|
306 |
-
|
307 |
-
if input.count_id_balls()=='greater' and input.count_id_strikes()=='greater' and int(input.ball_id())==0 and int(input.strike_id())==0:
|
308 |
-
ball_title = ''
|
309 |
-
strike_title = ''
|
310 |
-
else:
|
311 |
-
if input.count_id_balls()=='exact':
|
312 |
-
df_plot = df_plot[df_plot['balls']==int(input.ball_id())]
|
313 |
-
ball_title = str(f'{(input.ball_id())} Ball Count; ')
|
314 |
-
elif input.count_id_balls()=='greater':
|
315 |
-
df_plot = df_plot[df_plot['balls']>=int(input.ball_id())]
|
316 |
-
ball_title = str(f'At Least {(input.ball_id())} Ball Count; ')
|
317 |
-
elif input.count_id_balls()=='lesser':
|
318 |
-
df_plot = df_plot[df_plot['balls']<=int(input.ball_id())]
|
319 |
-
ball_title = str(f'At Most {(input.ball_id())} Ball Count; ')
|
320 |
-
|
321 |
-
if input.count_id_strikes()=='exact':
|
322 |
-
df_plot = df_plot[df_plot['strikes']==int(input.strike_id())]
|
323 |
-
strike_title = str(f'{(input.strike_id())} Strike Count; ')
|
324 |
-
elif input.count_id_strikes()=='greater':
|
325 |
-
df_plot = df_plot[df_plot['strikes']>=int(input.strike_id())]
|
326 |
-
strike_title = str(f'At Least {(input.strike_id())} Strike Count; ')
|
327 |
-
elif input.count_id_strikes()=='lesser':
|
328 |
-
df_plot = df_plot[df_plot['strikes']<=int(input.strike_id())]
|
329 |
-
strike_title = str(f'At Most {(input.strike_id())} Strike Count; ')
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
if input.split_id() == 'all':
|
334 |
-
split_title = ''
|
335 |
-
|
336 |
-
elif input.split_id() == 'left':
|
337 |
-
split_title = 'vs. LHH'
|
338 |
-
|
339 |
-
elif input.split_id() == 'right':
|
340 |
-
split_title = 'vs. RHH'
|
341 |
-
|
342 |
-
|
343 |
-
if len(df_plot)<1:
|
344 |
-
fig, ax = plt.subplots(1, 1, figsize=(9, 9))
|
345 |
-
ax.text(x=0.5,y=0.5,s='Please Select\nOther Parameters',fontsize=150,ha='center')
|
346 |
-
ax.grid('off')
|
347 |
-
return
|
348 |
-
|
349 |
-
df_plot['pitch_type_count'] = df_plot.groupby(['pitcher_id'])['pitch_type'].cumcount()+1
|
350 |
-
df_plot['pitch_type_count_each'] = df_plot.groupby(['pitch_type'])['pitch_type'].cumcount()+1
|
351 |
-
#df_plot = df_plot.merge(df_2024_update[['tj_stuff_plus','play_id']],left_on=['play_id'],right_on=['play_id'],how='left')
|
352 |
-
df_plot = df_plot.sort_values(by=['pitch_description'])
|
353 |
-
|
354 |
-
grouped_ivb = psf.group_ivb_update(df=df_plot,agg_list=['pitcher_id','pitcher_name','pitcher_hand','pitch_type','pitch_description'])
|
355 |
-
grouped_ivb_all = psf.group_ivb_update(df=df_plot,agg_list=['pitcher_id','pitcher_name','pitcher_hand'])
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
from matplotlib.gridspec import GridSpec
|
360 |
-
plt.rcParams['font.family'] = 'Calibri'
|
361 |
-
df_plot['prop'] = df_plot.groupby("pitch_type")["is_pitch"].transform("sum")
|
362 |
-
label_labels = df_plot.sort_values(by=['prop','pitch_type'],ascending=[False,True]).pitch_description.unique()
|
363 |
-
|
364 |
-
#plt.rcParams["figure.figsize"] = [10,10]
|
365 |
-
fig = plt.figure(figsize=(20, 20))
|
366 |
-
plt.rcParams.update({'figure.autolayout': True})
