from shiny import ui, render, App import matplotlib.image as mpimg import pandas as pd import pygsheets import pytz from datetime import datetime import numpy as np import joblib import datasets from datasets import load_dataset dataset = load_dataset('nesticot/mlb_data', data_files=['mlb_pitch_data_2024_spring.csv']) dataset_train = dataset['train'] df_2024 = dataset_train.to_pandas().set_index(list(dataset_train.features.keys())[0]).reset_index(drop=True) # print('Starting') # df_2024 = pd.read_csv('2024_spring_data.csv',index_col=[0]) print('Starting') spring_teams = df_2024.groupby(['pitcher_id']).tail(1)[['pitcher_id','pitcher_team']].set_index(['pitcher_id'])['pitcher_team'].to_dict() df_2024['vy_f'] = -(df_2024['vy0']**2 - (2 * df_2024['ay'] * (df_2024['y0'] - 17/12)))**0.5 df_2024['t'] = (df_2024['vy_f'] - df_2024['vy0']) / df_2024['ay'] df_2024['vz_f'] = (df_2024['vz0']) + (df_2024['az'] * df_2024['t']) df_2024['vaa'] = -np.arctan(df_2024['vz_f'] / df_2024['vy_f']) * (180 / np.pi) #df_2024['vy_f'] = -(df_2024['vy0']**2 - (2 * df_2024['ay'] * (df_2024['y0'] - 17/12)))**0.5 #df_2024['t'] = (df_2024['vy_f'] - df_2024['vy0']) / df_2024['ay'] df_2024['vx_f'] = (df_2024['vx0']) + (df_2024['ax'] * df_2024['t']) df_2024['haa'] = -np.arctan(df_2024['vx_f'] / df_2024['vy_f']) * (180 / np.pi) grouped_ivb_2023 = pd.read_csv('2023_pitch_group_data.csv',index_col=[0,3]) model = joblib.load('tjstuff_model_20240123.joblib') def percentile(n): def percentile_(x): return x.quantile(n) percentile_.__name__ = 'percentile_{:02.0f}'.format(n*100) return percentile_ def df_clean(df): df_copy = df.copy() df_copy.loc[df_copy['pitcher_hand'] == 'L','hb'] *= -1 df_copy.loc[df_copy['pitcher_hand'] == 'L','x0'] *= -1 df_copy.loc[df_copy['pitcher_hand'] == 'L','spin_direction'] = 360 - df_copy.loc[df_copy['pitcher_hand'] == 'L','spin_direction'] df_copy['pitch_l'] = [1 if x == 'L' else 0 for x in df_copy['pitcher_hand']] df_copy['bat_l'] = [1 if x == 'L' else 0 for x in df_copy['batter_hand']] df_copy = df_copy[~df_copy.pitch_type.isin(["EP", "PO", "KN", "FO", "CS", "SC", "FA"])].reset_index(drop=True) df_copy['pitch_type'] = df_copy['pitch_type'].replace({'FT':'SI','KC':'CU','ST':'SL','SV':'SL'}) # df_copy['des_new'] = df_copy['play_description'].map(des_dict) # df_copy['ev_new'] = df_copy.loc[df_copy['des_new'] == 'hit_into_play','event_type'].map(ev_dict) # df_copy.loc[df_copy['des_new']=='hit_into_play','des_new'] = df_copy.loc[df_copy['des_new']=='hit_into_play','ev_new'] # df_copy = df_copy.dropna(subset=['des_new']) # des_values = df_copy.groupby(['des_new'])['delta_run_exp'].mean() # df_copy = df_copy.merge(des_values,left_on='des_new',right_on='des_new',suffixes=['','_mean']) df_copy_fb_sum = df_copy[df_copy.pitch_type.isin(["FF", "FC", "SI"])].groupby(['pitcher_id']).agg( fb_velo = ('start_speed','mean'), fb_max_ivb = ('ivb',percentile(0.9)), fb_max_x = ('hb',percentile(0.9)), fb_min_x = ('hb',percentile(0.1)), fb_max_velo = ('start_speed',percentile(0.9)), fb_axis = ('spin_direction','mean'), ) df_copy = df_copy.merge(df_copy_fb_sum,left_on='pitcher_id',right_index=True,how='left') df_copy['fb_velo_diff'] = df_copy['start_speed']- df_copy['fb_velo'] df_copy['fb_max_ivb_diff'] = df_copy['ivb']- df_copy['fb_max_ivb'] df_copy['fb_max_hb_diff'] = df_copy['hb']- df_copy['fb_max_x'] df_copy['fb_min_hb_diff'] = df_copy['hb']- df_copy['fb_min_x'] df_copy['fb_max_velo_diff'] = df_copy['start_speed']- df_copy['fb_max_velo'] df_copy['fb_axis_diff'] = df_copy['spin_direction']- df_copy['fb_axis'] # df_copy.loc[df_copy.pitch_type.isin(["FF", "FC", "SI"]),'fb_velo_diff'] = 0 # df_copy.loc[df_copy.pitch_type.isin(["FF", "FC", "SI"]),'fb_max_ivb_diff'] = 0 # df_copy.loc[df_copy.pitch_type.isin(["FF", "FC", "SI"]),'fb_max_hb_diff'] = 0 # df_copy.loc[df_copy.pitch_type.isin(["FF", "FC", "SI"]),'fb_min_hb_diff'] = 0 # df_copy.loc[df_copy.pitch_type.isin(["FF", "FC", "SI"]),'fb_max_velo_diff'] = 0 # df_copy.loc[df_copy.pitch_type.isin(["FF", "FC", "SI"]),'fb_axis_diff'] = 0 df_copy['max_speed'] = df_copy.groupby(['pitcher_id'])['start_speed'].transform('max') df_copy['max_speed_diff'] = df_copy['start_speed'] - df_copy['max_speed'] df_copy['max_ivb'] = df_copy.groupby(['pitcher_id'])['ivb'].transform('max') df_copy['max_ivb_diff'] = df_copy['ivb'] - df_copy['max_ivb'] df_copy['vy_f'] = -(df_copy['vy0']**2 - (2 * df_copy['ay'] * (df_copy['y0'] - 17/12)))**0.5 df_copy['t'] = (df_copy['vy_f'] - df_copy['vy0']) / df_copy['ay'] df_copy['vz_f'] = (df_copy['vz0']) + (df_copy['az'] * df_copy['t']) df_copy['vaa'] = -np.arctan(df_copy['vz_f'] / df_copy['vy_f']) * (180 / np.pi) #df_copy['vy_f'] = -(df_copy['vy0']**2 - (2 * df_copy['ay'] * (df_copy['y0'] - 17/12)))**0.5 #df_copy['t'] = (df_copy['vy_f'] - df_copy['vy0']) / df_copy['ay'] df_copy['vx_f'] = (df_copy['vx0']) + (df_copy['ax'] * df_copy['t']) df_copy['haa'] = -np.arctan(df_copy['vx_f'] / df_copy['vy_f']) * (180 / np.pi) # df_copy['x_diff'] = df_copy['x0'] - df_copy['px'] # df_copy['z_diff'] = df_copy['z0'] - df_copy['pz'] # df_copy['vaa'] = np.arctan(df_copy['z_diff'] / df_copy['release_pos_y']) * 360 / np.pi # df_copy['haa'] = np.arctan(-df_copy['x_diff'] / df_copy['release_pos_y']) * 360 / np.pi df_copy = df_copy.dropna(subset=['pitch_type']).fillna(0) return df_copy app_ui = ui.page_fluid( ui.layout_sidebar( ui.panel_sidebar( ui.input_date_range("date_range_id", "Date range input",start = df_2024.game_date.min(), end = df_2024.game_date.max(),width=2,min=df_2024.game_date.min(), max=df_2024.game_date.max()),width=2), ui.panel_main( ui.navset_tab( # ui.nav("Raw Data", # ui.output_data_frame("raw_table")), ui.nav("Pitch Data", ui.output_data_frame("table")), ui.nav("Pitch Data (Daily)", ui.output_data_frame("table_daily")), ui.nav("2023 vs Spring", ui.output_data_frame("table_2023")), ui.nav("2023 vs Spring Difference", ui.output_data_frame("table_difference")), # ui.nav("New Pitches", # ui.output_data_frame("table_new")), ui.nav("tjStuff+", ui.output_data_frame("table_stuff")), ui.nav("tjStuff+ (Daily)", ui.output_data_frame("table_stuff_day")), )))) from urllib.request import Request, urlopen from shiny import App, reactive, ui from shiny.ui import h2, tags # importing OpenCV(cv2) module #print(app_ui) def server(input, output, session): # @output # @render.data_frame # def raw_table(): # return render.DataGrid( # df_2024, # width='fit-content', # height=750, # filters=True, # ) @output @render.data_frame def table(): grouped_ivb = df_2024[(pd.to_datetime(df_2024['game_date']).dt.date>=input.date_range_id()[0])& (pd.to_datetime(df_2024['game_date']).dt.date<=input.date_range_id()[1])].groupby(['pitcher_id','pitcher_name','pitcher_team','pitcher_hand','pitch_type']).agg( pitches = ('start_speed','count'), start_speed = ('start_speed','mean'), ivb = ('ivb','mean'), hb = ('hb','mean'), spin_rate = ('spin_rate','mean'), vaa = ('vaa','mean'), haa = ('haa','mean'), horizontal_release = ('x0','mean'), vertical_release = ('z0','mean'), extension = ('extension','mean')).round(1).reset_index() #grouped_ivb = grouped_ivb.set_index(['pitcher_id']).reset_index() # return grouped_ivb return render.DataGrid( grouped_ivb, width='fit-content', height=750, filters=True, ) @output @render.data_frame def table_daily(): grouped_ivb = df_2024[(pd.to_datetime(df_2024['game_date']).dt.date>=input.date_range_id()[0])& (pd.to_datetime(df_2024['game_date']).dt.date<=input.date_range_id()[1])].groupby(['pitcher_id','pitcher_name','pitcher_team','pitcher_hand','pitch_type','game_date']).agg( pitches = ('start_speed','count'), start_speed = ('start_speed','mean'), ivb = ('ivb','mean'), hb = ('hb','mean'), spin_rate = ('spin_rate','mean'), vaa = ('vaa','mean'), haa = ('haa','mean'), horizontal_release = ('x0','mean'), vertical_release = ('z0','mean'), extension = ('extension','mean')).round(1).reset_index() #grouped_ivb = grouped_ivb.set_index(['pitcher_id']).reset_index() # return grouped_ivb return render.DataGrid( grouped_ivb, width='fit-content', height=750, filters=True, ) #return grouped_ivb @output @render.data_frame def table_2023(): grouped_ivb = df_2024[(pd.to_datetime(df_2024['game_date']).dt.date>=input.date_range_id()[0])& (pd.to_datetime(df_2024['game_date']).dt.date<=input.date_range_id()[1])].groupby(['pitcher_id','pitcher_name','pitcher_hand','pitch_type']).agg( pitches = ('start_speed','count'), start_speed = ('start_speed','mean'), ivb = ('ivb','mean'), hb = ('hb','mean'), spin_rate = ('spin_rate','mean'), vaa = ('vaa','mean'), haa = ('haa','mean'), horizontal_release = ('x0','mean'), vertical_release = ('z0','mean'), extension = ('extension','mean')).round(1).reset_index() grouped_ivb = grouped_ivb.set_index(['pitcher_id','pitch_type']) ##### ivb_merged = grouped_ivb_2023.merge(right=grouped_ivb, left_index=True, right_index=True, how='right',suffixes=['_2023','_spring']).reset_index() ivb_merged['pitcher_name'] = ivb_merged['pitcher_name_spring'] ivb_merged['pitcher_hand'] = ivb_merged['pitcher_hand_spring'] #ivb_merged['pitch_type'] = ivb_merged['pitch_type_spring'] # ivb_merged = ivb_merged[['pitcher_id', 'pitcher_name', 'pitcher_hand', 'pitch_type', # 'pitches_spring', 'start_speed_spring', 'ivb_spring', # 'hb_spring', 'spin_rate_spring', 'horizontal_release_spring', # 'vertical_release_spring', 'extension_spring']] ivb_merged['pitcher_team'] = ivb_merged['pitcher_id'].map(spring_teams) ivb_merged = ivb_merged.set_index(['pitcher_id', 'pitcher_name','pitcher_team', 'pitcher_hand', 'pitch_type',]) return render.DataGrid( ivb_merged[['pitches_2023','start_speed_2023', 'ivb_2023', 'hb_2023', 'spin_rate_2023', 'vaa_2023','haa_2023', 'horizontal_release_2023', 'vertical_release_2023', 'extension_2023','pitches_spring','start_speed_spring', 'ivb_spring', 'hb_spring', 'spin_rate_spring','vaa_spring','haa_spring', 'horizontal_release_spring', 'vertical_release_spring', 'extension_spring',]].reset_index(), width='fit-content', height=750, filters=True, ) @output @render.data_frame def table_difference(): grouped_ivb = df_2024[(pd.to_datetime(df_2024['game_date']).dt.date>=input.date_range_id()[0])& (pd.to_datetime(df_2024['game_date']).dt.date<=input.date_range_id()[1])].groupby(['pitcher_id','pitcher_name','pitcher_hand','pitch_type']).agg( pitches = ('start_speed','count'), start_speed = ('start_speed','mean'), ivb = ('ivb','mean'), hb = ('hb','mean'), spin_rate = ('spin_rate','mean'), vaa = ('vaa','mean'), haa = ('haa','mean'), horizontal_release = ('x0','mean'), vertical_release = ('z0','mean'), extension = ('extension','mean')).round(1).reset_index() grouped_ivb = grouped_ivb.set_index(['pitcher_id','pitch_type']) ##### ivb_merged = grouped_ivb_2023.merge(right=grouped_ivb, left_index=True, right_index=True, how='right',suffixes=['_2023','_spring']).reset_index() ivb_merged['pitcher_name'] = ivb_merged['pitcher_name_spring'] ivb_merged['pitcher_hand'] = ivb_merged['pitcher_hand_spring'] #ivb_merged['pitch_type'] = ivb_merged['pitch_type_spring'] # ivb_merged = ivb_merged[['pitcher_id', 'pitcher_name', 'pitcher_hand', 'pitch_type', # 'pitches_spring', 'start_speed_spring', 'ivb_spring', # 'hb_spring', 'spin_rate_spring', 'horizontal_release_spring', # 'vertical_release_spring', 'extension_spring']] ivb_merged['pitcher_team'] = ivb_merged['pitcher_id'].map(spring_teams) ivb_merged = ivb_merged.set_index(['pitcher_id', 'pitcher_name','pitcher_team', 'pitcher_hand', 'pitch_type',]) ivb_merged[['start_speed_difference', 'ivb_difference', 'hb_difference','spin_rate_difference','vaa_difference','haa_difference', 'horizontal_release_difference', 'vertical_release_difference', 'extension_difference']] = ivb_merged[['start_speed_spring', 'ivb_spring', 'hb_spring', 'spin_rate_spring', 'vaa_spring','haa_spring','horizontal_release_spring', 'vertical_release_spring', 'extension_spring']].values - ivb_merged[['start_speed_2023', 'ivb_2023', 'hb_2023', 'spin_rate_2023', 'vaa_2023','haa_2023','horizontal_release_2023', 'vertical_release_2023', 'extension_2023']].values return render.DataGrid( ivb_merged[['start_speed_difference', 