nesticot commited on
Commit
eaab5cb
·
1 Parent(s): f7d359a

Upload 4 files

Browse files
Files changed (4) hide show
  1. app.py +487 -149
  2. sleep_emoji.png +0 -0
  3. team_abv.csv +33 -0
  4. yahoo_weeks.csv +28 -0
app.py CHANGED
@@ -1,155 +1,493 @@
1
- from pathlib import Path
2
- from typing import List, Dict, Tuple
3
- import matplotlib.colors as mpl_colors
4
-
5
  import pandas as pd
6
  import seaborn as sns
7
- import shinyswatch
8
-
9
- import shiny.experimental as x
10
- from shiny import App, Inputs, Outputs, Session, reactive, render, req, ui
11
-
12
- sns.set_theme()
13
-
14
- www_dir = Path(__file__).parent.resolve() / "www"
15
-
16
- df = pd.read_csv(Path(__file__).parent / "penguins.csv", na_values="NA")
17
- numeric_cols: List[str] = df.select_dtypes(include=["float64"]).columns.tolist()
18
- species: List[str] = df["Species"].unique().tolist()
19
- species.sort()
20
-
21
- app_ui = x.ui.page_fillable(
22
- shinyswatch.theme.minty(),
23
- ui.layout_sidebar(
24
- ui.panel_sidebar(
25
- # Artwork by @allison_horst
26
- ui.input_selectize(
27
- "xvar",
28
- "X variable",
29
- numeric_cols,
30
- selected="Bill Length (mm)",
31
- ),
32
- ui.input_selectize(
33
- "yvar",
34
- "Y variable",
35
- numeric_cols,
36
- selected="Bill Depth (mm)",
37
- ),
38
- ui.input_checkbox_group(
39
- "species", "Filter by species", species, selected=species
40
- ),
41
- ui.hr(),
42
- ui.input_switch("by_species", "Show species", value=True),
43
- ui.input_switch("show_margins", "Show marginal plots", value=True),
44
- width=2,
45
- ),
46
- ui.panel_main(
47
- ui.output_ui("value_boxes"),
48
- x.ui.output_plot("scatter", fill=True),
49
- ui.help_text(
50
- "Artwork by ",
51
- ui.a("@allison_horst", href="https://twitter.com/allison_horst"),
52
- class_="text-end",
53
- ),
54
- ),
55
- ),
56
- )
57
-
58
-
59
- def server(input: Inputs, output: Outputs, session: Session):
60
- @reactive.Calc
61
- def filtered_df() -> pd.DataFrame:
62
- """Returns a Pandas data frame that includes only the desired rows"""
63
-
64
- # This calculation "req"uires that at least one species is selected
65
- req(len(input.species()) > 0)
66
-
67
- # Filter the rows so we only include the desired species
68
- return df[df["Species"].isin(input.species())]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69
 
70
  @output
71
- @render.plot
72
- def scatter():
73
- """Generates a plot for Shiny to display to the user"""
74
-
75
- # The plotting function to use depends on whether margins are desired
76
- plotfunc = sns.jointplot if input.show_margins() else sns.scatterplot
77
-
78
- plotfunc(
79
- data=filtered_df(),
80
- x=input.xvar(),
81
- y=input.yvar(),
82
- palette=palette,
83
- hue="Species" if input.by_species() else None,
84
- hue_order=species,
85
- legend=False,
86
- )
87
 
88
  @output
89
- @render.ui
90
- def value_boxes():
91
- df = filtered_df()
92
-
93
- def penguin_value_box(title: str, count: int, bgcol: str, showcase_img: str):
94
- return x.ui.value_box(
95
- title,
96
- count,
97
- {"class_": "pt-1 pb-0"},
98
- showcase=x.ui.as_fill_item(
99
- ui.tags.img(
100
- {"style": "object-fit:contain;"},
101
- src=showcase_img,
102
- )
103
- ),
104
- theme_color=None,
105
- style=f"background-color: {bgcol};",
106
- )
107
-
108
- if not input.by_species():
109
- return penguin_value_box(
110
- "Penguins",
111
- len(df.index),
112
- bg_palette["default"],
113
- # Artwork by @allison_horst
114
- showcase_img="penguins.png",
115
- )
116
-
117
- value_boxes = [
118
- penguin_value_box(
119
- name,
120
- len(df[df["Species"] == name]),
121
- bg_palette[name],
122
- # Artwork by @allison_horst
123
- showcase_img=f"{name}.png",
124
- )
125
- for name in species
126
- # Only include boxes for _selected_ species
127
- if name in input.species()
128
- ]
129
-
130
- return x.ui.layout_column_wrap(1 / len(value_boxes), *value_boxes)
131
-
132
-
133
- # "darkorange", "purple", "cyan4"
134
