Spaces:
Running
Running
File size: 25,088 Bytes
eaab5cb e0df468 eaab5cb c3ad087 eaab5cb c3ad087 eaab5cb c3ad087 eaab5cb c3ad087 eaab5cb c3ad087 eaab5cb 2b9562f eaab5cb c3ad087 eaab5cb a711b32 eaab5cb a711b32 eaab5cb e0df468 eaab5cb e0df468 eaab5cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 |
import requests
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib.pyplot import figure
from matplotlib.offsetbox import OffsetImage, AnnotationBbox
#from scipy import stats
import matplotlib.lines as mlines
import matplotlib.transforms as mtransforms
import numpy as np
#import plotly.express as px
#!pip install chart_studio
# import chart_studio.tools as tls
#from bs4 import BeautifulSoup
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.font_manager as font_manager
from datetime import datetime
import pytz
from datetime import date
datetime.now(pytz.timezone('US/Pacific')).strftime('%B %d, %Y')
# Configure Notebook
#%matplotlib inline
plt.style.use('fivethirtyeight')
sns.set_context("notebook")
import warnings
warnings.filterwarnings('ignore')
#from urllib.request import urlopen
import json
from datetime import date, timedelta
#import dataframe_image as dfi
#from os import listdir
#from os.path import isfile, join
import datetime
import seaborn as sns
import os
import calendar
#from IPython.display import display, HTML
import matplotlib.image as mpimg
#from skimage import io
#import difflib
from datetime import datetime
import pytz
datetime.now(pytz.timezone('US/Pacific')).strftime('%B %d, %Y')
# Configure Notebook
#%matplotlib inline
plt.style.use('fivethirtyeight')
sns.set_context("notebook")
import warnings
warnings.filterwarnings('ignore')
# import yfpy
# from yfpy.query import YahooFantasySportsQuery
# import yahoo_oauth
import json
#import openpyxl
#from sklearn import preprocessing
from PIL import Image
import logging
import matplotlib.patches as patches
from matplotlib.patches import Rectangle
from matplotlib.font_manager import FontProperties
from matplotlib.offsetbox import OffsetImage, AnnotationBbox
import requests
#import pickle
import pandas as pd
# # Loop over the counter and format the API call
r = requests.get('https://statsapi.web.nhl.com/api/v1/schedule?startDate=2023-10-01&endDate=2024-06-01')
schedule = r.json()
def flatten(t):
return [item for sublist in t for item in sublist]
game_id = flatten([[x['gamePk'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
game_date = flatten([[x['gameDate'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
game_home = flatten([[x['teams']['home']['team']['name'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
game_away = flatten([[x['teams']['away']['team']['name'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
schedule_df = pd.DataFrame(data={'game_id': game_id, 'game_date' : game_date, 'game_home' : game_home, 'game_away' : game_away})
schedule_df.game_date = pd.to_datetime(schedule_df['game_date']).dt.tz_convert(tz='US/Eastern').dt.date
schedule_df = schedule_df.replace('Montréal Canadiens','Montreal Canadiens')
schedule_df.head()
team_abv = pd.read_csv('team_abv.csv')
yahoo_weeks = pd.read_csv('yahoo_weeks.csv')
#yahoo_weeks['Number'] = yahoo_weeks['Number'].astype(int)
yahoo_weeks['Start'] = pd.to_datetime(yahoo_weeks['Start'])
yahoo_weeks['End'] = pd.to_datetime(yahoo_weeks['End'])
yahoo_weeks.head(5)
def highlight_cols(s):
color = '#C2FEE9'
return 'background-color: %s' % color
def highlight_cells(val):
color = 'white' if val == ' ' else ''
return 'background-color: {}'.format(color)
import matplotlib.pyplot as plt
import matplotlib.colors
cmap_total = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#56B4E9","#FFFFFF","#F0E442"])