'ivb_difference', 'hb_difference', 'spin_rate_difference', 'vaa_difference','haa_difference','horizontal_release_difference', 'vertical_release_difference', 'extension_difference']].reset_index(), width='fit-content', height=750, filters=True, ) # @output # @render.data_frame # def table_new(): # grouped_ivb = df_2024.groupby(['pitcher_id','pitcher_name','pitcher_hand','pitch_type']).agg( # pitches = ('start_speed','count'), # start_speed = ('start_speed','mean'), # ivb = ('ivb','mean'), # hb = ('hb','mean'), # spin_rate = ('spin_rate','mean'), # vaa = ('vaa','mean'), # haa = ('haa','mean'), # horizontal_release = ('x0','mean'), # vertical_release = ('z0','mean'), # extension = ('extension','mean')).round(1).reset_index() # grouped_ivb = grouped_ivb.set_index(['pitcher_id','pitch_type']) # grouped_ivb_2023 = pd.read_csv('2023_pitch_group_data.csv',index_col=[0,3]) # ##### # ivb_merged = grouped_ivb_2023.merge(right=grouped_ivb, # left_index=True, # right_index=True, # how='right',suffixes=['_2023','_spring']).reset_index() # ivb_merged['pitcher_name'] = ivb_merged['pitcher_name_spring'] # ivb_merged['pitcher_hand'] = ivb_merged['pitcher_hand_spring'] # #ivb_merged['pitch_type'] = ivb_merged['pitch_type_spring'] # # ivb_merged = ivb_merged[['pitcher_id', 'pitcher_name', 'pitcher_hand', 'pitch_type', # # 'pitches_spring', 'start_speed_spring', 'ivb_spring', # # 'hb_spring', 'spin_rate_spring', 'horizontal_release_spring', # # 'vertical_release_spring', 'extension_spring']] # ivb_merged['pitcher_team'] = ivb_merged['pitcher_id'].map(spring_teams) # ivb_merged = ivb_merged.set_index(['pitcher_id', 'pitcher_name','pitcher_team', 'pitcher_hand', 'pitch_type',]) # ivb_merged[['start_speed_difference', 'ivb_difference', 'hb_difference','spin_rate_difference','vaa_difference','haa_difference', # 'horizontal_release_difference', 'vertical_release_difference', # 'extension_difference']] = ivb_merged[['start_speed_spring', 'ivb_spring', 'hb_spring', # 'spin_rate_spring', 'vaa_spring','haa_spring','horizontal_release_spring', 'vertical_release_spring', # 'extension_spring']].values - ivb_merged[['start_speed_2023', 'ivb_2023', 'hb_2023', # 'spin_rate_2023', 'vaa_2023','haa_2023','horizontal_release_2023', 'vertical_release_2023', # 'extension_2023']].values # ivb_merged_new = ivb_merged.reset_index() # ivb_merged_new = ivb_merged_new[ # pd.isnull(ivb_merged_new['pitches_2023']) & # pd.notnull(ivb_merged_new['pitches_spring']) & # ivb_merged_new['pitcher_id'].isin(ivb_merged_new[pd.notnull(ivb_merged_new['pitches_2023'])]['pitcher_id']) # ][ # ['pitcher_id', 'pitcher_name', 'pitcher_hand', 'pitch_type', # 'pitches_spring', 'start_speed_spring', 'ivb_spring', # 'hb_spring', 'spin_rate_spring', 'vaa_spring','haa_spring', 'horizontal_release_spring', # 'vertical_release_spring', 'extension_spring'] # ]#.reset_index() # # ivb_merged_new = ivb_merged.copy().reset_index() # ivb_merged_new['pitcher_team'] = ivb_merged_new['pitcher_id'].map(spring_teams) # ivb_merged_new = ivb_merged_new.set_index(['pitcher_id', 'pitcher_name','pitcher_team', 'pitcher_hand', 'pitch_type',]) # #ivb_merged_new.to_clipboard(header=False) # df_2024_date_min = df_2024.groupby(['pitcher_id','pitcher_name','pitcher_hand','pitch_type','game_date'])[['game_date']].min() # ivb_merged_new = ivb_merged_new.merge(right=df_2024_date_min, # left_index=True, # right_index=True) # ivb_merged_new = ivb_merged_new.drop(columns=['game_date']) # return render.DataGrid( # ivb_merged_new.reset_index(), # width='fit-content', # height=750, # filters=True, # ) @output @render.data_frame def table_stuff(): df_2024_update = df_clean(df_2024[(pd.to_datetime(df_2024['game_date']).dt.date>=input.date_range_id()[0])& (pd.to_datetime(df_2024['game_date']).dt.date<=input.date_range_id()[1])]) features = ['start_speed','spin_rate','extension','ivb','hb','x0','z0','fb_max_velo_diff','fb_max_ivb_diff','fb_max_hb_diff'] targets = ['delta_run_exp_mean'] from scipy import stats df_2024_update['y_pred'] = model.predict(df_2024_update[features]) y_pred_mean = -0.0023964706 y_pred_std =0.0057581966 # y_pred_mean = -0.0136602735 # y_pred_std = 0.006434487 ## tjStuff+ df_2024_stuff = df_2024_update.groupby(['pitcher_id','pitcher_name','pitcher_team']).agg( pitches = ('y_pred','count'), run_exp = ('y_pred','mean'),) # run_exp_loc = ('y_pred_loc','mean')) df_2024_stuff['run_exp_mean'] = y_pred_mean df_2024_stuff['run_exp_std'] = y_pred_std df_2024_stuff_50 = df_2024_stuff[df_2024_stuff.pitches >= 1] df_2024_stuff_50['tj_stuff_plus'] = 100 + 10*((-df_2024_stuff_50.run_exp + df_2024_stuff_50.run_exp_mean) / df_2024_stuff_50.run_exp_std) df_2024_stuff_pitch = df_2024_update.groupby(['pitcher_id','pitcher_name','pitcher_team','pitch_type']).agg( pitches = ('y_pred','count'), run_exp = ('y_pred','mean'),) # run_exp_loc = ('y_pred_loc','mean')) df_2024_stuff_pitch['run_exp_mean'] = y_pred_mean df_2024_stuff_pitch['run_exp_std'] = y_pred_std df_2024_stuff_pitch_50 = df_2024_stuff_pitch[df_2024_stuff_pitch.pitches >= 1] df_2024_stuff_pitch_50['tj_stuff_plus'] = 100 + 10*((-df_2024_stuff_pitch_50.run_exp + df_2024_stuff_pitch_50.run_exp_mean) / df_2024_stuff_pitch_50.run_exp_std) df_2024_stuff_pitch_50_pivot = df_2024_stuff_pitch_50.reset_index().pivot(index=['pitcher_id','pitcher_name','pitcher_team'], columns=['pitch_type'], values=['tj_stuff_plus']) df_2024_stuff_pitch_50_pivot['all'] = df_2024_stuff_pitch_50_pivot.index.map(df_2024_stuff_50['tj_stuff_plus'].to_dict()) ## Difference print('Sheet6') df_2024_stuff_pitch_50_pivot = df_2024_stuff_pitch_50_pivot.sort_index(level=[1]) df_2024_stuff_pitch_50_pivot.columns = df_2024_stuff_pitch_50_pivot.columns.droplevel() column_list = list(df_2024_stuff_pitch_50_pivot.columns[:-1]) column_list.append('All') df_2024_stuff_pitch_50_pivot.columns = column_list df_2024_stuff_pitch_50_pivot = df_2024_stuff_pitch_50_pivot.applymap(lambda x: int(x) if not pd.isna(x) else x) df_2024_stuff_pitch_50_pivot = df_2024_stuff_pitch_50_pivot.reset_index() return