- colors = [[255, 140, 0], [160, 32, 240], [0, 139, 139]]
135
- colors = [(r / 255.0, g / 255.0, b / 255.0) for r, g, b in colors]
136
-
137
- palette: Dict[str, Tuple[float, float, float]] = {
138
- "Adelie": colors[0],
139
- "Chinstrap": colors[1],
140
- "Gentoo": colors[2],
141
- "default": sns.color_palette()[0], # type: ignore
142
- }
143
-
144
- bg_palette = {}
145
- # Use `sns.set_style("whitegrid")` to help find approx alpha value
146
- for name, col in palette.items():
147
- # Adjusted n_colors until `axe` accessibility did not complain about color contrast
148
- bg_palette[name] = mpl_colors.to_hex(sns.light_palette(col, n_colors=7)[1]) # type: ignore
149
-
150
-
151
- app = App(
152
- app_ui,
153
- server,
154
- static_assets=str(www_dir),
155
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import requests
 
 
 
2
  import pandas as pd
3
  import seaborn as sns
4
+ import matplotlib.pyplot as plt
5
+ from matplotlib.pyplot import figure
6
+ from matplotlib.offsetbox import OffsetImage, AnnotationBbox
7
+ from scipy import stats
8
+ import matplotlib.lines as mlines
9
+ import matplotlib.transforms as mtransforms
10
+ import numpy as np
11
+ import plotly.express as px
12
+ #!pip install chart_studio
13
+ # import chart_studio.tools as tls
14
+ from bs4 import BeautifulSoup
15
+ import matplotlib.pyplot as plt
16
+ import numpy as np
17
+ import matplotlib.font_manager as font_manager
18
+ from datetime import datetime
19
+ import pytz
20
+ from datetime import date
21
+ datetime.now(pytz.timezone('US/Pacific')).strftime('%B %d, %Y')
22
+ # Configure Notebook
23
+ #%matplotlib inline
24
+ plt.style.use('fivethirtyeight')
25
+ sns.set_context("notebook")
26
+ import warnings
27
+ warnings.filterwarnings('ignore')
28
+ from urllib.request import urlopen
29
+ import json
30
+ from datetime import date, timedelta
31
+ import dataframe_image as dfi
32
+ from os import listdir
33
+ from os.path import isfile, join
34
+ import datetime
35
+ import seaborn as sns
36
+ import os
37
+ import calendar
38
+ from IPython.display import display, HTML
39
+ import matplotlib.image as mpimg
40
+ from skimage import io
41
+ import difflib
42
+
43
+
44
+ from datetime import datetime
45
+ import pytz
46
+ datetime.now(pytz.timezone('US/Pacific')).strftime('%B %d, %Y')
47
+ # Configure Notebook
48
+ #%matplotlib inline
49
+ plt.style.use('fivethirtyeight')
50
+ sns.set_context("notebook")
51
+ import warnings
52
+ warnings.filterwarnings('ignore')
53
+ # import yfpy
54
+ # from yfpy.query import YahooFantasySportsQuery
55
+ # import yahoo_oauth
56
+ import json
57
+ import openpyxl
58
+ from sklearn import preprocessing
59
+ from PIL import Image
60
+ import logging
61
+ import matplotlib.patches as patches
62
+ from matplotlib.patches import Rectangle
63
+ from matplotlib.font_manager import FontProperties
64
+ from matplotlib.offsetbox import OffsetImage, AnnotationBbox
65
+
66
+ import requests
67
+ import pickle
68
+ import pandas as pd
69
+
70
+ # # Loop over the counter and format the API call
71
+ r = requests.get('https://statsapi.web.nhl.com/api/v1/schedule?startDate=2023-10-01&endDate=2024-06-01')
72
+ schedule = r.json()
73
+
74
+ def flatten(t):
75
+ return [item for sublist in t for item in sublist]
76
+
77
+ game_id = flatten([[x['gamePk'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
78
+ game_date = flatten([[x['gameDate'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
79
+ game_home = flatten([[x['teams']['home']['team']['name'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
80
+ game_away = flatten([[x['teams']['away']['team']['name'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
81
+
82
+ schedule_df = pd.DataFrame(data={'game_id': game_id, 'game_date' : game_date, 'game_home' : game_home, 'game_away' : game_away})
83
+ schedule_df.game_date = pd.to_datetime(schedule_df['game_date']).dt.tz_convert(tz='US/Eastern').dt.date
84
