File size: 25,088 Bytes
eaab5cb
e0df468
 
eaab5cb
 
 
c3ad087
eaab5cb
 
 
c3ad087
eaab5cb
 
c3ad087
eaab5cb
 
 
 
 
 
 
 
 
 
 
 
 
c3ad087
eaab5cb
 
c3ad087
 
 
eaab5cb
 
 
 
2b9562f
eaab5cb
c3ad087
 
eaab5cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a711b32
 
eaab5cb
 
 
 
 
 
 
 
a711b32
eaab5cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0df468
 
eaab5cb
 
 
 
e0df468
 
eaab5cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
import requests
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib.pyplot import figure
from matplotlib.offsetbox import OffsetImage, AnnotationBbox
#from scipy import stats
import matplotlib.lines as mlines
import matplotlib.transforms as mtransforms
import numpy as np
#import plotly.express as px
#!pip install chart_studio
# import chart_studio.tools as tls
#from bs4 import BeautifulSoup
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.font_manager as font_manager
from datetime import datetime
import pytz
from datetime import date
datetime.now(pytz.timezone('US/Pacific')).strftime('%B %d, %Y')
# Configure Notebook
#%matplotlib inline
plt.style.use('fivethirtyeight')
sns.set_context("notebook")
import warnings
warnings.filterwarnings('ignore')
#from urllib.request import urlopen
import json
from datetime import date, timedelta
#import dataframe_image as dfi
#from os import listdir
#from os.path import isfile, join
import datetime
import seaborn as sns
import os
import calendar
#from IPython.display import display, HTML
import matplotlib.image as mpimg
#from skimage import io
#import difflib 


from datetime import datetime
import pytz
datetime.now(pytz.timezone('US/Pacific')).strftime('%B %d, %Y')
# Configure Notebook
#%matplotlib inline
plt.style.use('fivethirtyeight')
sns.set_context("notebook")
import warnings
warnings.filterwarnings('ignore')
# import yfpy
# from yfpy.query import YahooFantasySportsQuery
# import yahoo_oauth
import json
#import openpyxl
#from sklearn import preprocessing
from PIL import Image
import logging
import matplotlib.patches as patches
from matplotlib.patches import Rectangle
from matplotlib.font_manager import FontProperties
from matplotlib.offsetbox import OffsetImage, AnnotationBbox

import requests
#import pickle
import pandas as pd

# # Loop over the counter and format the API call
r = requests.get('https://statsapi.web.nhl.com/api/v1/schedule?startDate=2023-10-01&endDate=2024-06-01')
schedule = r.json()

def flatten(t):
    return [item for sublist in t for item in sublist]

game_id = flatten([[x['gamePk'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
game_date = flatten([[x['gameDate'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
game_home = flatten([[x['teams']['home']['team']['name'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
game_away = flatten([[x['teams']['away']['team']['name'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])

schedule_df = pd.DataFrame(data={'game_id': game_id, 'game_date' : game_date, 'game_home' : game_home, 'game_away' : game_away})
schedule_df.game_date = pd.to_datetime(schedule_df['game_date']).dt.tz_convert(tz='US/Eastern').dt.date
schedule_df = schedule_df.replace('Montréal Canadiens','Montreal Canadiens')
schedule_df.head()

team_abv = pd.read_csv('team_abv.csv')
yahoo_weeks = pd.read_csv('yahoo_weeks.csv')
#yahoo_weeks['Number'] = yahoo_weeks['Number'].astype(int)
yahoo_weeks['Start'] = pd.to_datetime(yahoo_weeks['Start'])
yahoo_weeks['End'] = pd.to_datetime(yahoo_weeks['End'])
yahoo_weeks.head(5)

def highlight_cols(s):
    color = '#C2FEE9'
    return 'background-color: %s' % color
def highlight_cells(val):
    color = 'white' if val == ' ' else ''
    return 'background-color: {}'.format(color)

import matplotlib.pyplot as plt
import matplotlib.colors
cmap_total = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#56B4E9","#FFFFFF","#F0E442"])
cmap_off = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FFFFFF","#F0E442"])
cmap_back = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FFFFFF","#56B4E9"])
cmap_sum = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FFFFFF","#F0E442"])

