import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, STOKEStreamer
from threading import Thread
import json
import torch
import os
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import to_hex
from bs4 import BeautifulSoup
def clean_html(html_content):
# Parse the HTML
soup = BeautifulSoup(html_content, 'html.parser')
# Remove all elements with class 'small-text'
for element in soup.find_all(class_='small-text'):
element.decompose() # Removes the element from the tree
# Get the plain text, stripping any remaining HTML tags
cleaned_text = soup.get_text()
return cleaned_text.strip().replace(" ", " ").replace("( ", "(").replace(" )", ")")
# Reusing the original MLP class and other functions (unchanged) except those specific to Streamlit
class MLP(torch.nn.Module):
def __init__(self, input_dim, output_dim, hidden_dim=1024, layer_id=0, cuda=False):
super(MLP, self).__init__()
self.fc1 = torch.nn.Linear(input_dim, hidden_dim)
self.fc3 = torch.nn.Linear(hidden_dim, output_dim)
self.layer_id = layer_id
if cuda:
self.device = "cuda"
else:
self.device = "cpu"
self.to(self.device)
def forward(self, x):
x = torch.flatten(x, start_dim=1)
x = torch.relu(self.fc1(x))
x = self.fc3(x)
return torch.argmax(x, dim=-1).cpu().detach(), torch.softmax(x, dim=-1).cpu().detach()
def map_value_to_color(value, colormap_name='tab20c'):
value = np.clip(value, 0.0, 1.0)
colormap = plt.get_cmap(colormap_name)
rgba_color = colormap(value)
css_color = to_hex(rgba_color)
return css_color + "88"
# Caching functions for model and classifier
model_cache = {}
def get_model_and_tokenizer(name):
if name not in model_cache:
tok = AutoTokenizer.from_pretrained(name, token=os.getenv('HF_TOKEN'))
model = AutoModelForCausalLM.from_pretrained(name, token=os.getenv('HF_TOKEN'), torch_dtype="bfloat16")
#model = AutoModelForCausalLM.from_pretrained(name, token=, load_in_4bit=True)
model_cache[name] = (model, tok)
return model_cache[name]
def get_classifiers_for_model(att_size, emb_size, device, config_paths):
config = {
"classifier_token": json.load(open(os.path.join(config_paths["classifier_token"], "config.json"), "r")),
"classifier_span": json.load(open(os.path.join(config_paths["classifier_span"], "config.json"), "r"))
}
layer_id = config["classifier_token"]["layer"]
classifier_span = MLP(att_size, 2, hidden_dim=config["classifier_span"]["classifier_dim"]).to(device)
classifier_span.load_state_dict(torch.load(os.path.join(config_paths["classifier_span"], "checkpoint.pt"), map_location=device, weights_only=True))
classifier_token = MLP(emb_size, len(config["classifier_token"]["label_map"]), layer_id=layer_id, hidden_dim=config["classifier_token"]["classifier_dim"]).to(device)
classifier_token.load_state_dict(torch.load(os.path.join(config_paths["classifier_token"], "checkpoint.pt"), map_location=device, weights_only=True))
return classifier_span, classifier_token, config["classifier_token"]["label_map"]
def find_datasets_and_model_ids(root_dir):
datasets = {}
for root, dirs, files in os.walk(root_dir):
if 'config.json' in files and 'stoke_config.json' in files:
config_path = os.path.join(root, 'config.json')
stoke_config_path = os.path.join(root, 'stoke_config.json')
with open(config_path, 'r') as f:
config_data = json.load(f)
model_id = config_data.get('model_id')
if model_id:
dataset_name = os.path.basename(os.path.dirname(config_path))
with open(stoke_config_path, 'r') as f:
stoke_config_data = json.load(f)
if model_id:
dataset_name = os.path.basename(os.path.dirname(stoke_config_path))
datasets.setdefault(model_id, {})[dataset_name] = stoke_config_data
return datasets
def filter_spans(spans_and_values):
if spans_and_values == []:
return [], []
# Create a dictionary to store spans based on their second index values
span_dict = {}
spans, values = [x[0] for x in spans_and_values], [x[1] for x in spans_and_values]
# Iterate through the spans and update the dictionary with the highest value
for span, value in zip(spans, values):
start, end = span
if start > end or end - start > 15 or start == 0:
continue
current_value = span_dict.get(end, None)
if current_value is None or current_value[1] < value:
span_dict[end] = (span, value)
if span_dict == {}:
return [], []
# Extract the filtered spans and values
filtered_spans, filtered_values = zip(*span_dict.values())