+ schedule_df = schedule_df.replace('Montréal Canadiens','Montreal Canadiens')
85
+ schedule_df.head()
86
+
87
+ team_abv = pd.read_csv('team_abv.csv')
88
+ yahoo_weeks = pd.read_csv('yahoo_weeks.csv')
89
+ #yahoo_weeks['Number'] = yahoo_weeks['Number'].astype(int)
90
+ yahoo_weeks['Start'] = pd.to_datetime(yahoo_weeks['Start'])
91
+ yahoo_weeks['End'] = pd.to_datetime(yahoo_weeks['End'])
92
+ yahoo_weeks.head(5)
93
+
94
+ def highlight_cols(s):
95
+ color = '#C2FEE9'
96
+ return 'background-color: %s' % color
97
+ def highlight_cells(val):
98
+ color = 'white' if val == ' ' else ''
99
+ return 'background-color: {}'.format(color)
100
+
101
+ import matplotlib.pyplot as plt
102
+ import matplotlib.colors
103
+ cmap_total = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#56B4E9","#FFFFFF","#F0E442"])
104
+ cmap_off = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FFFFFF","#F0E442"])
105
+ cmap_back = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FFFFFF","#56B4E9"])
106
+ cmap_sum = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FFFFFF","#F0E442"])
107
+
108
+ schedule_df = schedule_df.merge(right=team_abv,left_on='game_away',right_on='team_name',how='inner',suffixes=['','_away'])
109
+ schedule_df = schedule_df.merge(right=team_abv,left_on='game_home',right_on='team_name',how='inner',suffixes=['','_home'])
110
+ schedule_df['away_sym'] = '@'
111
+ schedule_df['home_sym'] = 'vs'
112
+
113
+
114
+ if not os.path.isfile('standings/standings_'+str(date.today())+'.csv'):
115
+ standings_df_old = pd.read_html('https://www.hockey-reference.com/leagues/NHL_2023_standings.html')[0].append(pd.read_html('https://www.hockey-reference.com/leagues/NHL_2023_standings.html')[1])
116
+ standings_df_old.to_csv('standings/standings_'+str(date.today())+'.csv')
117
+ standings_df_old = pd.read_csv('standings/standings_'+str(date.today())+'.csv',index_col=[0])
118
+
119
+ standings_df = standings_df_old[standings_df_old['Unnamed: 0'].str[-8:] != 'Division'].sort_values('Unnamed: 0').reset_index(drop=True).rename(columns={'Unnamed: 0':'Team'})#.drop(columns='Unnamed: 0')
120
+ #standings_df = standings_df.replace('St. Louis Blues','St Louis Blues')
121
+ standings_df['GF/GP'] = standings_df['GF'].astype(int)/standings_df['GP'].astype(int)
122
+ standings_df['GA/GP'] = standings_df['GA'].astype(int)/standings_df['GP'].astype(int)
123
+ standings_df['GF_Rank'] = standings_df['GF/GP'].rank(ascending=True,method='first')/10-1.65
124
+ standings_df['GA_Rank'] = standings_df['GA/GP'].rank(ascending=False,method='first')/10-1.65
125
+ standings_df.Team = standings_df.Team.str.strip('*')
126
+ standings_df = standings_df.merge(right=team_abv,left_on='Team',right_on='team_name')
127
+
128
+ schedule_stack = pd.DataFrame()
129
+ schedule_stack['date'] = pd.to_datetime(list(schedule_df['game_date'])+list(schedule_df['game_date']))
130
+ schedule_stack['team'] = list(schedule_df['team_name'])+list(schedule_df['team_name_home'])
131
+ schedule_stack['team_abv'] = list(schedule_df['team_abv'])+list(schedule_df['team_abv_home'])
132
+ schedule_stack['symbol'] = list(schedule_df['away_sym'])+list(schedule_df['home_sym'])
133
+ schedule_stack['team_opponent'] = list(schedule_df['team_name_home'])+list(schedule_df['team_name'])
134
+ schedule_stack['team_abv_home'] = list(schedule_df['team_abv_home'])+list(schedule_df['team_abv'])
135
+ schedule_stack = schedule_stack.merge(right=standings_df[['team_abv','GF_Rank']],left_on='team_abv',right_on='team_abv',how='inner',suffixes=("",'_y'))
136
+ schedule_stack = schedule_stack.merge(right=standings_df[['team_abv','GA_Rank']],left_on='team_abv_home',right_on='team_abv',how='inner',suffixes=("",'_y'))
137
+
138
+ schedule_stack = schedule_stack.merge(right=standings_df[['team_abv','GF_Rank']],left_on='team_abv',right_on='team_abv',how='inner',suffixes=("",'_y'))
139
+ schedule_stack = schedule_stack.merge(right=standings_df[['team_abv','GA_Rank']],left_on='team_abv_home',right_on='team_abv',how='inner',suffixes=("",'_y'))
