File size: 15,947 Bytes
0257e1e
8272328
0257e1e
cd1c027
 
 
8272328
cd1c027
cc8348d
 
 
 
 
 
 
 
 
 
 
0257e1e
 
 
cc8348d
35f0d17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc8348d
 
 
 
 
8272328
cc8348d
 
 
bdb3169
 
 
 
457d325
 
 
 
cc8348d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdb3169
 
 
e4627b7
bdb3169
 
 
 
e4627b7
bdb3169
457d325
 
 
 
 
 
 
 
 
 
cc8348d
 
35f0d17
0257e1e
35f0d17
 
cc8348d
 
bdb3169
457d325
cc8348d
 
c3367aa
 
 
 
 
 
 
e4627b7
 
c3367aa
e4627b7
 
 
c3367aa
 
e4627b7
 
cc8348d
 
35f0d17
 
 
 
 
 
 
 
 
 
 
cd1c027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35f0d17
 
 
 
e759006
35f0d17
cd1c027
 
 
 
 
 
 
 
 
 
 
 
 
 
35f0d17
 
cd1c027
8272328
 
cd1c027
 
 
 
35f0d17
cc8348d
35f0d17
cd1c027
 
 
35f0d17
cc8348d
35f0d17
cc8348d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8272328
cc8348d
8272328
cc8348d
 
 
 
8272328
 
cc8348d
 
 
 
 
 
 
cd1c027
cc8348d
35f0d17
cc8348d
35f0d17
 
cc8348d
 
35f0d17
 
 
 
 
cc8348d
35f0d17
 
 
 
 
 
8272328
 
 
 
 
35f0d17
 
 
 
 
 
 
 
 
 
e759006
cd1c027
 
35f0d17
 
 
8272328
 
 
 
cc8348d
cd1c027
 
 
8272328
 
 
cd1c027
 
 
 
 
8272328
 
 
cd1c027
 
 
 
 
8272328
 
 
 
 
cd1c027
8272328
 
 
 
 
 
 
 
 
 
cd1c027
 
cc8348d
8272328
 
c3367aa
8272328
c3367aa
8272328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc8348d
 
 
457d325
 
35f0d17
 
 
 
457d325
 
8272328
 
 
457d325
cc8348d
 
8272328
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"

from PIL import Image
from huggingface_hub import hf_hub_download

unicorn_image_path = "scripts/demo/unicorn.png"

import gradio as gr
from transformers import (
    DistilBertTokenizerFast,
    DistilBertForSequenceClassification,
    AutoTokenizer,
    AutoModelForSequenceClassification,
)
from huggingface_hub import hf_hub_download
import torch
import pickle
import numpy as np
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.sequence import pad_sequences
import re

gru_repo_id = "arjahojnik/GRU-sentiment-model"
gru_model_path = hf_hub_download(repo_id=gru_repo_id, filename="best_GRU_tuning_model.h5")
gru_model = load_model(gru_model_path)
gru_tokenizer_path = hf_hub_download(repo_id=gru_repo_id, filename="my_tokenizer.pkl")
with open(gru_tokenizer_path, "rb") as f:
    gru_tokenizer = pickle.load(f)

lstm_repo_id = "arjahojnik/LSTM-sentiment-model"
lstm_model_path = hf_hub_download(repo_id=lstm_repo_id, filename="LSTM_model.h5")
lstm_model = load_model(lstm_model_path)
lstm_tokenizer_path = hf_hub_download(repo_id=lstm_repo_id, filename="my_tokenizer.pkl")
with open(lstm_tokenizer_path, "rb") as f:
    lstm_tokenizer = pickle.load(f)

bilstm_repo_id = "arjahojnik/BiLSTM-sentiment-model"
bilstm_model_path = hf_hub_download(repo_id=bilstm_repo_id, filename="BiLSTM_model.h5")
bilstm_model = load_model(bilstm_model_path)
bilstm_tokenizer_path = hf_hub_download(repo_id=bilstm_repo_id, filename="my_tokenizer.pkl")
with open(bilstm_tokenizer_path, "rb") as f:
    bilstm_tokenizer = pickle.load(f)

def preprocess_text(text):
    text = text.lower()
    text = re.sub(r"[^a-zA-Z\s]", "", text).strip()
    return text

def predict_with_gru(text):
    cleaned = preprocess_text(text)
    seq = gru_tokenizer.texts_to_sequences([cleaned])
    padded_seq = pad_sequences(seq, maxlen=200)
    probs = gru_model.predict(padded_seq)
    predicted_class = np.argmax(probs, axis=1)[0]
    return int(predicted_class + 1)