return list(filtered_spans), list(filtered_values)
def remove_overlapping_spans(spans):
# Sort the spans based on their end points
sorted_spans = sorted(spans, key=lambda x: x[0][1])
non_overlapping_spans = []
last_end = float('-inf')
# Iterate through the sorted spans
for span in sorted_spans:
start, end = span[0]
value = span[1]
# If the current span does not overlap with the previous one
if start >= last_end:
non_overlapping_spans.append(span)
last_end = end
else:
# If it overlaps, choose the one with the highest value
existing_span_index = -1
for i, existing_span in enumerate(non_overlapping_spans):
if existing_span[0][1] <= start:
existing_span_index = i
break
if existing_span_index != -1 and non_overlapping_spans[existing_span_index][1] < value:
non_overlapping_spans[existing_span_index] = span
return non_overlapping_spans
def generate_html_no_overlap(tokenized_text, spans):
current_index = 0
html_content = ""
for (span_start, span_end), value in spans:
# Add text before the span
html_content += "".join(tokenized_text[current_index:span_start])
# Add the span with underlining
html_content += ""
html_content += "".join(tokenized_text[span_start:span_end])
html_content += " "
current_index = span_end
# Add any remaining text after the last span
html_content += "".join(tokenized_text[current_index:])
return html_content
def generate_html_spanwise(token_strings, tokenwise_preds, spans, tokenizer, new_tags):
# spanwise annotated text
annotated = []
span_ends = -1
in_span = False
out_of_span_tokens = []
for i in reversed(range(len(tokenwise_preds))):
if in_span:
if i >= span_ends:
continue
else:
in_span = False
predicted_class = ""
style = ""
span = None
for s in spans:
if s[1] == i+1:
span = s
if tokenwise_preds[i] != 0 and span is not None:
predicted_class = f"highlight spanhighlight"
style = f"background-color: {map_value_to_color((tokenwise_preds[i]-1)/(len(new_tags)-1))}"
if tokenizer.convert_tokens_to_string([token_strings[i]]).startswith(" "):
annotated.append("Ġ")
span_opener = f"Ġ".replace(" ", "Ġ")
span_end = f"{new_tags[tokenwise_preds[i]]}"
annotated.extend(out_of_span_tokens)
out_of_span_tokens = []
span_ends = span[0]
in_span = True
annotated.append(span_end)
annotated.extend([token_strings[x] for x in reversed(range(span[0], span[1]))])
annotated.append(span_opener)
else:
out_of_span_tokens.append(token_strings[i])
annotated.extend(out_of_span_tokens)
return [x for x in reversed(annotated)]
def gen_json(input_text, max_new_tokens):
streamer = STOKEStreamer(tok, classifier_token, classifier_span)
new_tags = label_map
inputs = tok([f" {input_text}"], return_tensors="pt").to(model.device)
generation_kwargs = dict(
inputs, streamer=streamer, max_new_tokens=max_new_tokens,
repetition_penalty=1.2, do_sample=False
)
def generate_async():
model.generate(**generation_kwargs)
thread = Thread(target=generate_async)
thread.start()
# Display generated text as it becomes available
output_text = ""
text_tokenwise = ""
text_spans = ""
removed_spans = ""
tags = []
spans = []
for new_text in streamer:
if new_text[1] is not None and new_text[2] != ['']:
text_tokenwise = ""
output_text = ""
tags.extend(new_text[1])
spans.extend(new_text[-1])
# Tokenwise Classification
for tk, pred in zip(new_text[2],tags):
if pred != 0:
style = f"background-color: {map_value_to_color((pred-1)/(len(new_tags)-1))}"
if tk.startswith(" "):
text_tokenwise += " "
text_tokenwise += f"{tk}"
output_text += tk
else:
text_tokenwise += tk
output_text += tk
# Span Classification
text_spans = ""
if len(spans) > 0:
filtered_spans = remove_overlapping_spans(spans)
text_spans = generate_html_no_overlap(new_text[2], filtered_spans)
if len(spans) - len(filtered_spans) > 0:
removed_spans = f"{len(spans) - len(filtered_spans)} span(s) hidden due to overlap."
else:
for tk in new_text[2]:
text_spans += f"{tk}"
# Spanwise Classification
annotated_tokens = generate_html_spanwise(new_text[2], tags, [x for x in filter_spans(spans)[0]], tok, new_tags)
generated_text_spanwise = tok.convert_tokens_to_string(annotated_tokens).replace("<|endoftext|>", "").replace("<|begin_of_text|>", "")
output = f"{css}
"
output += generated_text_spanwise.replace("\n", " ").replace("$", "$") + "\n
"
#output += "