cmap_off = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FFFFFF","#F0E442"])
cmap_back = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FFFFFF","#56B4E9"])
cmap_sum = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FFFFFF","#F0E442"])
schedule_df = schedule_df.merge(right=team_abv,left_on='game_away',right_on='team_name',how='inner',suffixes=['','_away'])
schedule_df = schedule_df.merge(right=team_abv,left_on='game_home',right_on='team_name',how='inner',suffixes=['','_home'])
schedule_df['away_sym'] = '@'
schedule_df['home_sym'] = 'vs'
if not os.path.isfile('standings/standings_'+str(date.today())+'.csv'):
standings_df_old = pd.read_html('https://www.hockey-reference.com/leagues/NHL_2023_standings.html')[0].append(pd.read_html('https://www.hockey-reference.com/leagues/NHL_2023_standings.html')[1])
standings_df_old.to_csv('standings/standings_'+str(date.today())+'.csv')
standings_df_old = pd.read_csv('standings/standings_'+str(date.today())+'.csv',index_col=[0])
standings_df = standings_df_old[standings_df_old['Unnamed: 0'].str[-8:] != 'Division'].sort_values('Unnamed: 0').reset_index(drop=True).rename(columns={'Unnamed: 0':'Team'})#.drop(columns='Unnamed: 0')
#standings_df = standings_df.replace('St. Louis Blues','St Louis Blues')
standings_df['GF/GP'] = standings_df['GF'].astype(int)/standings_df['GP'].astype(int)
standings_df['GA/GP'] = standings_df['GA'].astype(int)/standings_df['GP'].astype(int)
standings_df['GF_Rank'] = standings_df['GF/GP'].rank(ascending=True,method='first')/10-1.65
standings_df['GA_Rank'] = standings_df['GA/GP'].rank(ascending=False,method='first')/10-1.65
standings_df.Team = standings_df.Team.str.strip('*')
standings_df = standings_df.merge(right=team_abv,left_on='Team',right_on='team_name')
schedule_stack = pd.DataFrame()
schedule_stack['date'] = pd.to_datetime(list(schedule_df['game_date'])+list(schedule_df['game_date']))
schedule_stack['team'] = list(schedule_df['team_name'])+list(schedule_df['team_name_home'])
schedule_stack['team_abv'] = list(schedule_df['team_abv'])+list(schedule_df['team_abv_home'])
schedule_stack['symbol'] = list(schedule_df['away_sym'])+list(schedule_df['home_sym'])
schedule_stack['team_opponent'] = list(schedule_df['team_name_home'])+list(schedule_df['team_name'])
schedule_stack['team_abv_home'] = list(schedule_df['team_abv_home'])+list(schedule_df['team_abv'])
schedule_stack = schedule_stack.merge(right=standings_df[['team_abv','GF_Rank']],left_on='team_abv',right_on='team_abv',how='inner',suffixes=("",'_y'))
schedule_stack = schedule_stack.merge(right=standings_df[['team_abv','GA_Rank']],left_on='team_abv_home',right_on='team_abv',how='inner',suffixes=("",'_y'))
schedule_stack = schedule_stack.merge(right=standings_df[['team_abv','GF_Rank']],left_on='team_abv',right_on='team_abv',how='inner',suffixes=("",'_y'))
schedule_stack = schedule_stack.merge(right=standings_df[['team_abv','GA_Rank']],left_on='team_abv_home',right_on='team_abv',how='inner',suffixes=("",'_y'))
list_o = schedule_stack.sort_values(['team','date'],ascending=[True,True]).reset_index(drop=True)
new_list = [x - y for x, y in zip(list_o['date'][1:], list_o['date'])]
b2b_list = [0] + [x.days for x in new_list]
b2b_list = [1 if x==1 else 0 for x in b2b_list]
test = list(schedule_stack.groupby(by='date').count()['team'])
offnight = [1 if x<15 else 0 for x in test]
offnight_df = pd.DataFrame({'date':schedule_stack.sort_values('date').date.unique(),'offnight':offnight}).sort_values('date').reset_index(drop=True)
schedule_stack = schedule_stack.merge(right=offnight_df,left_on='date',right_on='date',how='right')
schedule_stack = schedule_stack.sort_values(['team','date'],ascending=[True,True]).reset_index(drop=True)