140
+
141
+
142
+ list_o = schedule_stack.sort_values(['team','date'],ascending=[True,True]).reset_index(drop=True)
143
+ new_list = [x - y for x, y in zip(list_o['date'][1:], list_o['date'])]
144
+ b2b_list = [0] + [x.days for x in new_list]
145
+ b2b_list = [1 if x==1 else 0 for x in b2b_list]
146
+ test = list(schedule_stack.groupby(by='date').count()['team'])
147
+ offnight = [1 if x<15 else 0 for x in test]
148
+ offnight_df = pd.DataFrame({'date':schedule_stack.sort_values('date').date.unique(),'offnight':offnight}).sort_values('date').reset_index(drop=True)
149
+ schedule_stack = schedule_stack.merge(right=offnight_df,left_on='date',right_on='date',how='right')
150
+ schedule_stack = schedule_stack.sort_values(['team','date'],ascending=[True,True]).reset_index(drop=True)
151
+ schedule_stack['b2b'] = b2b_list
152
+
153
+ schedule_stack.date = pd.to_datetime(schedule_stack.date)
154
+
155
+ away_b2b = []
156
+ home_b2b = []
157
+ for i in range(0,len(schedule_stack)):
158
+ away_b2b.append(schedule_stack[(schedule_stack.date[i]==schedule_stack.date)&(schedule_stack.team_opponent[i]==schedule_stack.team)].reset_index(drop=True)['b2b'][0])
159
+ home_b2b.append(schedule_stack[(schedule_stack.date[i]==schedule_stack.date)&(schedule_stack.team[i]==schedule_stack.team)].reset_index(drop=True)['b2b'][0])
160
+
161
+ schedule_stack['away_b2b'] = away_b2b
162
+ schedule_stack['home_b2b'] = home_b2b
163
+
164
+ schedule_stack['away_b2b'] = schedule_stack['away_b2b'].replace(1,' &#128564;')
165
+ schedule_stack['away_b2b'] = schedule_stack['away_b2b'].replace(0,'')
166
+ schedule_stack.head()
167
+
168
+ FontProperties(fname='/System/Library/Fonts/Apple Color Emoji.ttc')
169
+
170
+ data_r = requests.get("https://pub-api-ro.fantasysports.yahoo.com/fantasy/v2/league/427.l.public;out=settings/players;position=ALL;start=0;count=3000;sort=rank_season;search=;out=percent_owned;out=auction_values,ranks;ranks=season;ranks_by_position=season;out=expert_ranks;expert_ranks.rank_type=projected_season_remaining/draft_analysis;cut_types=diamond;slices=last7days?format=json_f").json()
171
+
172
+ total_list = []
173
+
174
+ for x in data_r['fantasy_content']['league']['players']:
175
+ single_list = []
176
+
177
+ single_list.append(int(x['player']['player_id']))
178
+ single_list.append(int(x['player']['player_ranks'][0]['player_rank']['rank_value']))
179
+ single_list.append(x['player']['name']['full'])
180
+ single_list.append(x['player']['name']['first'])
181
+ single_list.append(x['player']['name']['last'])
182
+ single_list.append(x['player']['draft_analysis']['average_pick'])
183
+ single_list.append(x['player']['average_auction_cost'])
184
+ single_list.append(x['player']['display_position'])
185
+ single_list.append(x['player']['editorial_team_abbr'])
186
+ if 'value' in x['player']['percent_owned']:
187
+ single_list.append(x['player']['percent_owned']['value']/100)
188
+ else:
189
+ single_list.append(0)
190
+ total_list.append(single_list)
191
+
192
+ df_2023 = pd.DataFrame(data=total_list,columns=['player_id','rank_value','full','first','last','average_pick', 'average_cost','display_position','editorial_team_abbr','percent_owned'])
193
+
194
+ week_dict = yahoo_weeks.set_index('Number')['Week'].sort_index().to_dict()
195
+
196
+ from shiny import ui, render, App
197
+ import matplotlib.image as mpimg
198
+ # app_ui = ui.page_fluid(
199
+
200
+ # # ui.output_plot("plot"),
201
+ # #ui.h2('MLB Batter Launch Angle vs Exit Velocity'),
202
+ # ui.layout_sidebar(
203
+ # ui.panel_sidebar(
204
+ # ui.input_select("id", "Select Batter",batter_dict),
205
+
206
+ # ui.input_select("plot_id", "Select Plot",{'scatter':'Scatter Plot','dist':'Distribution Plot'})))
207
+ # ,
208
+
209
+ # ui.panel_main(ui.output_plot("plot",height = "750px",width="1250px")),
210
+ # #ui.download_button('test','Download'),
211
+ # )