schedule_df = schedule_df.merge(right=team_abv,left_on='game_away',right_on='team_name',how='inner',suffixes=['','_away']) 
schedule_df = schedule_df.merge(right=team_abv,left_on='game_home',right_on='team_name',how='inner',suffixes=['','_home']) 
schedule_df['away_sym'] = '@'
schedule_df['home_sym'] = 'vs'


if not os.path.isfile('standings/standings_'+str(date.today())+'.csv'):   
    standings_df_old = pd.read_html('https://www.hockey-reference.com/leagues/NHL_2023_standings.html')[0].append(pd.read_html('https://www.hockey-reference.com/leagues/NHL_2023_standings.html')[1])
    standings_df_old.to_csv('standings/standings_'+str(date.today())+'.csv')
standings_df_old = pd.read_csv('standings/standings_'+str(date.today())+'.csv',index_col=[0])

standings_df = standings_df_old[standings_df_old['Unnamed: 0'].str[-8:] != 'Division'].sort_values('Unnamed: 0').reset_index(drop=True).rename(columns={'Unnamed: 0':'Team'})#.drop(columns='Unnamed: 0')
#standings_df = standings_df.replace('St. Louis Blues','St Louis Blues')
standings_df['GF/GP'] = standings_df['GF'].astype(int)/standings_df['GP'].astype(int)
standings_df['GA/GP'] = standings_df['GA'].astype(int)/standings_df['GP'].astype(int)
standings_df['GF_Rank']  = standings_df['GF/GP'].rank(ascending=True,method='first')/10-1.65
standings_df['GA_Rank'] = standings_df['GA/GP'].rank(ascending=False,method='first')/10-1.65
standings_df.Team = standings_df.Team.str.strip('*') 
standings_df = standings_df.merge(right=team_abv,left_on='Team',right_on='team_name')

schedule_stack = pd.DataFrame()
schedule_stack['date'] = pd.to_datetime(list(schedule_df['game_date'])+list(schedule_df['game_date']))
schedule_stack['team'] = list(schedule_df['team_name'])+list(schedule_df['team_name_home'])
schedule_stack['team_abv'] = list(schedule_df['team_abv'])+list(schedule_df['team_abv_home'])
schedule_stack['symbol'] = list(schedule_df['away_sym'])+list(schedule_df['home_sym'])
schedule_stack['team_opponent'] =  list(schedule_df['team_name_home'])+list(schedule_df['team_name'])
schedule_stack['team_abv_home'] = list(schedule_df['team_abv_home'])+list(schedule_df['team_abv'])
schedule_stack = schedule_stack.merge(right=standings_df[['team_abv','GF_Rank']],left_on='team_abv',right_on='team_abv',how='inner',suffixes=("",'_y'))
schedule_stack = schedule_stack.merge(right=standings_df[['team_abv','GA_Rank']],left_on='team_abv_home',right_on='team_abv',how='inner',suffixes=("",'_y'))

schedule_stack = schedule_stack.merge(right=standings_df[['team_abv','GF_Rank']],left_on='team_abv',right_on='team_abv',how='inner',suffixes=("",'_y'))
schedule_stack = schedule_stack.merge(right=standings_df[['team_abv','GA_Rank']],left_on='team_abv_home',right_on='team_abv',how='inner',suffixes=("",'_y'))
 
 
list_o = schedule_stack.sort_values(['team','date'],ascending=[True,True]).reset_index(drop=True)
new_list = [x - y for x, y in zip(list_o['date'][1:], list_o['date'])]
b2b_list = [0] + [x.days for x in new_list]
b2b_list = [1 if x==1 else 0 for x in b2b_list]
test = list(schedule_stack.groupby(by='date').count()['team'])
offnight = [1 if x<15 else 0 for x in test]
offnight_df = pd.DataFrame({'date':schedule_stack.sort_values('date').date.unique(),'offnight':offnight}).sort_values('date').reset_index(drop=True)
schedule_stack = schedule_stack.merge(right=offnight_df,left_on='date',right_on='date',how='right')
schedule_stack = schedule_stack.sort_values(['team','date'],ascending=[True,True]).reset_index(drop=True)
schedule_stack['b2b'] = b2b_list

schedule_stack.date = pd.to_datetime(schedule_stack.date)