schedule_stack['b2b'] = b2b_list
schedule_stack.date = pd.to_datetime(schedule_stack.date)
away_b2b = []
home_b2b = []
for i in range(0,len(schedule_stack)):
away_b2b.append(schedule_stack[(schedule_stack.date[i]==schedule_stack.date)&(schedule_stack.team_opponent[i]==schedule_stack.team)].reset_index(drop=True)['b2b'][0])
home_b2b.append(schedule_stack[(schedule_stack.date[i]==schedule_stack.date)&(schedule_stack.team[i]==schedule_stack.team)].reset_index(drop=True)['b2b'][0])
schedule_stack['away_b2b'] = away_b2b
schedule_stack['home_b2b'] = home_b2b
schedule_stack['away_b2b'] = schedule_stack['away_b2b'].replace(1,' 😴')
schedule_stack['away_b2b'] = schedule_stack['away_b2b'].replace(0,'')
schedule_stack.head()
FontProperties(fname='/System/Library/Fonts/Apple Color Emoji.ttc')
data_r = requests.get("https://pub-api-ro.fantasysports.yahoo.com/fantasy/v2/league/427.l.public;out=settings/players;position=ALL;start=0;count=3000;sort=rank_season;search=;out=percent_owned;out=auction_values,ranks;ranks=season;ranks_by_position=season;out=expert_ranks;expert_ranks.rank_type=projected_season_remaining/draft_analysis;cut_types=diamond;slices=last7days?format=json_f").json()
total_list = []
for x in data_r['fantasy_content']['league']['players']:
single_list = []
single_list.append(int(x['player']['player_id']))
single_list.append(int(x['player']['player_ranks'][0]['player_rank']['rank_value']))
single_list.append(x['player']['name']['full'])
single_list.append(x['player']['name']['first'])
single_list.append(x['player']['name']['last'])
single_list.append(x['player']['draft_analysis']['average_pick'])
single_list.append(x['player']['average_auction_cost'])
single_list.append(x['player']['display_position'])
single_list.append(x['player']['editorial_team_abbr'])
if 'value' in x['player']['percent_owned']:
single_list.append(x['player']['percent_owned']['value']/100)
else:
single_list.append(0)
total_list.append(single_list)
df_2023 = pd.DataFrame(data=total_list,columns=['player_id','rank_value','full','first','last','average_pick', 'average_cost','display_position','editorial_team_abbr','percent_owned'])
week_dict = yahoo_weeks.set_index('Number')['Week'].sort_index().to_dict()
from shiny import ui, render, App
import matplotlib.image as mpimg
# app_ui = ui.page_fluid(
# # ui.output_plot("plot"),
# #ui.h2('MLB Batter Launch Angle vs Exit Velocity'),
# ui.layout_sidebar(
# ui.panel_sidebar(
# ui.input_select("id", "Select Batter",batter_dict),
# ui.input_select("plot_id", "Select Plot",{'scatter':'Scatter Plot','dist':'Distribution Plot'})))
# ,
# ui.panel_main(ui.output_plot("plot",height = "750px",width="1250px")),
# #ui.download_button('test','Download'),
# )
app_ui = ui.page_fluid(ui.layout_sidebar(
# Available themes:
# cerulean, cosmo, cyborg, darkly, flatly, journal, litera, lumen, lux,
# materia, minty, morph, pulse, quartz, sandstone, simplex, sketchy, slate,
# solar, spacelab, superhero, united, vapor, yeti, zephyr
ui.panel_sidebar(
ui.input_select("week_id", "Select Week (Set as Season for Custom Date Range)",week_dict,width=1),
ui.input_select("sort_id", "Sort Column",['Score','Team','Total','Off-Night','B2B'],width=1),
ui.input_switch("a_d_id", "Ascending?"),
#ui.input_select("date_id", "Select Date",yahoo_weeks['Week'],width=1),
ui.input_date_range("date_range_id", "Date range input",start = datetime.today().date(), end = datetime.today().date() + timedelta(days=6)),
ui.output_table("result"),width=3),
ui.panel_main(ui.tags.h3(""),
ui.div({"style": "font-size:2em;"},ui.output_text("txt_title")),
#ui.tags.h2("Fantasy Hockey Schedule Summary"),
ui.tags.h5("Created By: @TJStats, Data: NHL"),