|
367 |
-
fig.set_facecolor('white')
|
368 |
-
sns.set_theme(style="whitegrid", palette=colour_palette)
|
369 |
-
print('this is the one plot')
|
370 |
-
# gs = GridSpec(7, 2, width_ratios=[1,1], height_ratios=[1.5,1,1,1,1,1,2.5])
|
371 |
-
gs = GridSpec(5, 5, height_ratios=[150,75,225,325,50],width_ratios=[1,100,100,100,1])
|
372 |
-
#### NO FG
|
373 |
-
####gs = GridSpec(5, 5, height_ratios=[225,0,225,325,50],width_ratios=[1,100,100,100,1])
|
374 |
-
#gs = GridSpec(4, 1, width_ratios=[1], height_ratios=[1,0.75,7-len(label_labels)/4,1+len(label_labels)/4])
|
375 |
-
|
376 |
-
gs.update(hspace=0.2, wspace=0.3)
|
377 |
-
|
378 |
-
# Add subplots to the grid
|
379 |
-
ax0 = fig.add_subplot(gs[0, :])
|
380 |
-
ax1_table = fig.add_subplot(gs[1, :])
|
381 |
-
ax2_left = fig.add_subplot(gs[2, 1])
|
382 |
-
ax2_middle = fig.add_subplot(gs[2, 2])
|
383 |
-
ax2_right = fig.add_subplot(gs[2, 3])
|
384 |
-
ax3 = fig.add_subplot(gs[-2, :])
|
385 |
-
#axfooter = fig.add_subplot(gs[-1, :])
|
386 |
-
|
387 |
-
ax1_table.axis('off')
|
388 |
-
|
389 |
-
sns.set_theme(style="whitegrid", palette=colour_palette)
|
390 |
-
fig.set_facecolor('white')
|
391 |
-
|
392 |
-
font_properties = {'family': 'calibi', 'size': 12}
|
393 |
-
font_properties_titles = {'family': 'calibi', 'size': 20}
|
394 |
-
font_properties_axes = {'family': 'calibi', 'size': 16}
|
395 |
-
|
396 |
-
## FANGRAPHS TABLE ###
|
397 |
-
data_pull = psf.fangraphs_scrape(pitcher_id=pitcher_id_select,
|
398 |
-
split=input.split_id(),
|
399 |
-
start_date=input.date_range_id()[0],
|
400 |
-
end_date=input.date_range_id()[1])
|
401 |
-
|
402 |
-
|
403 |
-
psf.fangraphs_table(data=data_pull,
|
404 |
-
stats=['IP','WHIP','ERA','FIP','TBF','K%','BB%','K-BB%'],
|
405 |
-
ax=ax1_table)
|
406 |
-
|
407 |
-
for x,y,z in zip([input.plot_id_1(),input.plot_id_2(),input.plot_id_3()],[ax2_left,ax2_middle,ax2_right],[1,2,3]):
|
408 |
-
if x == 'velocity_kde':
|
409 |
-
psf.velocity_kdes(df=df_plot,ax=y,gs=gs,gs_list=z,fig=fig)
|
410 |
-
if x == 'rolling_tj_stuff':
|
411 |
-
psf.tj_stuff_roling(df = df_plot,window = int(input.rolling_window()),ax=y)
|
412 |
-
if x == 'break_plot':
|
413 |
-
psf.break_plot(df=df_plot,ax=y)
|
414 |
-
if x == 'location_lhb':
|
415 |
-
psf.location_plot(df=df_plot,ax=y,hand='L')
|
416 |
-
if x == 'location_rhb':
|
417 |
-
psf.location_plot(df=df_plot,ax=y,hand='R')
|
418 |
-
|
419 |
-
pitches_list = df_plot['pitch_description'].unique()
|
420 |
-
colour_pitches = [pitch_colours[x] for x in pitches_list]
|
421 |
-
|
422 |
-
# handles, labels = ax2_right.get_legend_handles_labels()
|
423 |
-
|
424 |
-
# # Manually create handles and labels for each pitch-color pair
|
425 |
-
handles = [plt.scatter([], [], color=color, marker='o', s=100) for color in colour_pitches]
|
426 |
-
labels = pitches_list
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
### FANGRAPHS TABLE ###
|
432 |
-
psf.table_summary(df=df_plot.copy(),
|
433 |
-
pitcher_id=pitcher_id_select,
|
434 |
-
ax=ax3,
|
435 |
-
df_group=grouped_ivb.copy(),
|
436 |
-
df_group_all=grouped_ivb_all.copy(),
