import requests import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from matplotlib.pyplot import figure from matplotlib.offsetbox import OffsetImage, AnnotationBbox #from scipy import stats import matplotlib.lines as mlines import matplotlib.transforms as mtransforms import numpy as np #import plotly.express as px #!pip install chart_studio # import chart_studio.tools as tls #from bs4 import BeautifulSoup import matplotlib.pyplot as plt import numpy as np import matplotlib.font_manager as font_manager from datetime import datetime import pytz from datetime import date datetime.now(pytz.timezone('US/Pacific')).strftime('%B %d, %Y') # Configure Notebook #%matplotlib inline plt.style.use('fivethirtyeight') sns.set_context("notebook") import warnings warnings.filterwarnings('ignore') #from urllib.request import urlopen import json from datetime import date, timedelta #import dataframe_image as dfi #from os import listdir #from os.path import isfile, join import datetime import seaborn as sns import os import calendar #from IPython.display import display, HTML import matplotlib.image as mpimg #from skimage import io #import difflib from datetime import datetime import pytz datetime.now(pytz.timezone('US/Pacific')).strftime('%B %d, %Y') # Configure Notebook #%matplotlib inline plt.style.use('fivethirtyeight') sns.set_context("notebook") import warnings warnings.filterwarnings('ignore') # import yfpy # from yfpy.query import YahooFantasySportsQuery # import yahoo_oauth import json #import openpyxl #from sklearn import preprocessing from PIL import Image import logging import matplotlib.patches as patches from matplotlib.patches import Rectangle from matplotlib.font_manager import FontProperties from matplotlib.offsetbox import OffsetImage, AnnotationBbox import requests #import pickle import pandas as pd # # Loop over the counter and format the API call r = requests.get('https://statsapi.web.nhl.com/api/v1/schedule?startDate=2023-10-01&endDate=2024-06-01') schedule = r.json() def flatten(t): return [item for sublist in t for item in sublist] game_id = flatten([[x['gamePk'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))]) game_date = flatten([[x['gameDate'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))]) game_home = flatten([[x['teams']['home']['team']['name'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))]) game_away = flatten([[x['teams']['away']['team']['name'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))]) schedule_df = pd.DataFrame(data={'game_id': game_id, 'game_date' : game_date, 'game_home' : game_home, 'game_away' : game_away}) schedule_df.game_date = pd.to_datetime(schedule_df['game_date']).dt.tz_convert(tz='US/Eastern').dt.date schedule_df = schedule_df.replace('MontrĂ©al Canadiens','Montreal Canadiens') schedule_df.head() team_abv = pd.read_csv('team_abv.csv') yahoo_weeks = pd.read_csv('yahoo_weeks.csv') #yahoo_weeks['Number'] = yahoo_weeks['Number'].astype(int) yahoo_weeks['Start'] = pd.to_datetime(yahoo_weeks['Start']) yahoo_weeks['End'] = pd.to_datetime(yahoo_weeks['End']) yahoo_weeks.head(5) def highlight_cols(s): color = '#C2FEE9' return 'background-color: %s' % color def highlight_cells(val): color = 'white' if val == ' ' else '' return 'background-color: {}'.format(color) import matplotlib.pyplot as plt import matplotlib.colors cmap_total = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#56B4E9","#FFFFFF","#F0E442"]) cmap_off = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FFFFFF","#F0E442"]) cmap_back = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FFFFFF","#56B4E9"]) cmap_sum = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FFFFFF","#F0E442"]) schedule_df = schedule_df.merge(right=team_abv,left_on='game_away',right_on='team_name',how='inner',suffixes=['','_away']) schedule_df = schedule_df.merge(right=team_abv,left_on='game_home',right_on='team_name',how='inner',suffixes=['','_home']) schedule_df['away_sym'] = '@' schedule_df['home_sym'] = 'vs' if not os.path.isfile('standings/standings_'+str(date.today())+'.csv'): standings_df_old = pd.read_html('https://www.hockey-reference.com/leagues/NHL_2023_standings.html')[0].append(pd.read_html('https://www.hockey-reference.com/leagues/NHL_2023_standings.html')[1]) standings_df_old.to_csv('standings/standings_'+str(date.today())+'.csv') standings_df_old = pd.read_csv('standings/standings_'+str(date.today())+'.csv',index_col=[0]) standings_df = standings_df_old[standings_df_old['Unnamed: 0'].str[-8:] != 'Division'].sort_values('Unnamed: 0').reset_index(drop=True).rename(columns={'Unnamed: 0':'Team'})#.drop(columns='Unnamed: 0') #standings_df = standings_df.replace('St. Louis Blues','St Louis Blues') standings_df['GF/GP'] = standings_df['GF'].astype(int)/standings_df['GP'].astype(int) standings_df['GA/GP'] = standings_df['GA'].astype(int)/standings_df['GP'].astype(int) standings_df['GF_Rank'] = standings_df['GF/GP'].rank(ascending=True,method='first')/10-1.65 standings_df['GA_Rank'] = standings_df['GA/GP'].rank(ascending=False,method='first')/10-1.65 standings_df.Team = standings_df.Team.str.strip('*') standings_df = standings_df.merge(right=team_abv,left_on='Team',right_on='team_name') schedule_stack = pd.DataFrame() schedule_stack['date'] = pd.to_datetime(list(schedule_df['game_date'])+list(schedule_df['game_date'])) schedule_stack['team'] = list(schedule_df['team_name'])+list(schedule_df['team_name_home']) schedule_stack['team_abv'] = list(schedule_df['team_abv'])+list(schedule_df['team_abv_home']) schedule_stack['symbol'] = list(schedule_df['away_sym'])+list(schedule_df['home_sym']) schedule_stack['team_opponent'] = list(schedule_df['team_name_home'])+list(schedule_df['team_name']) schedule_stack['team_abv_home'] = list(schedule_df['team_abv_home'])+list(schedule_df['team_abv']) schedule_stack = schedule_stack.merge(right=standings_df[['team_abv','GF_Rank']],left_on='team_abv',right_on='team_abv',how='inner',suffixes=("",'_y')) schedule_stack = schedule_stack.merge(right=standings_df[['team_abv','GA_Rank']],left_on='team_abv_home',right_on='team_abv',how='inner',suffixes=("",'_y')) schedule_stack = schedule_stack.merge(right=standings_df[['team_abv','GF_Rank']],left_on='team_abv',right_on='team_abv',how='inner',suffixes=("",'_y')) schedule_stack = schedule_stack.merge(right=standings_df[['team_abv','GA_Rank']],left_on='team_abv_home',right_on='team_abv',how='inner',suffixes=("",'_y')) list_o = schedule_stack.sort_values(['team','date'],ascending=[True,True]).reset_index(drop=True) new_list = [x - y for x, y in zip(list_o['date'][1:], list_o['date'])] b2b_list = [0] + [x.days for x in new_list] b2b_list = [1 if x==1 else 0 for x in b2b_list] test = list(schedule_stack.groupby(by='date').count()['team']) offnight = [1 if x<15 else 0 for x in test] offnight_df = pd.DataFrame({'date':schedule_stack.sort_values('date').date.unique(),'offnight':offnight}).sort_values('date').reset_index(drop=True) schedule_stack = schedule_stack.merge(right=offnight_df,left_on='date',right_on='date',how='right') schedule_stack = schedule_stack.sort_values(['team','date'],ascending=[True,True]).reset_index(drop=True) schedule_stack['b2b'] = b2b_list schedule_stack.date = pd.to_datetime(schedule_stack.date) away_b2b = [] home_b2b = [] for i in