212
+ app_ui = ui.page_fluid(ui.layout_sidebar(
213
+ # Available themes:
214
+ # cerulean, cosmo, cyborg, darkly, flatly, journal, litera, lumen, lux,
215
+ # materia, minty, morph, pulse, quartz, sandstone, simplex, sketchy, slate,
216
+ # solar, spacelab, superhero, united, vapor, yeti, zephyr
217
+
218
+ ui.panel_sidebar(
219
+ ui.input_select("week_id", "Select Week (Set as Season for Custom Date Range)",week_dict,width=1),
220
+ ui.input_select("sort_id", "Sort Column",['Score','Team','Total','Off-Night','B2B'],width=1),
221
+ ui.input_switch("a_d_id", "Ascending?"),
222
+ #ui.input_select("date_id", "Select Date",yahoo_weeks['Week'],width=1),
223
+ ui.input_date_range("date_range_id", "Date range input",start = datetime.today().date(), end = datetime.today().date() + timedelta(days=6)),
224
+ ui.output_table("result"),width=3),
225
+
226
+
227
+ ui.panel_main(ui.tags.h3(""),
228
+ ui.div({"style": "font-size:2em;"},ui.output_text("txt_title")),
229
+ #ui.tags.h2("Fantasy Hockey Schedule Summary"),
230
+ ui.tags.h5("Created By: @TJStats, Data: NHL"),
231
+ ui.div({"style": "font-size:1.2em;"},ui.output_text("txt")),
232
+ ui.output_table("schedule_result"),
233
+ ui.tags.h5('Legend'),
234
+ ui.output_table("schedule_result_legend"),
235
+ ui.tags.h6('An Off Night is defined as a day in which less than half the teams in the NHL are playing'),
236
+ ui.tags.h6('The scores are determined by using games played, off-nights, B2B, and strength of opponents') )
237
+
238
+ ))
239
+ # ui.row(
240
+ # ui.column(
241
+ # 3,
242
+ # ui.input_date("x", "Date input"),),
243
+ # ui.column(
244
+ # 1,
245
+ # ui.input_select("level_id", "Select Level",level_dict,width=1)),
246
+ # ui.column(
247
+ # 3,
248
+ # ui.input_select("stat_id", "Select Stat",plot_dict_small,width=1)),
249
+ # ui.column(
250
+ # 2,
251
+ # ui.input_numeric("n", "Rolling Window Size", value=50)),
252
+ # ),
253
+ # ui.output_table("result_batters")),
254
+
255
+ # ui.nav(
256
+ # "Pitchers",
257
+
258
+ # ui.row(
259
+ # ui.column(
260
+ # 3,
261
+ # ui.input_select("id_pitch", "Select Pitcher",pitcher_dict,width=1,selected=675911),
262
+ # ),
263
+ # ui.column(
264
+ # 1,
265
+ # ui.input_select("level_id_pitch", "Select Level",level_dict,width=1)),
266
+ # ui.column(
267
+ # 3,
268
+ # ui.input_select("stat_id_pitch", "Select Stat",plot_dict_small_pitch,width=1)),
269
+ # ui.column(
270
+ # 2,
271
+ # ui.input_numeric("n_pitch", "Rolling Window Size", value=50)),
272
+ # ),
273
+ # ui.output_table("result_pitchers")),
274
+ # )
275
+ # )
276
+ # )
277
+
278
+
279
+
280
+
281
+ from urllib.request import Request, urlopen
282
+ # importing OpenCV(cv2) module
283
+
284
+
285
+
286
+
287
+ def server(input, output, session):
288
+
289
+ @output
290
+ @render.text
291
+ def txt():
292
+
293
+ week_set = int(input.week_id())
294
+ if week_set != 0:
295
+ if pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]['Start'].values[0]).year != pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]['End'].values[0]).year:
296
+
297
+ return f'{pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["Start"].values[0]).strftime("%B %d, %Y")} to {pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["End"].values[0]).strftime("%B %d, %Y")}'
298
+ else:
299
+ if pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["Start"].values[0]).month != pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["End"].values[0]).month:
300
+ return f'{pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["Start"].values[0]).strftime("%B %d")} to {pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["End"].values[0]).strftime("%B %d, %Y")}'
301
+ else:
302
+ return f'{pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["Start"].values[0]).strftime("%B %d")} to {pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["End"].values[0]).strftime("%d, %Y")}'
303
+ else:
304
+ if input.date_range_id()[0].year != input.date_range_id()[1].year:
305
+
306
+ return f'{input.date_range_id()[0].strftime("%B %d, %Y")} to {input.date_range_id()[1].strftime("%B %d, %Y")}'
307
+ else:
308
+ if input.date_range_id()[0].month != input.date_range_id()[1].month:
309
+ return f'{input.date_range_id()[0].strftime("%B %d")} to {input.date_range_id()[1].strftime("%B %d, %Y")}'
310
+ else:
311
+ return f'{input.date_range_id()[0].strftime("%B %d")} to {input.date_range_id()[1].strftime("%d, %Y")}'
312
+
313
+
314
+ @output
315
+ @render.text
316
+ def txt_title():
317
+ week_set = int(input.week_id())
318
+ if week_set != 0:
319
+ return f'Fantasy Hockey Schedule Summary - Yahoo - Week {input.week_id()}'
320
+ else:
321
+ return f'Fantasy Hockey Schedule Summary'
322
 
323
  @output
324
+ @render.table
325
+ def result():
326
+ #print(yahoo_weeks)
327
+ return yahoo_weeks
 
 
 
 
 
 
 
 
 
 
 
 
328
 
329
  @output
330
+ @render.table
331
+ def schedule_result():
332
+
333
+
334
+ week_set = int(input.week_id())
335
+ print(week_set)
336
+
337
+ if week_set == 0:
338
+ start_point = input.date_range_id()[0]
339
+ end_point = input.date_range_id()[1]
340
+ else:
341
+ start_point = yahoo_weeks[yahoo_weeks.Number==week_set].reset_index(drop=True)['Start'][0]
342
+ end_point = yahoo_weeks[yahoo_weeks.Number==week_set].reset_index(drop=True)['End'][0]
343
+
344
+
345
+ sort_value='Score'
346
+ ascend=False
347
+
348
+ weekly_stack = schedule_stack[(schedule_stack['date'].dt.date>=start_point)&(schedule_stack['date'].dt.date<=end_point)]
349
+ date_list = pd.date_range(start_point,end_point,freq='d')
350
+ test_list = [[]] * len(date_list)
351
+
352
+
353
+
354
+ for i in range(0,len(date_list)):
355
+ test_list[i] = team_abv.merge(right=weekly_stack[weekly_stack['date']==date_list[i]],left_on='team_abv',right_on='team_abv',how='left')
356
+ test_list[i] = test_list[i].fillna("")
357
+ test_list[i]['new_text'] = test_list[i]['symbol'] + ' '+ test_list[i]['team_abv_home'] + test_list[i]['away_b2b']
358
+
359
+
360
+ test_df = pd.DataFrame()
361
+ test_df['Team'] = list(team_abv['team_abv'])
362
+ test_df['Total'] = test_df.merge(right=weekly_stack.groupby('team_abv')['team_abv'].apply(lambda x: x[x != ''].count()),left_on=['Team'],right_index=True,how='left').fillna(0)['team_abv']
363
+ test_df['Off-Night'] = test_df.merge(right=weekly_stack.groupby('team_abv').sum()['offnight'],left_on=['Team'],right_index=True,how='left').fillna(0)['offnight']
364
+ test_df['B2B']= test_df.merge(right=weekly_stack.groupby('team_abv').sum()['b2b'],left_on=['Team'],right_index=True,how='left').fillna(0)['b2b']
365
+
366
+
367
+
368
+ gf_rank = np.array(test_df.merge(right=weekly_stack.groupby('team_abv').mean()['GF_Rank'],left_on=['Team'],right_index=True,how='left').fillna(0)['GF_Rank'])
369
+ ga_rank = np.array(test_df.merge(right=weekly_stack.groupby('team_abv').mean()['GA_Rank'],left_on=['Team'],right_index=True,how='left').fillna(0)['GA_Rank'])
370
+
371
+
372
+ #games_vs_tired = np.array([float(i)*0.4 for i in list(weekly_stack.groupby('team_abv')['away_b2b'].apply(lambda x: x[x != ''].count()))])
373
+
374
+ games_vs_tired = 0.4*np.array(test_df.merge(right=weekly_stack.groupby('team_abv')['away_b2b'].apply(lambda x: x[x != ''].count()),left_on=['Team'],right_index=True,how='left').fillna(0)['away_b2b'])
375
+
376
+
377
+ team_score = test_df['Total']+test_df['Off-Night']*0.5+test_df['B2B']*-0.2+games_vs_tired*0.3+gf_rank*0.1+ga_rank*0.1
378
+
379
+ test_df['Score'] = team_score
380
+
381
+
382
+ cols = test_df.columns.tolist();
383
+ L = len(cols)
384
+ test_df = test_df[cols[4:]+cols[0:4]]
385
+ #return test_df#[cols[4:]+cols[0:4]]
386
+
387
+ test_df = test_df.sort_values(by=[sort_value,'Score'],ascending = ascend)
388
+
389
+ for i in range(0,len(date_list)):
390
+ test_df[calendar.day_name[date_list[i].weekday()]+'<br>'+str(date_list[i].month)+'-'+'{:02d}'.format(date_list[i].day)] = test_list[i]['new_text']
391