|
437 |
-
statcast_pitch_summary=statcast_pitch_summary.copy())
|
438 |
-
|
439 |
-
|
440 |
-
# ############ FOOTER ################
|
441 |
-
# #fig.text(x=0.5,y=0.05,s='Note: Colour Coding Compares to League Average By Pitch',ha='center',fontname='Calibri',fontsize=10)
|
442 |
-
# axfooter.text(x=0.05,y=1,s='By: Thomas Nestico\n @TJStats',fontname='Calibri',ha='left',fontsize=24,va='top')
|
443 |
-
# axfooter.text(x=1-0.05,y=1,s='Data: MLB, Fangraphs',ha='right',fontname='Calibri',fontsize=24,va='top')
|
444 |
-
|
445 |
-
|
446 |
-
# axfooter.text(x=0.5,y=0.8,s='Colour Coding Compares to League Average By Pitch\ntjStuff+ calculates the Expected Run Value (xRV) of a pitch regardless of type\ntjStuff+ is normally distributed, where 100 is the mean and Standard Deviation is 10',
|
447 |
-
# ha='center',va='center',fontname='Calibri',fontsize=16)
|
448 |
-
# axfooter.axis('off')
|
449 |
-
# #fig.tight_layout()
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
# Get value counts of the column and sort in descending order
|
454 |
-
sorted_value_counts = df_plot['pitch_description'].value_counts().sort_values(ascending=False)
|
455 |
-
|
456 |
-
# Get the list of items ordered from most to least frequent
|
457 |
-
items_in_order = sorted_value_counts.index.tolist()
|
458 |
-
# Create a dictionary to map names to colors
|
459 |
-
name_to_color = dict(zip(labels, handles))
|
460 |
-
|
461 |
-
# Order the colors based on the correct order of names
|
462 |
-
ordered_colors = [name_to_color[name] for name in items_in_order]
|
463 |
-
|
464 |
-
|
465 |
-
ax3.legend(ordered_colors, items_in_order, bbox_to_anchor=(0.1, 0.81, 0.8, 0.2), ncol=5,
|
466 |
-
fancybox=True,loc='lower center',fontsize=20,framealpha=1.0, markerscale=2,prop={'family': 'calibi', 'size': 20})
|
467 |
-
|
468 |
-
|
469 |
-
################## Title ##########
|
470 |
-
title_spot = f'{df_plot.pitcher_name.values[0]}'
|
471 |
-
|
472 |
-
|
473 |
-
ax0.text(x=0.5,y=0.8,s=title_spot,fontname='Calibri',ha='center',fontsize=56,va='top')
|
474 |
-
ax0.text(x=0.5,y=0.5,s='Season Pitching Summary',fontname='Calibri',ha='center',fontsize=40,va='top',fontstyle='italic')
|
475 |
-
|
476 |
-
|
477 |
-
#ax0.text(x=0.5,y=0.25,s=f'2024 Spring Training',fontname='Calibri',ha='center',fontsize=30,va='top')
|
478 |
-
# ax0.text(x=0.5,y=0.25,s=f'{season_fg} MLB Season',fontname='Calibri',ha='center',fontsize=30,va='top')
|
479 |
-
# ax0.axis('off')
|
480 |
-
|
481 |
-
|
482 |
-
ax0.text(x=0.5,y=0.25,s=f'{input.date_range_id()[0]} to {input.date_range_id()[1]}',fontname='Calibri',ha='center',fontsize=30,va='top',fontstyle='italic')
|
483 |
-
|
484 |
-
ax0.text(x=0.5,y=0.05,s=f'{ball_title}{strike_title}{split_title}',fontname='Calibri',ha='center',fontsize=20,va='top')
|
485 |
-
ax0.axis('off')
|
486 |
-
|
487 |
-
from matplotlib.offsetbox import (OffsetImage, AnnotationBbox)
|
488 |
-
import urllib
|
489 |
-
import urllib.request
|
490 |
-
import urllib.error
|
491 |
-
from urllib.error import HTTPError
|
492 |
-
|
493 |
-
try:
|
494 |
-