render.DataGrid( df_2024_stuff_pitch_50_pivot, width='fit-content', height=750, filters=True) @output @render.data_frame def table_stuff_day(): df_2024_update = df_clean(df_2024[(pd.to_datetime(df_2024['game_date']).dt.date>=input.date_range_id()[0])& (pd.to_datetime(df_2024['game_date']).dt.date<=input.date_range_id()[1])]) print('made it here') features = ['start_speed','spin_rate','extension','ivb','hb','x0','z0','fb_max_velo_diff','fb_max_ivb_diff','fb_max_hb_diff'] targets = ['delta_run_exp_mean'] from scipy import stats df_2024_update['y_pred'] = model.predict(df_2024_update[features]) y_pred_mean = -0.0023964706 y_pred_std =0.0057581966 # y_pred_mean = -0.0136602735 # y_pred_std = 0.006434487 ## tjStuff+ df_2024_stuff_daily = df_2024_update.groupby(['pitcher_id','pitcher_name','pitcher_team','game_date']).agg( pitches = ('y_pred','count'), run_exp = ('y_pred','mean'),) # run_exp_loc = ('y_pred_loc','mean')) df_2024_stuff_daily['run_exp_mean'] = y_pred_mean df_2024_stuff_daily['run_exp_std'] = y_pred_std df_2024_stuff_daily_50 = df_2024_stuff_daily[df_2024_stuff_daily.pitches >= 1] df_2024_stuff_daily_50['tj_stuff_plus'] = 100 + 10*((-df_2024_stuff_daily_50.run_exp + df_2024_stuff_daily_50.run_exp_mean) / df_2024_stuff_daily_50.run_exp_std) df_2024_stuff_daily_pitch = df_2024_update.groupby(['pitcher_id','pitcher_name','pitcher_team','pitch_type','game_date']).agg( pitches = ('y_pred','count'), run_exp = ('y_pred','mean'),) # run_exp_loc = ('y_pred_loc','mean')) df_2024_stuff_daily_pitch['run_exp_mean'] = y_pred_mean df_2024_stuff_daily_pitch['run_exp_std'] = y_pred_std df_2024_stuff_daily_pitch_50 = df_2024_stuff_daily_pitch[df_2024_stuff_daily_pitch.pitches >= 1] df_2024_stuff_daily_pitch_50['tj_stuff_plus'] = 100 + 10*((-df_2024_stuff_daily_pitch_50.run_exp + df_2024_stuff_daily_pitch_50.run_exp_mean) / df_2024_stuff_daily_pitch_50.run_exp_std) df_2024_stuff_daily_pitch_50 = df_2024_stuff_daily_pitch_50.reset_index() df_2024_stuff_daily_pitch_50_pivot = df_2024_stuff_daily_pitch_50.pivot(index=['pitcher_id','pitcher_name','pitcher_team','game_date'], columns=['pitch_type'], values=['tj_stuff_plus']) print('made it here') df_2024_stuff_daily_pitch_50_pivot['all'] = df_2024_stuff_daily_pitch_50_pivot.index.map(df_2024_stuff_daily_50['tj_stuff_plus'].to_dict()) df_2024_stuff_daily_pitch_50_pivot = df_2024_stuff_daily_pitch_50_pivot.sort_index(level=[1,3]) print(df_2024_stuff_daily_pitch_50_pivot) df_2024_stuff_daily_pitch_50_pivot.columns = df_2024_stuff_daily_pitch_50_pivot.columns.droplevel() column_list = list(df_2024_stuff_daily_pitch_50_pivot.columns[:-1]) column_list.append('All') df_2024_stuff_daily_pitch_50_pivot.columns = column_list df_2024_stuff_daily_pitch_50_pivot = df_2024_stuff_daily_pitch_50_pivot.applymap(lambda x: int(x) if not pd.isna(x) else x) df_2024_stuff_daily_pitch_50_pivot = df_2024_stuff_daily_pitch_50_pivot.reset_index() return render.DataGrid( df_2024_stuff_daily_pitch_50_pivot, width='fit-content', height=750, filters=True) app = App(app_ui, server)