ui.div({"style": "font-size:1.2em;"},ui.output_text("txt")),
ui.output_table("schedule_result"),
ui.tags.h5('Legend'),
ui.output_table("schedule_result_legend"),
ui.tags.h6('An Off Night is defined as a day in which less than half the teams in the NHL are playing'),
ui.tags.h6('The scores are determined by using games played, off-nights, B2B, and strength of opponents') )
))
# ui.row(
# ui.column(
# 3,
# ui.input_date("x", "Date input"),),
# ui.column(
# 1,
# ui.input_select("level_id", "Select Level",level_dict,width=1)),
# ui.column(
# 3,
# ui.input_select("stat_id", "Select Stat",plot_dict_small,width=1)),
# ui.column(
# 2,
# ui.input_numeric("n", "Rolling Window Size", value=50)),
# ),
# ui.output_table("result_batters")),
# ui.nav(
# "Pitchers",
# ui.row(
# ui.column(
# 3,
# ui.input_select("id_pitch", "Select Pitcher",pitcher_dict,width=1,selected=675911),
# ),
# ui.column(
# 1,
# ui.input_select("level_id_pitch", "Select Level",level_dict,width=1)),
# ui.column(
# 3,
# ui.input_select("stat_id_pitch", "Select Stat",plot_dict_small_pitch,width=1)),
# ui.column(
# 2,
# ui.input_numeric("n_pitch", "Rolling Window Size", value=50)),
# ),
# ui.output_table("result_pitchers")),
# )
# )
# )
from urllib.request import Request, urlopen
# importing OpenCV(cv2) module
def server(input, output, session):
@output
@render.text
def txt():
week_set = int(input.week_id())
if week_set != 0:
if pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]['Start'].values[0]).year != pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]['End'].values[0]).year:
return f'{pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["Start"].values[0]).strftime("%B %d, %Y")} to {pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["End"].values[0]).strftime("%B %d, %Y")}'
else:
if pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["Start"].values[0]).month != pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["End"].values[0]).month:
return f'{pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["Start"].values[0]).strftime("%B %d")} to {pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["End"].values[0]).strftime("%B %d, %Y")}'
else:
return f'{pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["Start"].values[0]).strftime("%B %d")} to {pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["End"].values[0]).strftime("%d, %Y")}'
else:
if input.date_range_id()[0].year != input.date_range_id()[1].year:
return f'{input.date_range_id()[0].strftime("%B %d, %Y")} to {input.date_range_id()[1].strftime("%B %d, %Y")}'
else:
if input.date_range_id()[0].month != input.date_range_id()[1].month:
return f'{input.date_range_id()[0].strftime("%B %d")} to {input.date_range_id()[1].strftime("%B %d, %Y")}'
else:
return f'{input.date_range_id()[0].strftime("%B %d")} to {input.date_range_id()[1].strftime("%d, %Y")}'
@output
@render.text
def txt_title():
week_set = int(input.week_id())
if week_set != 0:
return f'Fantasy Hockey Schedule Summary - Yahoo - Week {input.week_id()}'
else:
return f'Fantasy Hockey Schedule Summary'
@output
@render.table
def result():
#print(yahoo_weeks)
return yahoo_weeks
@output
@render.table
def schedule_result():
week_set = int(input.week_id())
print(week_set)
if week_set == 0:
start_point = input.date_range_id()[0]
end_point = input.date_range_id()[1]
else:
start_point = yahoo_weeks[yahoo_weeks.Number==week_set].reset_index(drop=True)['Start'][0]
end_point = yahoo_weeks[yahoo_weeks.Number==week_set].reset_index(drop=True)['End'][0]
sort_value='Score'
ascend=False
weekly_stack = schedule_stack[(schedule_stack['date'].dt.date>=start_point)&(schedule_stack['date'].dt.date<=end_point)]