+
392
+ row = ['']*L
393
+ for x in test_df[test_df.columns[L:]]:
394
+ row.append(int(sum(test_df[x]!=" ")/2))
395
+
396
+ test_df = test_df.sort_values(by=input.sort_id(),ascending=input.a_d_id())
397
+
398
+ test_df.loc[32] = row
399
+ #test_df_html = HTML( test_df.to_html().replace("\\n","<br>") )
400
+ offnight_list = [True if x <8 else False for x in test_df.iloc[-1][L:]]
401
+
402
+ test_df.style.applymap(highlight_cols,subset = ((list(test_df.index[:-1]),test_df.columns[L:][offnight_list])))
403
+ test_df_style = test_df.style.set_properties(**{'border': '3 px'},overwrite=False).set_table_styles([{
404
+ 'selector': 'caption',
405
+ 'props': [
406
+ ('color', ''),
407
+ ('fontname', 'Century Gothic'),
408
+ ('font-size', '20px'),
409
+ ('font-style', 'italic'),
410
+ ('font-weight', ''),
411
+ ('text-align', 'centre'),
412
+ ]
413
+
414
+ },{'selector' :'th', 'props':[('text-align', 'center'),('Height','px'),('color','black'),('border', '1px black solid !important')]},{'selector' :'td', 'props':[('text-align', 'center'),('font-size', '18px'),('color','black')]}],overwrite=False).set_properties(
415
+ **{'background-color':'White','index':'White','min-width':'75px'},overwrite=False).set_properties(
416
+ **{'background-color':'White','index':'White','min-width':'100px'},overwrite=False,subset = ((list(test_df.index[:]),test_df.columns[5:]))).set_table_styles(
417
+ [{'selector': 'th:first-child', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles(
418
+ [{'selector': 'tr:first-child', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles(
419
+ [{'selector': 'tr', 'props': [('line-height', '20px')]}],overwrite=False).set_properties(
420
+ **{'Height': '8px'},**{'text-align': 'center'},overwrite=False).hide_index()
421
+
422
+ test_df_style = test_df_style.applymap(highlight_cols,subset = ((list(test_df.index[:-1]),test_df.columns[L:][offnight_list])))
423
+
424
+ test_df_style = test_df_style.applymap(highlight_cells)
425
+ test_df_style = test_df_style.background_gradient(cmap=cmap_total,subset = ((list(test_df.index[:-1]),test_df.columns[0])))
426
+ test_df_style = test_df_style.background_gradient(cmap=cmap_total,vmin=0,vmax=np.max(test_df.Total[:len(test_df)-1]),subset = ((list(test_df.index[:-1]),test_df.columns[2])))
427
+ test_df_style = test_df_style.background_gradient(cmap=cmap_off,subset = ((list(test_df.index[:-1]),test_df.columns[3])))
428
+ test_df_style = test_df_style.background_gradient(cmap=cmap_back,subset = ((list(test_df.index[:-1]),test_df.columns[4])))
429
+ test_df_style = test_df_style.background_gradient(cmap=cmap_sum,subset = ((list(test_df.index[-1:]),test_df.columns[L:])),axis=1)
430
+ test_df_style = test_df_style.set_properties(
431
+ **{'border': '1px black solid !important'},subset = ((list(test_df.index[:-1]),test_df.columns[:]))).set_properties(
432
+ **{'min-width':'85px'},subset = ((list(test_df.index[:-1]),test_df.columns[L:])),overwrite=False).set_properties(**{
433
+ 'color': 'black'},overwrite=False).set_properties(
434
+ **{'border': '1px black solid !important'},subset = ((list(test_df.index[:]),test_df.columns[L:])))
435
+
436
+ test_df_style = test_df_style.format(
437
+ '{:.0f}',subset=(test_df.index[:-1],test_df.columns[2:L]))
438
+
439
+ test_df_style = test_df_style.format(
440
+ '{:.1f}',subset=(test_df.index[:-1],test_df.columns[0]))
441
+
442
+
443
+ print('made it to teh end')
444
+ return test_df_style
445
+
446
+
447
+ #return exit_velo_df_codes_summ_time_style_set
448
+
449
+ # @output
450
+ # @render.plot(alt="A histogram")
451
+ # def plot_pitch():
452
+ # p
453
+ @output
454
+ @render.table
455
+ def schedule_result_legend():
456
+
457
+ off_b2b_df = pd.DataFrame(data={'off':'Off-Night','b2b':'Tired Opp. &#128564;'},index=[0])
458
+ #off_b2b_df.style.applymap(highlight_cols,subset = ((list(off_b2b_df.index[:-1]),off_b2b_df.columns[0])))
459