away_b2b = []
home_b2b = []
for i in range(0,len(schedule_stack)):
    away_b2b.append(schedule_stack[(schedule_stack.date[i]==schedule_stack.date)&(schedule_stack.team_opponent[i]==schedule_stack.team)].reset_index(drop=True)['b2b'][0])
    home_b2b.append(schedule_stack[(schedule_stack.date[i]==schedule_stack.date)&(schedule_stack.team[i]==schedule_stack.team)].reset_index(drop=True)['b2b'][0])

schedule_stack['away_b2b'] = away_b2b
schedule_stack['home_b2b'] = home_b2b

schedule_stack['away_b2b'] = schedule_stack['away_b2b'].replace(1,' &#128564;')
schedule_stack['away_b2b'] = schedule_stack['away_b2b'].replace(0,'')
schedule_stack.head()

FontProperties(fname='/System/Library/Fonts/Apple Color Emoji.ttc')

data_r = requests.get("https://pub-api-ro.fantasysports.yahoo.com/fantasy/v2/league/427.l.public;out=settings/players;position=ALL;start=0;count=3000;sort=rank_season;search=;out=percent_owned;out=auction_values,ranks;ranks=season;ranks_by_position=season;out=expert_ranks;expert_ranks.rank_type=projected_season_remaining/draft_analysis;cut_types=diamond;slices=last7days?format=json_f").json()

total_list = []

for x in data_r['fantasy_content']['league']['players']:
    single_list = []

    single_list.append(int(x['player']['player_id']))
    single_list.append(int(x['player']['player_ranks'][0]['player_rank']['rank_value']))
    single_list.append(x['player']['name']['full'])
    single_list.append(x['player']['name']['first'])
    single_list.append(x['player']['name']['last'])
    single_list.append(x['player']['draft_analysis']['average_pick'])
    single_list.append(x['player']['average_auction_cost'])
    single_list.append(x['player']['display_position'])
    single_list.append(x['player']['editorial_team_abbr'])
    if 'value' in x['player']['percent_owned']:
        single_list.append(x['player']['percent_owned']['value']/100)
    else:
        single_list.append(0)
    total_list.append(single_list)

df_2023 = pd.DataFrame(data=total_list,columns=['player_id','rank_value','full','first','last','average_pick', 'average_cost','display_position','editorial_team_abbr','percent_owned'])

week_dict = yahoo_weeks.set_index('Number')['Week'].sort_index().to_dict()

from shiny import ui, render, App
import matplotlib.image as mpimg
# app_ui = ui.page_fluid(

#     # ui.output_plot("plot"),
#     #ui.h2('MLB Batter Launch Angle vs Exit Velocity'),
#     ui.layout_sidebar(
#         ui.panel_sidebar(
#             ui.input_select("id", "Select Batter",batter_dict),

#             ui.input_select("plot_id", "Select Plot",{'scatter':'Scatter Plot','dist':'Distribution Plot'})))
#         ,

#     ui.panel_main(ui.output_plot("plot",height = "750px",width="1250px")),
#     #ui.download_button('test','Download'),
# )
app_ui = ui.page_fluid(ui.layout_sidebar(
    # Available themes:
    #  cerulean, cosmo, cyborg, darkly, flatly, journal, litera, lumen, lux,
    #  materia, minty, morph, pulse, quartz, sandstone, simplex, sketchy, slate,
    #  solar, spacelab, superhero, united, vapor, yeti, zephyr
        
      ui.panel_sidebar(
            ui.input_select("week_id", "Select Week (Set as Season for Custom Date Range)",week_dict,width=1),
            ui.input_select("sort_id", "Sort Column",['Score','Team','Total','Off-Night','B2B'],width=1),
            ui.input_switch("a_d_id", "Ascending?"),
            #ui.input_select("date_id", "Select Date",yahoo_weeks['Week'],width=1),
            ui.input_date_range("date_range_id", "Date range input",start = datetime.today().date(), end = datetime.today().date() + timedelta(days=6)),
            ui.output_table("result"),width=3),
         
        
        ui.panel_main(ui.tags.h3(""),
                      ui.div({"style": "font-size:2em;"},ui.output_text("txt_title")),
                      #ui.tags.h2("Fantasy Hockey Schedule Summary"),
                      ui.tags.h5("Created By: @TJStats,     Data: NHL"),
                      ui.div({"style": "font-size:1.2em;"},ui.output_text("txt")),
                      ui.output_table("schedule_result"),
                      ui.tags.h5('Legend'),
                      ui.output_table("schedule_result_legend"),
                      ui.tags.h6('An Off Night is defined as a day in which less than half the teams in the NHL are playing'),
                      ui.tags.h6('The scores are determined by using games played, off-nights, B2B, and strength of opponents') )

