import gradio as gr from transformers import ( DistilBertTokenizerFast, DistilBertForSequenceClassification, AutoTokenizer, AutoModelForSequenceClassification, ) from huggingface_hub import hf_hub_download import torch import pickle import numpy as np # Load models and tokenizers models = { "DistilBERT": { "tokenizer": DistilBertTokenizerFast.from_pretrained("nhull/distilbert-sentiment-model"), "model": DistilBertForSequenceClassification.from_pretrained("nhull/distilbert-sentiment-model"), }, "Logistic Regression": {}, # Placeholder for logistic regression "BERT Multilingual (NLP Town)": { "tokenizer": AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment"), "model": AutoModelForSequenceClassification.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment"), }, "TinyBERT": { "tokenizer": AutoTokenizer.from_pretrained("elo4/TinyBERT-sentiment-model"), "model": AutoModelForSequenceClassification.from_pretrained("elo4/TinyBERT-sentiment-model"), } } # Load logistic regression model and vectorizer logistic_regression_repo = "nhull/logistic-regression-model" # Download and load logistic regression model log_reg_model_path = hf_hub_download(repo_id=logistic_regression_repo, filename="logistic_regression_model.pkl") with open(log_reg_model_path, "rb") as model_file: log_reg_model = pickle.load(model_file) # Download and load TF-IDF vectorizer vectorizer_path = hf_hub_download(repo_id=logistic_regression_repo, filename="tfidf_vectorizer.pkl") with open(vectorizer_path, "rb") as vectorizer_file: vectorizer = pickle.load(vectorizer_file) # Move HuggingFace models to device (if GPU is available) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") for model_data in models.values(): if "model" in model_data: model_data["model"].to(device) # Functions for prediction def predict_with_distilbert(text): tokenizer = models["DistilBERT"]["tokenizer"] model = models["DistilBERT"]["model"] encodings = tokenizer([text], padding=True, truncation=True, max_length=512, return_tensors="pt").to(device) with torch.no_grad(): outputs = model(**encodings) logits = outputs.logits predictions = logits.argmax(axis=-1).cpu().numpy() return int(predictions[0] + 1) def predict_with_logistic_regression(text): transformed_text = vectorizer.transform([text]) predictions = log_reg_model.predict(transformed_text) return int(predictions[0]) def predict_with_bert_multilingual(text): tokenizer = models["BERT Multilingual (NLP Town)"]["tokenizer"] model = models["BERT Multilingual (NLP Town)"]["model"] encodings = tokenizer([text], padding=True, truncation=True, max_length=512, return_tensors="pt").to(device) with torch.no_grad(): outputs = model(**encodings) logits = outputs.logits predictions = logits.argmax(axis=-1).cpu().numpy() return int(predictions[0] + 1) def predict_with_tinybert(text): tokenizer = models["TinyBERT"]["tokenizer"] model = models["TinyBERT"]["model"] encodings = tokenizer([text], padding=True, truncation=True, max_length=512, return_tensors="pt").to(device) with torch.no_grad(): outputs = model(**encodings) logits = outputs.logits predictions = logits.argmax(axis=-1).cpu().numpy() return int(predictions[0] + 1) # Unified function for sentiment analysis and statistics def analyze_sentiment_and_statistics(text): results = { "DistilBERT": predict_with_distilbert(text), "Logistic Regression": predict_with_logistic_regression(text), "BERT Multilingual (NLP Town)": predict_with_bert_multilingual(text), "TinyBERT": predict_with_tinybert(text), } # Calculate statistics scores = list(results.values()) if all(score == scores[0] for score in scores): # Check if all predictions are the same statistics = { "Message": "All models predict the same score.", "Average Score": f"{scores[0]:.2f}", } else: min_score_model = min(results, key=results.get) max_score_model = max(results, key=results.get) average_score = np.mean(scores) statistics = { "Lowest Score": f"{results[min_score_model]} (Model: {min_score_model})", "Highest Score": f"{results[max_score_model]} (Model: {max_score_model})", "Average Score": f"{average_score:.2f}", } return results, statistics # Gradio Interface with gr.Blocks(css=".gradio-container { max-width: 900px; margin: auto; padding: 20px; }") as demo: gr.Markdown("# Sentiment Analysis App") gr.Markdown( "This app predicts the sentiment of the input text on a scale from 1 to 5 using multiple models and provides basic statistics." ) with gr.Row(): with gr.Column(): text_input = gr.Textbox( label="Enter your text here:", lines=3, placeholder="Type your hotel/restaurant review here..." ) sample_reviews = [ "The hotel was fantastic! Clean rooms and excellent service.", "The food was horrible, and the staff was rude.", "Amazing experience overall. Highly recommend!", "It was okay, not great but not terrible either.", "Terrible! The room was dirty, and the service was non-existent." ] sample_dropdown = gr.Dropdown( choices=sample_reviews, label="Or select a sample review:", interactive=True ) # Sync dropdown with text input def update_textbox(selected_sample): return selected_sample sample_dropdown.change( update_textbox, inputs=[sample_dropdown], outputs=[text_input] ) with gr.Column(): analyze_button = gr.Button("Analyze Sentiment") with gr.Row(): with gr.Column(): distilbert_output = gr.Textbox(label="Predicted Sentiment (DistilBERT)", interactive=False) log_reg_output = gr.Textbox(label="Predicted Sentiment (Logistic Regression)", interactive=False) bert_output = gr.Textbox(label="Predicted Sentiment (BERT Multilingual)", interactive=False) tinybert_output = gr.Textbox(label="Predicted Sentiment (TinyBERT)", interactive=False) with gr.Column(): statistics_output = gr.Textbox(label="Statistics (Lowest, Highest, Average)", interactive=False) # Button to analyze sentiment and show statistics def process_input_and_analyze(text_input): results, statistics = analyze_sentiment_and_statistics(text_input) if "Message" in statistics: # All models predicted the same score return ( f"{results['DistilBERT']}", f"{results['Logistic Regression']}", f"{results['BERT Multilingual (NLP Town)']}", f"{results['TinyBERT']}", f"Statistics:\n{statistics['Message']}\nAverage Score: {statistics['Average Score']}" ) else: # Min and Max scores are present return ( f"{results['DistilBERT']}", f"{results['Logistic Regression']}", f"{results['BERT Multilingual (NLP Town)']}", f"{results['TinyBERT']}", f"Statistics:\n{statistics['Lowest Score']}\n{statistics['Highest Score']}\nAverage Score: {statistics['Average Score']}" ) analyze_button.click( process_input_and_analyze, inputs=[text_input], outputs=[distilbert_output, log_reg_output, bert_output, tinybert_output, statistics_output] ) # Launch the app demo.launch()