def predict_with_lstm(text):
    cleaned = preprocess_text(text)
    seq = lstm_tokenizer.texts_to_sequences([cleaned])
    padded_seq = pad_sequences(seq, maxlen=200)
    probs = lstm_model.predict(padded_seq)
    predicted_class = np.argmax(probs, axis=1)[0]
    return int(predicted_class + 1)

def predict_with_bilstm(text):
    cleaned = preprocess_text(text)
    seq = bilstm_tokenizer.texts_to_sequences([cleaned])
    padded_seq = pad_sequences(seq, maxlen=200)
    probs = bilstm_model.predict(padded_seq)
    predicted_class = np.argmax(probs, axis=1)[0]
    return int(predicted_class + 1)

models = {
    "DistilBERT": {
        "tokenizer": DistilBertTokenizerFast.from_pretrained("nhull/distilbert-sentiment-model"),
        "model": DistilBertForSequenceClassification.from_pretrained("nhull/distilbert-sentiment-model"),
    },
    "Logistic Regression": {},
    "BERT Multilingual (NLP Town)": {
        "tokenizer": AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment"),
        "model": AutoModelForSequenceClassification.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment"),
    },
    "TinyBERT": {
        "tokenizer": AutoTokenizer.from_pretrained("elo4/TinyBERT-sentiment-model"),
        "model": AutoModelForSequenceClassification.from_pretrained("elo4/TinyBERT-sentiment-model"),
    },
    "RoBERTa": {
        "tokenizer": AutoTokenizer.from_pretrained("ordek899/roberta_1to5rating_pred_for_restaur_trained_on_hotels"),
        "model": AutoModelForSequenceClassification.from_pretrained("ordek899/roberta_1to5rating_pred_for_restaur_trained_on_hotels"),
    }
}

logistic_regression_repo = "nhull/logistic-regression-model"
log_reg_model_path = hf_hub_download(repo_id=logistic_regression_repo, filename="logistic_regression_model.pkl")
with open(log_reg_model_path, "rb") as model_file:
    log_reg_model = pickle.load(model_file)

vectorizer_path = hf_hub_download(repo_id=logistic_regression_repo, filename="tfidf_vectorizer.pkl")
with open(vectorizer_path, "rb") as vectorizer_file:
    vectorizer = pickle.load(vectorizer_file)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
for model_data in models.values():
    if "model" in model_data:
        model_data["model"].to(device)

def predict_with_distilbert(text):
    tokenizer = models["DistilBERT"]["tokenizer"]
    model = models["DistilBERT"]["model"]
    encodings = tokenizer([text], padding=True, truncation=True, max_length=512, return_tensors="pt").to(device)
    with torch.no_grad():
        outputs = model(**encodings)
        logits = outputs.logits
        predictions = logits.argmax(axis=-1).cpu().numpy()
    return int(predictions[0] + 1)

def predict_with_logistic_regression(text):
    transformed_text = vectorizer.transform([text])
    predictions = log_reg_model.predict(transformed_text)
    return int(predictions[0])

def predict_with_bert_multilingual(text):
    tokenizer = models["BERT Multilingual (NLP Town)"]["tokenizer"]
    model = models["BERT Multilingual (NLP Town)"]["model"]
    encodings = tokenizer([text], padding=True, truncation=True, max_length=512, return_tensors="pt").to(device)
    with torch.no_grad():
        outputs = model(**encodings)
        logits = outputs.logits
        predictions = logits.argmax(axis=-1).cpu().numpy()
    return int(predictions[0] + 1)

def predict_with_tinybert(text):
    tokenizer = models["TinyBERT"]["tokenizer"]
    model = models["TinyBERT"]["model"]
    encodings = tokenizer([text], padding=True, truncation=True, max_length=512, return_tensors="pt").to(device)
    with torch.no_grad():
        outputs = model(**encodings)
        logits = outputs.logits
        predictions = logits.argmax(axis=-1).cpu().numpy()
    return int(predictions[0] + 1)

def predict_with_roberta_ordek899(text):
    tokenizer = models["RoBERTa"]["tokenizer"]
    model = models["RoBERTa"]["model"]
    encodings = tokenizer([text], padding=True, truncation=True, max_length=512, return_tensors="pt").to(device)
    with torch.no_grad():
        outputs = model(**encodings)
        logits = outputs.logits
        predictions = logits.argmax(axis=-1).cpu().numpy()
    return int(predictions[0] + 1)