        ))
        #  ui.row(
        #         ui.column(
        #             3,
        #                 ui.input_date("x", "Date input"),),
        #         ui.column(
        #             1,
        #             ui.input_select("level_id", "Select Level",level_dict,width=1)),
        #         ui.column(
        #             3,
        #             ui.input_select("stat_id", "Select Stat",plot_dict_small,width=1)),
        #         ui.column(
        #             2,
        #             ui.input_numeric("n", "Rolling Window Size", value=50)),
        #         ),
        #             ui.output_table("result_batters")),

                # ui.nav(
                #     "Pitchers",

                #                 ui.row(
                # ui.column(
                #     3,
                #     ui.input_select("id_pitch", "Select Pitcher",pitcher_dict,width=1,selected=675911),
                #     ),
                # ui.column(
                #     1,
                #     ui.input_select("level_id_pitch", "Select Level",level_dict,width=1)),
                # ui.column(
                #     3,
                #     ui.input_select("stat_id_pitch", "Select Stat",plot_dict_small_pitch,width=1)),
                # ui.column(
                #     2,
                #         ui.input_numeric("n_pitch", "Rolling Window Size", value=50)),
                # ),
                #     ui.output_table("result_pitchers")),
#             )
#         )
# )




from urllib.request import Request, urlopen
# importing OpenCV(cv2) module




def server(input, output, session):

    @output
    @render.text
    def txt():
        
        week_set = int(input.week_id())
        if week_set != 0:
            if pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]['Start'].values[0]).year != pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]['End'].values[0]).year:

                return f'{pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["Start"].values[0]).strftime("%B %d, %Y")} to {pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["End"].values[0]).strftime("%B %d, %Y")}'
            else:
                if pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["Start"].values[0]).month != pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["End"].values[0]).month:
                    return f'{pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["Start"].values[0]).strftime("%B %d")} to {pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["End"].values[0]).strftime("%B %d, %Y")}'
                else:
                    return f'{pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["Start"].values[0]).strftime("%B %d")} to {pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["End"].values[0]).strftime("%d, %Y")}'
        else:
            if input.date_range_id()[0].year != input.date_range_id()[1].year:

                return f'{input.date_range_id()[0].strftime("%B %d, %Y")} to {input.date_range_id()[1].strftime("%B %d, %Y")}'
            else:
                if input.date_range_id()[0].month != input.date_range_id()[1].month:
                    return f'{input.date_range_id()[0].strftime("%B %d")} to {input.date_range_id()[1].strftime("%B %d, %Y")}'
                else:
                    return f'{input.date_range_id()[0].strftime("%B %d")} to {input.date_range_id()[1].strftime("%d, %Y")}'            


    @output
    @render.text
    def txt_title():
        week_set = int(input.week_id())
        if week_set != 0:
            return f'Fantasy Hockey Schedule Summary - Yahoo - Week {input.week_id()}'
        else:
            return f'Fantasy Hockey Schedule Summary'

    @output
    @render.table
    def result():
        #print(yahoo_weeks)
        return yahoo_weeks

    @output
    @render.table
    def schedule_result():
        

        week_set = int(input.week_id())
        print(week_set)

        if week_set == 0:
            start_point = input.date_range_id()[0]
            end_point = input.date_range_id()[1]
        else:   
            start_point = yahoo_weeks[yahoo_weeks.Number==week_set].reset_index(drop=True)['Start'][0]
            end_point = yahoo_weeks[yahoo_weeks.Number==week_set].reset_index(drop=True)['End'][0]


        sort_value='Score'
        ascend=False

        weekly_stack = schedule_stack[(schedule_stack['date'].dt.date>=start_point)&(schedule_stack['date'].dt.date<=end_point)]
        date_list = pd.date_range(start_point,end_point,freq='d')
        test_list = [[]] * len(date_list)



        for i in range(0,len(date_list)):
            test_list[i]  = team_abv.merge(right=weekly_stack[weekly_stack['date']==date_list[i]],left_on='team_abv',right_on='team_abv',how='left')
            test_list[i] = test_list[i].fillna("")
            test_list[i]['new_text'] = test_list[i]['symbol'] + ' '+ test_list[i]['team_abv_home'] + test_list[i]['away_b2b']