range(0,len(schedule_stack)): away_b2b.append(schedule_stack[(schedule_stack.date[i]==schedule_stack.date)&(schedule_stack.team_opponent[i]==schedule_stack.team)].reset_index(drop=True)['b2b'][0]) home_b2b.append(schedule_stack[(schedule_stack.date[i]==schedule_stack.date)&(schedule_stack.team[i]==schedule_stack.team)].reset_index(drop=True)['b2b'][0]) schedule_stack['away_b2b'] = away_b2b schedule_stack['home_b2b'] = home_b2b schedule_stack['away_b2b'] = schedule_stack['away_b2b'].replace(1,' 😴') schedule_stack['away_b2b'] = schedule_stack['away_b2b'].replace(0,'') schedule_stack.head() FontProperties(fname='/System/Library/Fonts/Apple Color Emoji.ttc') data_r = requests.get("https://pub-api-ro.fantasysports.yahoo.com/fantasy/v2/league/427.l.public;out=settings/players;position=ALL;start=0;count=3000;sort=rank_season;search=;out=percent_owned;out=auction_values,ranks;ranks=season;ranks_by_position=season;out=expert_ranks;expert_ranks.rank_type=projected_season_remaining/draft_analysis;cut_types=diamond;slices=last7days?format=json_f").json() total_list = [] for x in data_r['fantasy_content']['league']['players']: single_list = [] single_list.append(int(x['player']['player_id'])) single_list.append(int(x['player']['player_ranks'][0]['player_rank']['rank_value'])) single_list.append(x['player']['name']['full']) single_list.append(x['player']['name']['first']) single_list.append(x['player']['name']['last']) single_list.append(x['player']['draft_analysis']['average_pick']) single_list.append(x['player']['average_auction_cost']) single_list.append(x['player']['display_position']) single_list.append(x['player']['editorial_team_abbr']) if 'value' in x['player']['percent_owned']: single_list.append(x['player']['percent_owned']['value']/100) else: single_list.append(0) total_list.append(single_list) df_2023 = pd.DataFrame(data=total_list,columns=['player_id','rank_value','full','first','last','average_pick', 'average_cost','display_position','editorial_team_abbr','percent_owned']) week_dict = yahoo_weeks.set_index('Number')['Week'].sort_index().to_dict() from shiny import ui, render, App import matplotlib.image as mpimg # app_ui = ui.page_fluid( # # ui.output_plot("plot"), # #ui.h2('MLB Batter Launch Angle vs Exit Velocity'), # ui.layout_sidebar( # ui.panel_sidebar( # ui.input_select("id", "Select Batter",batter_dict), # ui.input_select("plot_id", "Select Plot",{'scatter':'Scatter Plot','dist':'Distribution Plot'}))) # , # ui.panel_main(ui.output_plot("plot",height = "750px",width="1250px")), # #ui.download_button('test','Download'), # ) app_ui = ui.page_fluid(ui.layout_sidebar( # Available themes: # cerulean, cosmo, cyborg, darkly, flatly, journal, litera, lumen, lux, # materia, minty, morph, pulse, quartz, sandstone, simplex, sketchy, slate, # solar, spacelab, superhero, united, vapor, yeti, zephyr ui.panel_sidebar( ui.input_select("week_id", "Select Week (Set as Season for Custom Date Range)",week_dict,width=1), ui.input_select("sort_id", "Sort Column",['Score','Team','Total','Off-Night','B2B'],width=1), ui.input_switch("a_d_id", "Ascending?"), #ui.input_select("date_id", "Select Date",yahoo_weeks['Week'],width=1), ui.input_date_range("date_range_id", "Date range input",start = datetime.today().date(), end = datetime.today().date() + timedelta(days=6)), ui.output_table("result"),width=3), ui.panel_main(ui.tags.h3(""), ui.div({"style": "font-size:2em;"},ui.output_text("txt_title")), #ui.tags.h2("Fantasy Hockey Schedule Summary"), ui.tags.h5("Created By: @TJStats, Data: NHL"), ui.div({"style": "font-size:1.2em;"},ui.output_text("txt")), ui.output_table("schedule_result"), ui.tags.h5('Legend'), ui.output_table("schedule_result_legend"), ui.tags.h6('An