date_list = pd.date_range(start_point,end_point,freq='d')
test_list = [[]] * len(date_list)
for i in range(0,len(date_list)):
test_list[i] = team_abv.merge(right=weekly_stack[weekly_stack['date']==date_list[i]],left_on='team_abv',right_on='team_abv',how='left')
test_list[i] = test_list[i].fillna("")
test_list[i]['new_text'] = test_list[i]['symbol'] + ' '+ test_list[i]['team_abv_home'] + test_list[i]['away_b2b']
test_df = pd.DataFrame()
test_df['Team'] = list(team_abv['team_abv'])
test_df['Total'] = test_df.merge(right=weekly_stack.groupby('team_abv')['team_abv'].apply(lambda x: x[x != ''].count()),left_on=['Team'],right_index=True,how='left').fillna(0)['team_abv']
test_df['Off-Night'] = test_df.merge(right=weekly_stack.groupby('team_abv').sum()['offnight'],left_on=['Team'],right_index=True,how='left').fillna(0)['offnight']
test_df['B2B']= test_df.merge(right=weekly_stack.groupby('team_abv').sum()['b2b'],left_on=['Team'],right_index=True,how='left').fillna(0)['b2b']
gf_rank = np.array(test_df.merge(right=weekly_stack.groupby('team_abv').mean()['GF_Rank'],left_on=['Team'],right_index=True,how='left').fillna(0)['GF_Rank'])
ga_rank = np.array(test_df.merge(right=weekly_stack.groupby('team_abv').mean()['GA_Rank'],left_on=['Team'],right_index=True,how='left').fillna(0)['GA_Rank'])
#games_vs_tired = np.array([float(i)*0.4 for i in list(weekly_stack.groupby('team_abv')['away_b2b'].apply(lambda x: x[x != ''].count()))])
games_vs_tired = 0.4*np.array(test_df.merge(right=weekly_stack.groupby('team_abv')['away_b2b'].apply(lambda x: x[x != ''].count()),left_on=['Team'],right_index=True,how='left').fillna(0)['away_b2b'])
team_score = test_df['Total']+test_df['Off-Night']*0.5+test_df['B2B']*-0.2+games_vs_tired*0.3+gf_rank*0.1+ga_rank*0.1
test_df['Score'] = team_score
cols = test_df.columns.tolist();
L = len(cols)
test_df = test_df[cols[4:]+cols[0:4]]
#return test_df#[cols[4:]+cols[0:4]]
test_df = test_df.sort_values(by=[sort_value,'Score'],ascending = ascend)
for i in range(0,len(date_list)):
test_df[calendar.day_name[date_list[i].weekday()]+'<br>'+str(date_list[i].month)+'-'+'{:02d}'.format(date_list[i].day)] = test_list[i]['new_text']
row = ['']*L
for x in test_df[test_df.columns[L:]]:
row.append(int(sum(test_df[x]!=" ")/2))
test_df = test_df.sort_values(by=input.sort_id(),ascending=input.a_d_id())
test_df.loc[32] = row
#test_df_html = HTML( test_df.to_html().replace("\\n","<br>") )
offnight_list = [True if x <8 else False for x in test_df.iloc[-1][L:]]
test_df.style.applymap(highlight_cols,subset = ((list(test_df.index[:-1]),test_df.columns[L:][offnight_list])))
test_df_style = test_df.style.set_properties(**{'border': '3 px'},overwrite=False).set_table_styles([{
'selector': 'caption',
'props': [
('color', ''),
('fontname', 'Century Gothic'),
('font-size', '20px'),
('font-style', 'italic'),
('font-weight', ''),
('text-align', 'centre'),
]
},{'selector' :'th', 'props':[('text-align', 'center'),('Height','px'),('color','black'),('border', '1px black solid !important')]},{'selector' :'td', 'props':[('text-align', 'center'),('font-size', '18px'),('color','black')]}],overwrite=False).set_properties(
**{'background-color':'White','index':'White','min-width':'75px'},overwrite=False).set_properties(
**{'background-color':'White','index':'White','min-width':'100px'},overwrite=False,subset = ((list(test_df.index[:]),test_df.columns[5:]))).set_table_styles(
[{'selector': 'th:first-child', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles(
[{'selector': 'tr:first-child', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles(
[{'selector': 'tr', 'props': [('line-height', '20px')]}],overwrite=False).set_properties(
