nesticot commited on
Commit
2a766df
·
1 Parent(s): 8d537d3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -4
app.py CHANGED
@@ -581,8 +581,9 @@ def server(input, output, session):
581
 
582
  elif df_combined_t.values[[10],[0]] < 0 and df_combined_t.values[[10],[1]] > 0:
583
  #cmap_flip = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FBBC04","white","#4285F4"])
584
- norm = Normalize(vmin=-1.2, vmax=-0.8)
585
- colour_df[[10],[0]] = tuple(colormap(norm(df_combined_t.values[[10],[0]] / df_combined_t.values[[10],[1]])))
 
586
 
587
  elif df_combined_t.values[[10],[0]] > 0 and df_combined_t.values[[10],[1]] < 0:
588
  cmap_y = matplotlib.colors.LinearSegmentedColormap.from_list("", ["white","#FBBC04"])
@@ -597,8 +598,9 @@ def server(input, output, session):
597
 
598
  elif df_combined_t.values[[10],[1]] < 0 and df_combined_t.values[[10],[2]] > 0:
599
  #cmap_flip = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FBBC04","white","#4285F4"])
600
- norm = Normalize(vmin=-1.2, vmax=-0.8)
601
- colour_df[[10],[1]] = tuple(colormap(norm(df_combined_t.values[[10],[1]] / df_combined_t.values[[10],[2]])))
 
602
 
603
  elif df_combined_t.values[[10],[1]] > 0 and df_combined_t.values[[10],[2]] < 0:
604
  cmap_y = matplotlib.colors.LinearSegmentedColormap.from_list("", ["white","#FBBC04"])
 
581
 
582
  elif df_combined_t.values[[10],[0]] < 0 and df_combined_t.values[[10],[1]] > 0:
583
  #cmap_flip = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FBBC04","white","#4285F4"])
584
+ cmap_y = matplotlib.colors.LinearSegmentedColormap.from_list("", ["white","#4285F4"])
585
+ norm = Normalize(vmin=-1, vmax=0)
586
+ colour_df[[10],[0]] = tuple(cmap_y(norm(df_combined_t.values[[10],[0]] - df_combined_t.values[[10],[1]])))
587
 
588
  elif df_combined_t.values[[10],[0]] > 0 and df_combined_t.values[[10],[1]] < 0:
589
  cmap_y = matplotlib.colors.LinearSegmentedColormap.from_list("", ["white","#FBBC04"])
 
598
 
599
  elif df_combined_t.values[[10],[1]] < 0 and df_combined_t.values[[10],[2]] > 0:
600
  #cmap_flip = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FBBC04","white","#4285F4"])
601
+ cmap_y = matplotlib.colors.LinearSegmentedColormap.from_list("", ["white","#4285F4"])
602
+ norm = Normalize(vmin=-1, vmax=0)
603
+ colour_df[[10],[1]] = tuple(cmap_y(norm(df_combined_t.values[[10],[1]] - df_combined_t.values[[10],[2]])))
604
 
605
  elif df_combined_t.values[[10],[1]] > 0 and df_combined_t.values[[10],[2]] < 0:
606
  cmap_y = matplotlib.colors.LinearSegmentedColormap.from_list("", ["white","#FBBC04"])