Off Night is defined as a day in which less than half the teams in the NHL are playing'), ui.tags.h6('The scores are determined by using games played, off-nights, B2B, and strength of opponents') ) )) # ui.row( # ui.column( # 3, # ui.input_date("x", "Date input"),), # ui.column( # 1, # ui.input_select("level_id", "Select Level",level_dict,width=1)), # ui.column( # 3, # ui.input_select("stat_id", "Select Stat",plot_dict_small,width=1)), # ui.column( # 2, # ui.input_numeric("n", "Rolling Window Size", value=50)), # ), # ui.output_table("result_batters")), # ui.nav( # "Pitchers", # ui.row( # ui.column( # 3, # ui.input_select("id_pitch", "Select Pitcher",pitcher_dict,width=1,selected=675911), # ), # ui.column( # 1, # ui.input_select("level_id_pitch", "Select Level",level_dict,width=1)), # ui.column( # 3, # ui.input_select("stat_id_pitch", "Select Stat",plot_dict_small_pitch,width=1)), # ui.column( # 2, # ui.input_numeric("n_pitch", "Rolling Window Size", value=50)), # ), # ui.output_table("result_pitchers")), # ) # ) # ) from urllib.request import Request, urlopen # importing OpenCV(cv2) module def server(input, output, session): @output @render.text def txt(): week_set = int(input.week_id()) if week_set != 0: if pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]['Start'].values[0]).year != pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]['End'].values[0]).year: return f'{pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["Start"].values[0]).strftime("%B %d, %Y")} to {pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["End"].values[0]).strftime("%B %d, %Y")}' else: if pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["Start"].values[0]).month != pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["End"].values[0]).month: return f'{pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["Start"].values[0]).strftime("%B %d")} to {pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["End"].values[0]).strftime("%B %d, %Y")}' else: return f'{pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["Start"].values[0]).strftime("%B %d")} to {pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["End"].values[0]).strftime("%d, %Y")}' else: if input.date_range_id()[0].year != input.date_range_id()[1].year: return f'{input.date_range_id()[0].strftime("%B %d, %Y")} to {input.date_range_id()[1].strftime("%B %d, %Y")}' else: if input.date_range_id()[0].month != input.date_range_id()[1].month: return f'{input.date_range_id()[0].strftime("%B %d")} to {input.date_range_id()[1].strftime("%B %d, %Y")}' else: return f'{input.date_range_id()[0].strftime("%B %d")} to {input.date_range_id()[1].strftime("%d, %Y")}' @output @render.text def txt_title(): week_set = int(input.week_id()) if week_set != 0: return f'Fantasy Hockey Schedule Summary - Yahoo - Week {input.week_id()}' else: return f'Fantasy Hockey Schedule Summary' @output @render.table def result(): #print(yahoo_weeks) return yahoo_weeks @output @render.table def schedule_result(): week_set = int(input.week_id()) print(week_set) if week_set == 0: start_point = input.date_range_id()[0] end_point = input.date_range_id()[1] else: start_point = yahoo_weeks[yahoo_weeks.Number==week_set].reset_index(drop=True)['Start'][0] end_point = yahoo_weeks[yahoo_weeks.Number==week_set].reset_index(drop=True)['End'][0] sort_value='Score' ascend=False weekly_stack = schedule_stack[(schedule_stack['date'].dt.date>=start_point)&(schedule_stack['date'].dt.date<=end_point)] date_list = pd.date_range(start_point,end_point,freq='d') test_list = [[]] * len(date_list) for