def analyze_sentiment_and_statistics(text):
    results = {
        "Logistic Regression": predict_with_logistic_regression(text),
        "GRU Model": predict_with_gru(text),
        "LSTM Model": predict_with_lstm(text),
        "BiLSTM Model": predict_with_bilstm(text),
        "DistilBERT": predict_with_distilbert(text),
        "BERT Multilingual (NLP Town)": predict_with_bert_multilingual(text),
        "TinyBERT": predict_with_tinybert(text),
        "RoBERTa": predict_with_roberta_ordek899(text),
    }
    scores = list(results.values())
    min_score = min(scores)
    max_score = max(scores)
    min_score_models = [model for model, score in results.items() if score == min_score]
    max_score_models = [model for model, score in results.items() if score == max_score]
    average_score = np.mean(scores)

    if all(score == scores[0] for score in scores):
        statistics = {
            "Message": "All models predict the same score.",
            "Average Score": f"{average_score:.2f}",
        }
    else:
        statistics = {
            "Lowest Score": f"{min_score} (Models: {', '.join(min_score_models)})",
            "Highest Score": f"{max_score} (Models: {', '.join(max_score_models)})",
            "Average Score": f"{average_score:.2f}",
        }
    return results, statistics

with gr.Blocks(
    css="""
    .gradio-container {
        max-width: 900px;
        margin: auto;
        padding: 20px;
    }
    h1 {
        text-align: center;
        font-size: 2.5rem;
    }
    .unicorn-image {
        display: block;
        margin: auto;
        width: 300px;  /* Larger size */
        height: auto;
        border-radius: 20px;
        margin-bottom: 20px;
        animation: magical-float 5s ease-in-out infinite;  /* Gentle floating animation */
    }

    @keyframes magical-float {
        0% {
            transform: translate(0, 0) rotate(0deg);  /* Start position */
        }
        25% {
            transform: translate(10px, -10px) rotate(3deg);  /* Slightly up and right, tilted */
        }
        50% {
            transform: translate(0, -20px) rotate(0deg);  /* Higher point, back to straight */
        }
        75% {
            transform: translate(-10px, -10px) rotate(-3deg);  /* Slightly up and left, tilted */
        }
        100% {
            transform: translate(0, 0) rotate(0deg);  /* Return to start position */
        }
    }

    footer {
        text-align: center;
        margin-top: 20px;
        font-size: 14px;
        color: gray;
    }
    .custom-analyze-button {
    background-color: #e8a4c9;
    color: white;
    font-size: 1rem;
    padding: 10px 20px;
    border-radius: 10px;
    border: none;
    box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
    transition: transform 0.2s, background-color 0.2s;
}
.custom-analyze-button:hover {
    background-color: #d693b8;
    transform: scale(1.05);
}
    """
) as demo:
    gr.Image(
        value=unicorn_image_path,
        type="filepath",
        elem_classes=["unicorn-image"]
    )


    gr.Markdown("# Sentiment Analysis Demo")
    gr.Markdown(
        """
        Welcome! A magical unicorn 🦄 will guide you through this sentiment analysis journey! 🎉  
        This app lets you explore how different models interpret sentiment and compare their predictions.  
        **Enjoy the magic!**
        """
    )

    with gr.Row():
        with gr.Column():
            text_input = gr.Textbox(
                label="Enter your text here:", 
                lines=3, 
                placeholder="Type your hotel/restaurant review here..."
            )
            sample_reviews = [
                "The hotel was fantastic! Clean rooms and excellent service.",
                "The food was horrible, and the staff was rude.",
                "Amazing experience overall. Highly recommend!",
                "It was okay, not great but not terrible either.",
                "Terrible! The room was dirty, and the service was non-existent."
            ]
            sample_dropdown = gr.Dropdown(
                choices=["Select an option"] + sample_reviews,
                label="Or select a sample review:", 
                value=None,
                interactive=True
            )
            
            def update_textbox(selected_sample):
                if selected_sample == "Select an option":
                    return ""
                return selected_sample
            
            sample_dropdown.change(
                update_textbox,
                inputs=[sample_dropdown],
                outputs=[text_input]
            )
            analyze_button = gr.Button("Analyze Sentiment", elem_classes=["custom-analyze-button"])
        
    with gr.Row():
        with gr.Column():
            gr.Markdown("### Machine Learning")
            log_reg_output = gr.Textbox(label="Logistic Regression", interactive=False)