**{'Height': '8px'},**{'text-align': 'center'},overwrite=False).hide_index()
test_df_style = test_df_style.applymap(highlight_cols,subset = ((list(test_df.index[:-1]),test_df.columns[L:][offnight_list])))
test_df_style = test_df_style.applymap(highlight_cells)
test_df_style = test_df_style.background_gradient(cmap=cmap_total,subset = ((list(test_df.index[:-1]),test_df.columns[0])))
test_df_style = test_df_style.background_gradient(cmap=cmap_total,vmin=0,vmax=np.max(test_df.Total[:len(test_df)-1]),subset = ((list(test_df.index[:-1]),test_df.columns[2])))
test_df_style = test_df_style.background_gradient(cmap=cmap_off,subset = ((list(test_df.index[:-1]),test_df.columns[3])))
test_df_style = test_df_style.background_gradient(cmap=cmap_back,subset = ((list(test_df.index[:-1]),test_df.columns[4])))
test_df_style = test_df_style.background_gradient(cmap=cmap_sum,subset = ((list(test_df.index[-1:]),test_df.columns[L:])),axis=1)
test_df_style = test_df_style.set_properties(
**{'border': '1px black solid !important'},subset = ((list(test_df.index[:-1]),test_df.columns[:]))).set_properties(
**{'min-width':'85px'},subset = ((list(test_df.index[:-1]),test_df.columns[L:])),overwrite=False).set_properties(**{
'color': 'black'},overwrite=False).set_properties(
**{'border': '1px black solid !important'},subset = ((list(test_df.index[:]),test_df.columns[L:])))
test_df_style = test_df_style.format(
'{:.0f}',subset=(test_df.index[:-1],test_df.columns[2:L]))
test_df_style = test_df_style.format(
'{:.1f}',subset=(test_df.index[:-1],test_df.columns[0]))
print('made it to teh end')
return test_df_style
#return exit_velo_df_codes_summ_time_style_set
# @output
# @render.plot(alt="A histogram")
# def plot_pitch():
# p
@output
@render.table
def schedule_result_legend():
off_b2b_df = pd.DataFrame(data={'off':'Off-Night','b2b':'Tired Opp. 😴'},index=[0])
#off_b2b_df.style.applymap(highlight_cols,subset = ((list(off_b2b_df.index[:-1]),off_b2b_df.columns[0])))
off_b2b_df_style = off_b2b_df.style.set_properties(**{'border': '3 px'},overwrite=False).set_table_styles([{
'selector': 'caption',
'props': [
('color', ''),
('fontname', 'Century Gothic'),
('font-size', '20px'),
('font-style', 'italic'),
('font-weight', ''),
('text-align', 'centre'),
]
},{'selector' :'th', 'props':[('text-align', 'center'),('Height','px'),('color','black'),(
'border', '1px black solid !important')]},{'selector' :'td', 'props':[('text-align', 'center'),('font-size', '18px'),('color','black')]}],overwrite=False).set_properties(
**{'background-color':'White','index':'White','min-width':'150px'},overwrite=False).set_table_styles(
[{'selector': 'th:first-child', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles(
[{'selector': 'tr:first-child', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles(
[{'selector': 'tr', 'props': [('line-height', '20px')]}],overwrite=False).set_properties(
**{'Height': '8px'},**{'text-align': 'center'},overwrite=False).set_properties(
**{'background-color':'#C2FEE9'},subset=off_b2b_df.columns[0]).set_properties(
**{'color':'black'},subset=off_b2b_df.columns[:]).hide_index().set_table_styles([
{'selector': 'thead', 'props': [('display', 'none')]}
]).set_properties(**{'border': '3 px','color':'black'},overwrite=False).set_properties(
**{'border': '1px black solid !important'},subset = ((list(off_b2b_df.index[:]),off_b2b_df.columns[:]))).set_properties(
**{'min-width':'130'},subset = ((list(off_b2b_df.index[:]),off_b2b_df.columns[:])),overwrite=False).set_properties(**{
'color': 'black'},overwrite=False).set_properties(
**{'border': '1px black solid !important'},subset = ((list(off_b2b_df.index[:]),off_b2b_df.columns[:])))
return off_b2b_df_style
app = App(app_ui, server) |