i in range(0,len(date_list)): test_list[i] = team_abv.merge(right=weekly_stack[weekly_stack['date']==date_list[i]],left_on='team_abv',right_on='team_abv',how='left') test_list[i] = test_list[i].fillna("") test_list[i]['new_text'] = test_list[i]['symbol'] + ' '+ test_list[i]['team_abv_home'] + test_list[i]['away_b2b'] test_df = pd.DataFrame() test_df['Team'] = list(team_abv['team_abv']) test_df['Total'] = test_df.merge(right=weekly_stack.groupby('team_abv')['team_abv'].apply(lambda x: x[x != ''].count()),left_on=['Team'],right_index=True,how='left').fillna(0)['team_abv'] test_df['Off-Night'] = test_df.merge(right=weekly_stack.groupby('team_abv').sum()['offnight'],left_on=['Team'],right_index=True,how='left').fillna(0)['offnight'] test_df['B2B']= test_df.merge(right=weekly_stack.groupby('team_abv').sum()['b2b'],left_on=['Team'],right_index=True,how='left').fillna(0)['b2b'] gf_rank = np.array(test_df.merge(right=weekly_stack.groupby('team_abv').mean()['GF_Rank'],left_on=['Team'],right_index=True,how='left').fillna(0)['GF_Rank']) ga_rank = np.array(test_df.merge(right=weekly_stack.groupby('team_abv').mean()['GA_Rank'],left_on=['Team'],right_index=True,how='left').fillna(0)['GA_Rank']) #games_vs_tired = np.array([float(i)*0.4 for i in list(weekly_stack.groupby('team_abv')['away_b2b'].apply(lambda x: x[x != ''].count()))]) games_vs_tired = 0.4*np.array(test_df.merge(right=weekly_stack.groupby('team_abv')['away_b2b'].apply(lambda x: x[x != ''].count()),left_on=['Team'],right_index=True,how='left').fillna(0)['away_b2b']) team_score = test_df['Total']+test_df['Off-Night']*0.5+test_df['B2B']*-0.2+games_vs_tired*0.3+gf_rank*0.1+ga_rank*0.1 test_df['Score'] = team_score cols = test_df.columns.tolist(); L = len(cols) test_df = test_df[cols[4:]+cols[0:4]] #return test_df#[cols[4:]+cols[0:4]] test_df = test_df.sort_values(by=[sort_value,'Score'],ascending = ascend) for i in range(0,len(date_list)): test_df[calendar.day_name[date_list[i].weekday()]+'
'+str(date_list[i].month)+'-'+'{:02d}'.format(date_list[i].day)] = test_list[i]['new_text'] row = ['']*L for x in test_df[test_df.columns[L:]]: row.append(int(sum(test_df[x]!=" ")/2)) test_df = test_df.sort_values(by=input.sort_id(),ascending=input.a_d_id()) test_df.loc[32] = row #test_df_html = HTML( test_df.to_html().replace("\\n","
") ) offnight_list = [True if x <8 else False for x in test_df.iloc[-1][L:]] test_df.style.applymap(highlight_cols,subset = ((list(test_df.index[:-1]),test_df.columns[L:][offnight_list]))) test_df_style = test_df.style.set_properties(**{'border': '3 px'},overwrite=False).set_table_styles([{ 'selector': 'caption', 'props': [ ('color', ''), ('fontname', 'Century Gothic'), ('font-size', '20px'), ('font-style', 'italic'), ('font-weight', ''), ('text-align', 'centre'), ] },{'selector' :'th', 'props':[('text-align', 'center'),('Height','px'),('color','black'),('border', '1px black solid !important')]},{'selector' :'td', 'props':[('text-align', 'center'),('font-size', '18px'),('color','black')]}],overwrite=False).set_properties( **{'background-color':'White','index':'White','min-width':'75px'},overwrite=False).set_properties( **{'background-color':'White','index':'White','min-width':'100px'},overwrite=False,subset = ((list(test_df.index[:]),test_df.columns[5:]))).set_table_styles( [{'selector': 'th:first-child', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles( [{'selector': 'tr:first-child', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles( [{'selector': 'tr', 'props': [('line-height', '20px')]}],overwrite=False).set_properties( **{'Height': '8px'},**{'text-align': 'center'},overwrite=False).hide_index() test_df_style = test_df_style.applymap(highlight_cols,subset = ((list(test_df.index[:-1]),test_df.columns[L:][offnight_list]))) test_df_style = test_df_style.applymap(highlight_cells) test_df_style = test_df_style.background_gradient(cmap=cmap_total,subset = ((list(test_df.index[:-1]),test_df.columns[0]))) test_df_style = test_df_style.background_gradient(cmap=cmap_total,vmin=0,vmax=np.max(test_df.Total[:len(test_df)-1]),subset = ((list(test_df.index[:-1]),test_df.columns[2]))) test_df_style = test_df_style.background_gradient(cmap=cmap_off,subset = ((list(test_df.index[:-1]),test_df.columns[3]))) test_df_style = test_df_style.background_gradient(cmap=cmap_back,subset = ((list(test_df.index[:-1]),test_df.columns[4]))) test_df_style = test_df_style.background_gradient(cmap=cmap_sum,subset = ((list(test_df.index[-1:]),test_df.columns[L:])),axis=1) test_df_style = test_df_style.set_properties( **{'border': '1px black solid !important'},subset = ((list(test_df.index[:-1]),test_df.columns[:]))).set_properties( **{'min-width':'85px'},subset = ((list(test_df.index[:-1]),test_df.columns[L:])),overwrite=False).set_properties(**{ 'color': 'black'},overwrite=False).set_properties( **{'border': '1px black solid !important'},subset = ((list(test_df.index[:]),test_df.columns[L:]))) test_df_style = test_df_style.format( '{:.0f}',subset=(test_df.index[:-1],test_df.columns[2:L])) test_df_style = test_df_style.format( '{:.1f}',subset=(test_df.index[:-1],test_df.columns[0])) print('made it to teh end') return test_df_style #return exit_velo_df_codes_summ_time_style_set # @output # @render.plot(alt="A histogram") # def plot_pitch(): # p @output @render.table def schedule_result_legend(): off_b2b_df = pd.DataFrame(data={'off':'Off-Night','b2b':'Tired Opp. 😴'},index=[0]) #off_b2b_df.style.applymap(highlight_cols,subset = ((list(off_b2b_df.index[:-1]),off_b2b_df.columns[0]))) off_b2b_df_style = off_b2b_df.style.set_properties(**{'border': '3 px'},overwrite=False).set_table_styles([{ 'selector': 'caption', 'props': [ ('color', ''), ('fontname', 'Century Gothic'), ('font-size', '20px'), ('font-style', 'italic'), ('font-weight', ''), ('text-align', 'centre'), ] },{'selector' :'th', 'props':[('text-align', 'center'),('Height','px'),('color','black'),( 'border', '1px black solid !important')]},{'selector' :'td', 'props':[('text-align', 'center'),('font-size', '18px'),('color','black')]}],overwrite=False).set_properties( **{'background-color':'White','index':'White','min-width':'150px'},overwrite=False).set_table_styles( [{'selector': 'th:first-child', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles( [{'selector': 'tr:first-child', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles( [{'selector': 'tr', 'props': [('line-height', '20px')]}],overwrite=False).set_properties( **{'Height': '8px'},**{'text-align': 'center'},overwrite=False).set_properties( **{'background-color':'#C2FEE9'},subset=off_b2b_df.columns[0]).set_properties( **{'color':'black'},subset=off_b2b_df.columns[:]).hide_index().set_table_styles([ {'selector': 'thead', 'props': [('display', 'none')]} ]).set_properties(**{'border': '3 px','color':'black'},overwrite=False).set_properties( **{'border': '1px black solid !important'},subset = ((list(off_b2b_df.index[:]),off_b2b_df.columns[:]))).set_properties( **{'min-width':'130'},subset = ((list(off_b2b_df.index[:]),off_b2b_df.columns[:])),overwrite=False).set_properties(**{ 'color': 'black'},overwrite=False).set_properties( **{'border': '1px black solid !important'},subset = ((list(off_b2b_df.index[:]),off_b2b_df.columns[:]))) return off_b2b_df_style app = App(app_ui, server)