+ off_b2b_df_style = off_b2b_df.style.set_properties(**{'border': '3 px'},overwrite=False).set_table_styles([{
460
+ 'selector': 'caption',
461
+ 'props': [
462
+ ('color', ''),
463
+ ('fontname', 'Century Gothic'),
464
+ ('font-size', '20px'),
465
+ ('font-style', 'italic'),
466
+ ('font-weight', ''),
467
+ ('text-align', 'centre'),
468
+ ]
469
+
470
+ },{'selector' :'th', 'props':[('text-align', 'center'),('Height','px'),('color','black'),(
471
+ 'border', '1px black solid !important')]},{'selector' :'td', 'props':[('text-align', 'center'),('font-size', '18px'),('color','black')]}],overwrite=False).set_properties(
472
+ **{'background-color':'White','index':'White','min-width':'150px'},overwrite=False).set_table_styles(
473
+ [{'selector': 'th:first-child', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles(
474
+ [{'selector': 'tr:first-child', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles(
475
+ [{'selector': 'tr', 'props': [('line-height', '20px')]}],overwrite=False).set_properties(
476
+ **{'Height': '8px'},**{'text-align': 'center'},overwrite=False).set_properties(
477
+ **{'background-color':'#C2FEE9'},subset=off_b2b_df.columns[0]).set_properties(
478
+ **{'color':'black'},subset=off_b2b_df.columns[:]).hide_index().set_table_styles([
479
+ {'selector': 'thead', 'props': [('display', 'none')]}
480
+ ]).set_properties(**{'border': '3 px','color':'black'},overwrite=False).set_properties(
481
+ **{'border': '1px black solid !important'},subset = ((list(off_b2b_df.index[:]),off_b2b_df.columns[:]))).set_properties(
482
+ **{'min-width':'130'},subset = ((list(off_b2b_df.index[:]),off_b2b_df.columns[:])),overwrite=False).set_properties(**{
483
+ 'color': 'black'},overwrite=False).set_properties(
484
+ **{'border': '1px black solid !important'},subset = ((list(off_b2b_df.index[:]),off_b2b_df.columns[:])))
485
+
486
+ return off_b2b_df_style
487
+
488
+
489
+
490
+
491
+
492
+
493
+ app = App(app_ui, server)
sleep_emoji.png ADDED
team_abv.csv ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ team_abv,team_name
2
+ ANA,Anaheim Ducks
3
+ ARI,Arizona Coyotes
4
+ BOS,Boston Bruins
5
+ BUF,Buffalo Sabres
6
+ CAR,Carolina Hurricanes
7
+ CBJ,Columbus Blue Jackets
8
+ CGY,Calgary Flames
9
+ CHI,Chicago Blackhawks
10
+ COL,Colorado Avalanche
11
+ DAL,Dallas Stars
12
+ DET,Detroit Red Wings
13
+ EDM,Edmonton Oilers
14
+ FLA,Florida Panthers
15
+ L.A,Los Angeles Kings
16
+ MIN,Minnesota Wild
17
+ MTL,Montreal Canadiens
18
+ N.J,New Jersey Devils
19
+ NSH,Nashville Predators
20
+ NYI,New York Islanders
21
+ NYR,New York Rangers
22
+ OTT,Ottawa Senators
23
+ PHI,Philadelphia Flyers
24
+ PIT,Pittsburgh Penguins
25
+ S.J,San Jose Sharks
26
+ SEA,Seattle Kraken
27
+ STL,St. Louis Blues
28
+ T.B,Tampa Bay Lightning
29
+ TOR,Toronto Maple Leafs
30
+ VAN,Vancouver Canucks
31
+ VGK,Vegas Golden Knights
32
+ WPG,Winnipeg Jets
33
+ WSH,Washington Capitals
yahoo_weeks.csv ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Week,Number,Start,End
2
+ Week 1,1,2023-10-10,2023-10-15
3
+ Week 2,2,2023-10-16,2023-10-22
4
+ Week 3,3,2023-10-23,2023-10-29
5
+ Week 4,4,2023-10-30,2023-11-05
6
+ Week 5,5,2023-11-06,2023-11-12
7
+ Week 6,6,2023-11-13,2023-11-19
8
+ Week 7,7,2023-11-20,2023-11-26
9
+ Week 8,8,2023-11-27,2023-12-03
10
+ Week 9,9,2023-12-04,2023-12-10
11
+ Week 10,10,2023-12-11,2023-12-17
12
+ Week 11,11,2023-12-18,2023-12-24
13
+ Week 12,12,2023-12-25,2023-12-31
14
+ Week 13,13,2024-01-01,2024-01-07
15
+ Week 14,14,2024-01-08,2024-01-14
16
+ Week 15,15,2024-01-15,2024-01-21
17
+ Week 16,16,2024-01-22,2024-01-28
18
+ Week 17,17,2024-01-29,2024-02-11
19
+ Week 18,18,2024-02-12,2024-02-18
20
+ Week 19,19,2024-02-19,2024-02-25
21
+ Week 20,20,2024-02-26,2024-03-03
22
+ Week 21,21,2024-03-04,2024-03-10
23
+ Week 22,22,2024-03-11,2024-03-17
24
+ Week 23,23,2024-03-18,2024-03-24
25
+ Week 24,24,2024-03-25,2024-03-31
26
+ Week 25,25,2024-04-01,2024-04-07
27
+ Week 26,26,2024-04-08,2024-04-18
28
+ Season,0,2023-10-10,2024-04-18