url = f'https://img.mlbstatic.com/mlb-photos/image/upload/d_people:generic:headshot:67:current.png/w_213,q_auto:best/v1/people/{pitcher_id_select}/headshot/67/current.png'
|
495 |
-
test_mage = plt.imread(url)
|
496 |
-
except urllib.error.HTTPError as err:
|
497 |
-
url = f'https://img.mlbstatic.com/mlb-photos/image/upload/d_people:generic:headshot:67:current.png/w_213,q_auto:best/v1/people/1/headshot/67/current.png'
|
498 |
-
imagebox = OffsetImage(test_mage, zoom = 0.5)
|
499 |
-
ab = AnnotationBbox(imagebox, (0.125, 0.4), frameon = False)
|
500 |
-
ax0.add_artist(ab)
|
501 |
-
|
502 |
-
player_bio = requests.get(url=f"https://statsapi.mlb.com/api/v1/people?personIds={pitcher_id_select}&hydrate=currentTeam").json()
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
if 'currentTeam' in player_bio['people'][0]:
|
508 |
-
try:
|
509 |
-
url = team_logos[team_logos['id'] == team_logo_dict[player_bio['people'][0]['currentTeam']['id']]]['imageLink'].values[0]
|
510 |
-
|
511 |
-
im = plt.imread(url)
|
512 |
-
# response = requests.get(url)
|
513 |
-
# im = Image.open(BytesIO(response.content))
|
514 |
-
# im = plt.imread(team_logos[team_logos['id'] == player_bio['people'][0]['currentTeam']['parentOrgId']]['imageLink'].values[0])
|
515 |
-
# ax = fig.add_axes([0,0,1,0.85], anchor='C', zorder=1)
|
516 |
-
imagebox = OffsetImage(im, zoom = 0.4)
|
517 |
-
ab = AnnotationBbox(imagebox, (0.875, 0.40), frameon = False)
|
518 |
-
ax0.add_artist(ab)
|
519 |
-
except IndexError:
|
520 |
-
print()
|
521 |
-
|
522 |
-
|
523 |
-
############ FOOTER ################
|
524 |
-
#fig.text(x=0.5,y=0.05,s='Note: Colour Coding Compares to League Average By Pitch',ha='center',fontname='Calibri',fontsize=10)
|
525 |
-
axfooter = fig.add_subplot(gs[-1, :])
|
526 |
-
axfooter.text(x=0.05,y=1,s='By: Thomas Nestico\n @TJStats',fontname='Calibri',ha='left',fontsize=24,va='top')
|
527 |
-
axfooter.text(x=1-0.05,y=1,s='Data: MLB, Fangraphs',ha='right',fontname='Calibri',fontsize=24,va='top')
|
528 |
-
|
529 |
-
|
530 |
-
axfooter.text(x=0.5,y=0.8,s='Colour Coding Compares to League Average By Pitch\ntjStuff+ calculates the Expected Run Value (xRV) of a pitch regardless of type\ntjStuff+ is normally distributed, where 100 is the mean and Standard Deviation is 10',
|
531 |
-
ha='center',va='center',fontname='Calibri',fontsize=16)
|
532 |
-
axfooter.axis('off')
|
533 |
-
#fig.tight_layout()
|
534 |
-
|
535 |
-
fig.subplots_adjust(left=0.03, right=0.97, top=0.97, bottom=0.03)
|
536 |
-
|
537 |
-
|
538 |
-
@output
|
539 |
-
@render.plot
|
540 |
-
@reactive.event(input.go, ignore_none=False)
|
541 |
-
def plot_game():
|
542 |
-
#fig, ax = plt.subplots(3, 2, figsize=(9, 9))
|
543 |
-
|
544 |
-
font_properties = {'family': 'calibi', 'size': 12}
|
545 |
-
font_properties_titles = {'family': 'calibi', 'size': 20}
|
546 |
-
font_properties_axes = {'family': 'calibi', 'size': 16}
|
547 |
-
|
548 |
-
if len((input.player_id()))<1:
|
549 |
-
fig, ax = plt.subplots(1, 1, figsize=(9, 9))
|
550 |
-
ax.text(x=0.5,y=0.5,s='Please Select\nA Player',fontsize=150,ha='center')
|
551 |
-
ax.grid('off')
|
552 |
-
return
|
553 |