        test_df = pd.DataFrame()
        test_df['Team'] = list(team_abv['team_abv'])
        test_df['Total'] = test_df.merge(right=weekly_stack.groupby('team_abv')['team_abv'].apply(lambda x: x[x != ''].count()),left_on=['Team'],right_index=True,how='left').fillna(0)['team_abv']
        test_df['Off-Night'] = test_df.merge(right=weekly_stack.groupby('team_abv').sum()['offnight'],left_on=['Team'],right_index=True,how='left').fillna(0)['offnight']
        test_df['B2B']= test_df.merge(right=weekly_stack.groupby('team_abv').sum()['b2b'],left_on=['Team'],right_index=True,how='left').fillna(0)['b2b']



        gf_rank = np.array(test_df.merge(right=weekly_stack.groupby('team_abv').mean()['GF_Rank'],left_on=['Team'],right_index=True,how='left').fillna(0)['GF_Rank'])
        ga_rank = np.array(test_df.merge(right=weekly_stack.groupby('team_abv').mean()['GA_Rank'],left_on=['Team'],right_index=True,how='left').fillna(0)['GA_Rank'])


        #games_vs_tired = np.array([float(i)*0.4 for i in list(weekly_stack.groupby('team_abv')['away_b2b'].apply(lambda x: x[x != ''].count()))])

        games_vs_tired = 0.4*np.array(test_df.merge(right=weekly_stack.groupby('team_abv')['away_b2b'].apply(lambda x: x[x != ''].count()),left_on=['Team'],right_index=True,how='left').fillna(0)['away_b2b'])


        team_score = test_df['Total']+test_df['Off-Night']*0.5+test_df['B2B']*-0.2+games_vs_tired*0.3+gf_rank*0.1+ga_rank*0.1

        test_df['Score'] = team_score


        cols = test_df.columns.tolist();
        L = len(cols) 
        test_df = test_df[cols[4:]+cols[0:4]]
        #return test_df#[cols[4:]+cols[0:4]]

        test_df = test_df.sort_values(by=[sort_value,'Score'],ascending = ascend)

        for i in range(0,len(date_list)):
            test_df[calendar.day_name[date_list[i].weekday()]+'<br>'+str(date_list[i].month)+'-'+'{:02d}'.format(date_list[i].day)] = test_list[i]['new_text']

        row = ['']*L
        for x in  test_df[test_df.columns[L:]]:
            row.append(int(sum(test_df[x]!=" ")/2))

        test_df = test_df.sort_values(by=input.sort_id(),ascending=input.a_d_id())

        test_df.loc[32] = row
        #test_df_html = HTML( test_df.to_html().replace("\\n","<br>") ) 
        offnight_list = [True if x <8 else False for x in test_df.iloc[-1][L:]]

        test_df.style.applymap(highlight_cols,subset = ((list(test_df.index[:-1]),test_df.columns[L:][offnight_list])))
        test_df_style = test_df.style.set_properties(**{'border': '3 px'},overwrite=False).set_table_styles([{
            'selector': 'caption',
            'props': [
                ('color', ''),
                ('fontname', 'Century Gothic'),
                ('font-size', '20px'),
                ('font-style', 'italic'),
                ('font-weight', ''),
                ('text-align', 'centre'),
                ]

                },{'selector' :'th', 'props':[('text-align', 'center'),('Height','px'),('color','black'),('border', '1px black solid !important')]},{'selector' :'td', 'props':[('text-align', 'center'),('font-size', '18px'),('color','black')]}],overwrite=False).set_properties(
                    **{'background-color':'White','index':'White','min-width':'75px'},overwrite=False).set_properties(
                    **{'background-color':'White','index':'White','min-width':'100px'},overwrite=False,subset = ((list(test_df.index[:]),test_df.columns[5:]))).set_table_styles(
            [{'selector': 'th:first-child', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles(
            [{'selector': 'tr:first-child', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles(
            [{'selector': 'tr', 'props': [('line-height', '20px')]}],overwrite=False).set_properties(
            **{'Height': '8px'},**{'text-align': 'center'},overwrite=False).hide_index()