        with gr.Column():
            gr.Markdown("### Deep Learning")
            gru_output = gr.Textbox(label="GRU Model", interactive=False)
            lstm_output = gr.Textbox(label="LSTM Model", interactive=False)
            bilstm_output = gr.Textbox(label="BiLSTM Model", interactive=False)

        with gr.Column():
            gr.Markdown("### Transformers")
            distilbert_output = gr.Textbox(label="DistilBERT", interactive=False)
            bert_output = gr.Textbox(label="BERT Multilingual", interactive=False)
            tinybert_output = gr.Textbox(label="TinyBERT", interactive=False)
            roberta_output = gr.Textbox(label="RoBERTa", interactive=False)

    with gr.Row():
        with gr.Column():
            gr.Markdown("### Feedback")
            feedback_output = gr.Textbox(label="Feedback", interactive=False)

    with gr.Row():
        with gr.Column():
            gr.Markdown("### Statistics")
            stats_output = gr.Textbox(label="Statistics", interactive=False)

    gr.Markdown(
        """
        <footer>
            This demo was built as a part of the NLP course at the University of Zagreb.  
            Check out our GitHub repository:  
            <a href="https://github.com/FFZG-NLP-2024/TripAdvisor-Sentiment/" target="_blank">TripAdvisor Sentiment Analysis</a>  
            or explore our HuggingFace collection:  
            <a href="https://huggingface.co/collections/nhull/nlp-zg-6794604b85fd4216e6470d38" target="_blank">NLP Zagreb HuggingFace Collection</a>.
        </footer>
        """
    )

    def convert_to_stars(rating):
        return "★" * rating + "☆" * (5 - rating)

    def process_input_and_analyze(text_input):
        if not text_input.strip():
            funny_message = "Are you sure you wrote something? Try again! 🧐"
            return (
                "", "", "", "", "", "", "", "",
                funny_message,
                "No statistics can be shown."
            )
        
        if len(text_input.strip()) == 1 or text_input.strip().isdigit():
            funny_message = "Why not write something that makes sense? 🤔"
            return (
                "", "", "", "", "", "", "", "",
                funny_message,
                "No statistics can be shown."
            )
        
        if len(text_input.split()) < 5:
            results, statistics = analyze_sentiment_and_statistics(text_input)
            short_message = "Maybe try with some longer text next time. 😉"
            stats_text = (
                f"Statistics:\n{statistics['Lowest Score']}\n{statistics['Highest Score']}\n"
                f"Average Score: {statistics['Average Score']}"
                if "Message" not in statistics else f"Statistics:\n{statistics['Message']}"
            )
            return (
                convert_to_stars(results['Logistic Regression']),
                convert_to_stars(results['GRU Model']),
                convert_to_stars(results['LSTM Model']),
                convert_to_stars(results['BiLSTM Model']),
                convert_to_stars(results['DistilBERT']),
                convert_to_stars(results['BERT Multilingual (NLP Town)']),
                convert_to_stars(results['TinyBERT']),
                convert_to_stars(results['RoBERTa']),
                short_message,
                stats_text
            )

        results, statistics = analyze_sentiment_and_statistics(text_input)
        feedback_message = "Sentiment analysis completed successfully! 😊"
        
        if "Message" in statistics:
            stats_text = f"Statistics:\n{statistics['Message']}\nAverage Score: {statistics['Average Score']}"
        else:
            stats_text = f"Statistics:\n{statistics['Lowest Score']}\n{statistics['Highest Score']}\nAverage Score: {statistics['Average Score']}"
        
        return (
            convert_to_stars(results["Logistic Regression"]),
            convert_to_stars(results["GRU Model"]),
            convert_to_stars(results["LSTM Model"]),
            convert_to_stars(results["BiLSTM Model"]),
            convert_to_stars(results["DistilBERT"]),
            convert_to_stars(results["BERT Multilingual (NLP Town)"]),
            convert_to_stars(results["TinyBERT"]),
            convert_to_stars(results["RoBERTa"]),
            feedback_message,
            stats_text
        )

    analyze_button.click(
        process_input_and_analyze,
        inputs=[text_input],
        outputs=[
            log_reg_output, 
            gru_output, 
            lstm_output, 
            bilstm_output, 
            distilbert_output, 
            bert_output, 
            tinybert_output, 
            roberta_output,
            feedback_output, 
            stats_output    
        ]
    )

demo.launch()