-
|
554 |
-
pitcher_id_select = int(input.player_id())
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
df_plot = df_2024_update[(df_2024_update['pitcher_id']==pitcher_id_select)&(df_2024_update['game_id']==int(input.game_id()))]
|
560 |
-
df_plot = df_plot[df_plot['batter_hand'].isin(split_dict_hand[input.split_id()])]
|
561 |
-
|
562 |
-
if input.count_id_balls()=='greater' and input.count_id_strikes()=='greater' and int(input.ball_id())==0 and int(input.strike_id())==0:
|
563 |
-
ball_title = ''
|
564 |
-
strike_title = ''
|
565 |
-
else:
|
566 |
-
if input.count_id_balls()=='exact':
|
567 |
-
df_plot = df_plot[df_plot['balls']==int(input.ball_id())]
|
568 |
-
ball_title = str(f'{(input.ball_id())} Ball Count; ')
|
569 |
-
elif input.count_id_balls()=='greater':
|
570 |
-
df_plot = df_plot[df_plot['balls']>=int(input.ball_id())]
|
571 |
-
ball_title = str(f'At Least {(input.ball_id())} Ball Count; ')
|
572 |
-
elif input.count_id_balls()=='lesser':
|
573 |
-
df_plot = df_plot[df_plot['balls']<=int(input.ball_id())]
|
574 |
-
ball_title = str(f'At Most {(input.ball_id())} Ball Count; ')
|
575 |
-
|
576 |
-
if input.count_id_strikes()=='exact':
|
577 |
-
df_plot = df_plot[df_plot['strikes']==int(input.strike_id())]
|
578 |
-
strike_title = str(f'{(input.strike_id())} Strike Count; ')
|
579 |
-
elif input.count_id_strikes()=='greater':
|
580 |
-
df_plot = df_plot[df_plot['strikes']>=int(input.strike_id())]
|
581 |
-
strike_title = str(f'At Least {(input.strike_id())} Strike Count; ')
|
582 |
-
elif input.count_id_strikes()=='lesser':
|
583 |
-
df_plot = df_plot[df_plot['strikes']<=int(input.strike_id())]
|
584 |
-
strike_title = str(f'At Most {(input.strike_id())} Strike Count; ')
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
if input.split_id() == 'all':
|
591 |
-
split_title = ''
|
592 |
-
|
593 |
-
elif input.split_id() == 'left':
|
594 |
-
split_title = 'vs. LHH'
|
595 |
-
|
596 |
-
elif input.split_id() == 'right':
|
597 |
-
split_title = 'vs. RHH'
|
598 |
-
|
599 |
-
if len(df_plot)<1:
|
600 |
-
fig, ax = plt.subplots(1, 1, figsize=(9, 9))
|
601 |
-
ax.text(x=0.5,y=0.5,s='Please Select\nOther Parameters',fontsize=150,ha='center')
|
602 |
-
ax.grid('off')
|
603 |
-
return
|
604 |
-
|
605 |
-
|
606 |
-
df_plot['pitch_type_count'] = df_plot.groupby(['pitcher_id'])['pitch_type'].cumcount()+1
|
607 |
-
df_plot['pitch_type_count_each'] = df_plot.groupby(['pitch_type'])['pitch_type'].cumcount()+1
|
608 |
-
#df_plot = df_plot.merge(df_2024_update[['tj_stuff_plus','play_id']],left_on=['play_id'],right_on=['play_id'],how='left')
|
609 |
-
df_plot = df_plot.sort_values(by=['pitch_description'])
|
610 |
-
|
611 |
-
# ax0.text(x=0.5,y=0.30,s=f'2024 Spring Training',fontname='Calibri',ha='center',fontsize=30,va='top')
|
612 |
-
df_plot['game_opp'] = df_plot['game_date'].astype(str) + ' vs ' + df_plot['batter_team'].astype(str)
|
613 |
-
#print(df_plot['game_opp'])
|
614 |
-
|
615 |
-
#date_dict = pd.concat([df_plot.drop_duplicates(subset=['pitcher_id','game_id','game_opp'])[['game_id','game_opp']]]).set_index('game_id').to_dict()