        test_df_style = test_df_style.applymap(highlight_cols,subset = ((list(test_df.index[:-1]),test_df.columns[L:][offnight_list])))

        test_df_style = test_df_style.applymap(highlight_cells)
        test_df_style = test_df_style.background_gradient(cmap=cmap_total,subset = ((list(test_df.index[:-1]),test_df.columns[0])))
        test_df_style = test_df_style.background_gradient(cmap=cmap_total,vmin=0,vmax=np.max(test_df.Total[:len(test_df)-1]),subset = ((list(test_df.index[:-1]),test_df.columns[2])))
        test_df_style = test_df_style.background_gradient(cmap=cmap_off,subset = ((list(test_df.index[:-1]),test_df.columns[3])))
        test_df_style = test_df_style.background_gradient(cmap=cmap_back,subset = ((list(test_df.index[:-1]),test_df.columns[4])))
        test_df_style = test_df_style.background_gradient(cmap=cmap_sum,subset = ((list(test_df.index[-1:]),test_df.columns[L:])),axis=1)
        test_df_style = test_df_style.set_properties(
                    **{'border': '1px black solid !important'},subset = ((list(test_df.index[:-1]),test_df.columns[:]))).set_properties(
                    **{'min-width':'85px'},subset = ((list(test_df.index[:-1]),test_df.columns[L:])),overwrite=False).set_properties(**{
                                'color': 'black'},overwrite=False).set_properties(
                    **{'border': '1px black solid !important'},subset = ((list(test_df.index[:]),test_df.columns[L:])))

        test_df_style = test_df_style.format(
            '{:.0f}',subset=(test_df.index[:-1],test_df.columns[2:L]))

        test_df_style = test_df_style.format(
            '{:.1f}',subset=(test_df.index[:-1],test_df.columns[0]))


        print('made it to teh end')
        return test_df_style


        #return exit_velo_df_codes_summ_time_style_set

    # @output
    # @render.plot(alt="A histogram")
    # def plot_pitch():
    #     p
    @output
    @render.table
    def schedule_result_legend():

        off_b2b_df = pd.DataFrame(data={'off':'Off-Night','b2b':'Tired Opp. &#128564;'},index=[0])
        #off_b2b_df.style.applymap(highlight_cols,subset = ((list(off_b2b_df.index[:-1]),off_b2b_df.columns[0])))
        off_b2b_df_style = off_b2b_df.style.set_properties(**{'border': '3 px'},overwrite=False).set_table_styles([{
            'selector': 'caption',
            'props': [
                ('color', ''),
                ('fontname', 'Century Gothic'),
                ('font-size', '20px'),
                ('font-style', 'italic'),
                ('font-weight', ''),
                ('text-align', 'centre'),
                ]

                },{'selector' :'th', 'props':[('text-align', 'center'),('Height','px'),('color','black'),(
                    'border', '1px black solid !important')]},{'selector' :'td', 'props':[('text-align', 'center'),('font-size', '18px'),('color','black')]}],overwrite=False).set_properties(
                    **{'background-color':'White','index':'White','min-width':'150px'},overwrite=False).set_table_styles(
            [{'selector': 'th:first-child', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles(
            [{'selector': 'tr:first-child', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles(
            [{'selector': 'tr', 'props': [('line-height', '20px')]}],overwrite=False).set_properties(
            **{'Height': '8px'},**{'text-align': 'center'},overwrite=False).set_properties(
                **{'background-color':'#C2FEE9'},subset=off_b2b_df.columns[0]).set_properties(
                **{'color':'black'},subset=off_b2b_df.columns[:]).hide_index().set_table_styles([
            {'selector': 'thead', 'props': [('display', 'none')]}
            ]).set_properties(**{'border': '3 px','color':'black'},overwrite=False).set_properties(
                    **{'border': '1px black solid !important'},subset = ((list(off_b2b_df.index[:]),off_b2b_df.columns[:]))).set_properties(
                    **{'min-width':'130'},subset = ((list(off_b2b_df.index[:]),off_b2b_df.columns[:])),overwrite=False).set_properties(**{
                                'color': 'black'},overwrite=False).set_properties(
                    **{'border': '1px black solid !important'},subset = ((list(off_b2b_df.index[:]),off_b2b_df.columns[:])))
        
        return off_b2b_df_style






app = App(app_ui, server)