|
import json |
|
import logging |
|
import os |
|
import re |
|
import sys |
|
|
|
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings |
|
from sentence_transformers import SentenceTransformer |
|
from langchain.text_splitter import CharacterTextSplitter |
|
|
|
from langchain.vectorstores import Chroma |
|
from langchain.document_loaders import PyPDFLoader |
|
from fastapi.encoders import jsonable_encoder |
|
from dotenv import load_dotenv |
|
|
|
load_dotenv() |
|
logging.basicConfig(level=logging.DEBUG) |
|
|
|
ABS_PATH = os.path.dirname(os.path.abspath(__file__)) |
|
DB_DIR = os.path.join(ABS_PATH, "db") |
|
|
|
|
|
|
|
def replace_newlines_and_spaces(text): |
|
|
|
text = text.replace("\n", " ") |
|
|
|
text = re.sub(r'\s+', ' ', text) |
|
return text |
|
|
|
|
|
def get_documents(): |
|
return PyPDFLoader("AI-smart-water-management-systems.pdf").load() |
|
|
|
|
|
def init_chromadb(): |
|
|
|
if os.path.exists(DB_DIR): |
|
import shutil |
|
shutil.rmtree(DB_DIR, ignore_errors=True) |
|
os.mkdir(DB_DIR) |
|
|
|
documents = [] |
|
for num, doc in enumerate(get_documents()): |
|
doc.page_content = replace_newlines_and_spaces(doc.page_content) |
|
documents.append(doc) |
|
|
|
|
|
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) |
|
texts = text_splitter.split_documents(documents) |
|
|
|
|
|
|
|
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") |
|
|
|
|
|
vectorstore = Chroma.from_documents(texts, embeddings, persist_directory=DB_DIR) |
|
|
|
|
|
print(vectorstore) |
|
|
|
|
|
db = vectorstore |
|
db.get() |
|
print(len(db.get()["ids"])) |
|
|
|
|
|
for x in range(len(db.get()["ids"])): |
|
|
|
doc = db.get()["metadatas"][x] |
|
source = doc["source"] |
|
print(source) |
|
|
|
def query_chromadb(): |
|
if not os.path.exists(DB_DIR): |
|
raise Exception(f"{DB_DIR} does not exist, nothing can be queried") |
|
|
|
|
|
|
|
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") |
|
|
|
|
|
vectorstore = Chroma(persist_directory=DB_DIR, embedding_function=embeddings) |
|
|
|
|
|
result = vectorstore.similarity_search_with_score(query="how to use AI in water conservation?", k=4) |
|
|
|
jsonable_result = jsonable_encoder(result) |
|
print(json.dumps(jsonable_result, indent=2)) |
|
|
|
def main(): |
|
init_chromadb() |
|
query_chromadb() |
|
|
|
if __name__ == '__main__': |
|
main() |