|
616 |
-
|
617 |
-
grouped_ivb = psf.group_ivb_update(df=df_plot,agg_list=['pitcher_id','pitcher_name','pitcher_hand','pitch_type','pitch_description'])
|
618 |
-
grouped_ivb_all = psf.group_ivb_update(df=df_plot,agg_list=['pitcher_id','pitcher_name','pitcher_hand'])
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
from matplotlib.gridspec import GridSpec
|
623 |
-
plt.rcParams['font.family'] = 'Calibri'
|
624 |
-
df_plot['prop'] = df_plot.groupby("pitch_type")["is_pitch"].transform("sum")
|
625 |
-
label_labels = df_plot.sort_values(by=['prop','pitch_type'],ascending=[False,True]).pitch_description.unique()
|
626 |
-
|
627 |
-
#plt.rcParams["figure.figsize"] = [10,10]
|
628 |
-
fig = plt.figure(figsize=(20, 20))
|
629 |
-
plt.rcParams.update({'figure.autolayout': True})
|
630 |
-
fig.set_facecolor('white')
|
631 |
-
sns.set_theme(style="whitegrid", palette=colour_palette)
|
632 |
-
print('this is the one plot')
|
633 |
-
# gs = GridSpec(7, 2, width_ratios=[1,1], height_ratios=[1.5,1,1,1,1,1,2.5])
|
634 |
-
gs = GridSpec(5, 5, height_ratios=[150,75,225,325,50],width_ratios=[1,100,100,100,1])
|
635 |
-
#### NO FG
|
636 |
-
####gs = GridSpec(5, 5, height_ratios=[225,0,225,325,50],width_ratios=[1,100,100,100,1])
|
637 |
-
#gs = GridSpec(4, 1, width_ratios=[1], height_ratios=[1,0.75,7-len(label_labels)/4,1+len(label_labels)/4])
|
638 |
-
|
639 |
-
gs.update(hspace=0.2, wspace=0.3)
|
640 |
-
|
641 |
-
# Add subplots to the grid
|
642 |
-
ax0 = fig.add_subplot(gs[0, :])
|
643 |
-
ax1_table = fig.add_subplot(gs[1, :])
|
644 |
-
ax2_left = fig.add_subplot(gs[2, 1])
|
645 |
-
ax2_middle = fig.add_subplot(gs[2, 2])
|
646 |
-
ax2_right = fig.add_subplot(gs[2, 3])
|
647 |
-
ax3 = fig.add_subplot(gs[-2, :])
|
648 |
-
# axfooter = fig.add_subplot(gs[-1, :])
|
649 |
-
|
650 |
-
ax1_table.axis('off')
|
651 |
-
|
652 |
-
sns.set_theme(style="whitegrid", palette=colour_palette)
|
653 |
-
fig.set_facecolor('white')
|
654 |
-
|
655 |
-
font_properties = {'family': 'calibi', 'size': 12}
|
656 |
-
font_properties_titles = {'family': 'calibi', 'size': 20}
|
657 |
-
font_properties_axes = {'family': 'calibi', 'size': 16}
|
658 |
-
|
659 |
-
print(df_2024_update['game_date'].values[0])
|
660 |
-
## FANGRAPHS TABLE ###
|
661 |
-
data_pull = psf.fangraphs_scrape(pitcher_id=pitcher_id_select,
|
662 |
-
split=input.split_id(),
|
663 |
-
start_date=df_plot['game_date'].values[0],
|
664 |
-
end_date=df_plot['game_date'].values[0])
|
665 |
-
|
666 |
-
|
667 |
-
psf.fangraphs_table(data=data_pull,
|
668 |
-
stats=['IP','WHIP','ERA','FIP','TBF','K%','BB%','K-BB%'],
|
669 |
-
ax=ax1_table)
|
670 |
-
|
671 |
-
# psf.velocity_kdes(df=df_plot,
|
672 |
-
# ax=ax2_loc,
|
673 |
-
# gs=gs,
|
674 |
-
# fig=fig)
|
675 |
-
|
676 |
-
# # psf.tj_stuff_roling(df = df_plot,
|
677 |
-
# # window = 5,
|
678 |
-
# # ax=ax2_velo)
|
679 |
-
# psf.location_plot(df=df_plot,ax=ax2_velo,hand='L')
|
680 |
-
|
681 |
-
# psf.location_plot(df=df_plot,ax=ax2_loc,hand='R')
|
682 |
-
# # # ## Break Plot
|
683 |
-
# psf.break_plot(df=df_plot,ax=ax2)
|
684 |
-
for x,y,z in zip([input.plot_id_1(),input.plot_id_2(),input.plot_id_3()],[ax2_left,ax2_middle,ax2_right],[1,2,3]):
|
685 |
-
if x == 'velocity_kde':
|
686 |
-
psf.velocity_kdes(df=df_plot,ax=y,gs=gs,gs_list=z,fig=fig)
|
687 |
-
if x == 'rolling_tj_stuff':
|
688 |
-
psf.tj_stuff_roling(df = df_plot,window = int(input.rolling_window()),ax=y)
|
689 |
-
if x == 'break_plot':
|
690 |
-
psf.break_plot(df=df_plot,ax=y)
|
691 |
-
if x == 'location_lhb':
|
692 |
-
psf.location_plot(df=df_plot,ax=y,hand='L')
|
693 |
-
if x == 'location_rhb':
|
694 |
-
psf.location_plot(df=df_plot,ax=y,hand='R')
|
695 |
-
|
696 |
-
pitches_list = df_plot['pitch_description'].unique()
|
697 |
-
colour_pitches = [pitch_colours[x] for x in pitches_list]
|
698 |
-
|
699 |
-
# handles, labels = ax2_right.get_legend_handles_labels()
|
700 |
-
|
701 |
-
# # Manually create handles and labels for each pitch-color pair
|
702 |
-
handles = [plt.scatter([], [], color=color, marker='o', s=100) for color in colour_pitches]
|
703 |
-
labels = pitches_list
|
704 |
-
|
705 |
-
|
706 |
-
### FANGRAPHS TABLE ###
|
707 |
-
psf.table_summary(df=df_plot.copy(),
|
708 |
-
pitcher_id=pitcher_id_select,
|
709 |
-
ax=ax3,
|
710 |
-
df_group=grouped_ivb.copy(),
|
711 |
-
df_group_all=grouped_ivb_all.copy(),
|
712 |
-
statcast_pitch_summary=statcast_pitch_summary.copy())
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
# Get value counts of the column and sort in descending order
|
719 |
-
sorted_value_counts = df_plot['pitch_description'].value_counts().sort_values(ascending=False)
|
720 |
-
|
721 |
-
# Get the list of items ordered from most to least frequent
|
722 |
-
items_in_order = sorted_value_counts.index.tolist()
|
723 |
-
# Create a dictionary to map names to colors
|
724 |
-
name_to_color = dict(zip(labels, handles))
|
725 |
-
|
726 |
-
# Order the colors based on the correct order of names
|
727 |
-
ordered_colors = [name_to_color[name] for name in items_in_order]
|
728 |
-
|
729 |
-
|
730 |
-
ax3.legend(ordered_colors, items_in_order, bbox_to_anchor=(0.1, 0.81, 0.8, 0.2), ncol=5,
|
731 |
-
fancybox=True,loc='lower center',fontsize=20,framealpha=1.0, markerscale=2,prop={'family': 'calibi', 'size': 20})
|
732 |
-
|
733 |
-
|
734 |
-
################## Title ##########
|
735 |
-
title_spot = f'{df_plot.pitcher_name.values[0]}'
|
736 |
-
|
737 |
-
|
738 |
-
ax0.text(x=0.5,y=0.8,s=title_spot,fontname='Calibri',ha='center',fontsize=56,va='top')
|
739 |
-
ax0.text(x=0.5,y=0.5,s='Game Pitching Summary',fontname='Calibri',ha='center',fontsize=40,va='top',fontstyle='italic')
|
740 |
-
|
741 |
-
|
742 |
-
#ax0.text(x=0.5,y=0.25,s=f'2024 Spring Training',fontname='Calibri',ha='center',fontsize=30,va='top')
|
743 |
-
#ax0.text(x=0.5,y=0.25,s=f'{season_fg} MLB Season',fontname='Calibri',ha='center',fontsize=30,va='top')
|
744 |
-
#ax0.text(x=0.5,y=0.25,s=f'2024 Spring Training',fontname='Calibri',ha='center',fontsize=30,va='top')
|
745 |
-
# ax0.text(x=0.5,y=0.25,s=f'{season_fg} MLB Season',fontname='Calibri',ha='center',fontsize=30,va='top')
|
746 |
-
|
747 |
-
ax0.text(x=0.5,y=0.25,s= df_plot['game_opp'].values[0],fontname='Calibri',ha='center',fontstyle='italic',fontsize=30,va='top')
|
748 |
-
|
749 |
-
ax0.text(x=0.5,y=0.05,s=f'{ball_title}{strike_title}{split_title}',fontname='Calibri',ha='center',fontsize=20,va='top')
|
750 |
-
ax0.axis('off')
|
751 |
-
|
752 |
-
|
753 |
-
from matplotlib.offsetbox import (OffsetImage, AnnotationBbox)
|
754 |
-
import urllib
|
755 |
-
import urllib.request
|
756 |
-
import urllib.error
|
757 |
-
from urllib.error import HTTPError
|
758 |
-
|
759 |
-
try:
|
760 |
-
url = f'https://img.mlbstatic.com/mlb-photos/image/upload/d_people:generic:headshot:67:current.png/w_213,q_auto:best/v1/people/{pitcher_id_select}/headshot/67/current.png'
|
761 |
-
test_mage = plt.imread(url)
|
762 |
-
except urllib.error.HTTPError as err:
|
763 |
-
url = f'https://img.mlbstatic.com/mlb-photos/image/upload/d_people:generic:headshot:67:current.png/w_213,q_auto:best/v1/people/1/headshot/67/current.png'
|
764 |
-
imagebox = OffsetImage(test_mage, zoom = 0.5)
|
765 |
-
ab = AnnotationBbox(imagebox, (0.125, 0.4), frameon = False)
|
766 |
-
ax0.add_artist(ab)
|
767 |
-
|
768 |
-
player_bio = requests.get(url=f"https://statsapi.mlb.com/api/v1/people?personIds={pitcher_id_select}&hydrate=currentTeam").json()
|
769 |
-
|
770 |
-
|
771 |
-
|
772 |
-
|
773 |
-
if 'currentTeam' in player_bio['people'][0]:
|
774 |
-
try:
|
775 |
-
url = team_logos[team_logos['id'] == team_logo_dict[player_bio['people'][0]['currentTeam']['id']]]['imageLink'].values[0]
|
776 |
-
|
777 |
-
im = plt.imread(url)
|
778 |
-
# response = requests.get(url)
|
779 |
-
# im = Image.open(BytesIO(response.content))
|
780 |
-
# im = plt.imread(team_logos[team_logos['id'] == player_bio['people'][0]['currentTeam']['parentOrgId']]['imageLink'].values[0])
|
781 |
-
# ax = fig.add_axes([0,0,1,0.85], anchor='C', zorder=1)
|
782 |
-
imagebox = OffsetImage(im, zoom = 0.4)
|
783 |
-
ab = AnnotationBbox(imagebox, (0.875, 0.40), frameon = False)
|
784 |
-
ax0.add_artist(ab)
|
785 |
-
except IndexError:
|
786 |
-
print()
|
787 |
-
|
788 |
-
############ FOOTER ################
|
789 |
-
#fig.text(x=0.5,y=0.05,s='Note: Colour Coding Compares to League Average By Pitch',ha='center',fontname='Calibri',fontsize=10)
|
790 |
-
axfooter = fig.add_subplot(gs[-1, :])
|
791 |
-
axfooter.text(x=0.05,y=1,s='By: Thomas Nestico\n @TJStats',fontname='Calibri',ha='left',fontsize=24,va='top')
|
792 |
-
axfooter.text(x=1-0.05,y=1,s='Data: MLB, Fangraphs',ha='right',fontname='Calibri',fontsize=24,va='top')
|
793 |
-
|
794 |
-
|
795 |
-
axfooter.text(x=0.5,y=0.8,s='Colour Coding Compares to League Average By Pitch\ntjStuff+ calculates the Expected Run Value (xRV) of a pitch regardless of type\ntjStuff+ is normally distributed, where 100 is the mean and Standard Deviation is 10',
|
796 |
-
ha='center',va='center',fontname='Calibri',fontsize=16)
|
797 |
-
axfooter.axis('off')
|
798 |
-
#fig.tight_layout()
|
799 |
-
|
800 |
-
|
801 |
-
fig.subplots_adjust(left=0.03, right=0.97, top=0.97, bottom=0.03)
|
802 |
-
|
803 |
-
app = App(app_ui, server)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|