ChromaDB / app.py
nightfury's picture
Update app.py
ffa4e8a verified
import json
import logging
import os
import re
import sys
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
from sentence_transformers import SentenceTransformer
from langchain.text_splitter import CharacterTextSplitter
#from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.document_loaders import PyPDFLoader
from fastapi.encoders import jsonable_encoder
from dotenv import load_dotenv
load_dotenv()
logging.basicConfig(level=logging.DEBUG)
ABS_PATH = os.path.dirname(os.path.abspath(__file__))
DB_DIR = os.path.join(ABS_PATH, "db")
#embedding_function
def replace_newlines_and_spaces(text):
# Replace all newline characters with spaces
text = text.replace("\n", " ")
# Replace multiple spaces with a single space
text = re.sub(r'\s+', ' ', text)
return text
def get_documents():
return PyPDFLoader("AI-smart-water-management-systems.pdf").load()
def init_chromadb():
# Delete existing index directory and recreate the directory
if os.path.exists(DB_DIR):
import shutil
shutil.rmtree(DB_DIR, ignore_errors=True)
os.mkdir(DB_DIR)
documents = []
for num, doc in enumerate(get_documents()):
doc.page_content = replace_newlines_and_spaces(doc.page_content)
documents.append(doc)
# Split the documents into chunks
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_documents(documents)
# Select which embeddings we want to use
#embeddings = OpenAIEmbeddings()
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
# Create the vectorestore to use as the index
vectorstore = Chroma.from_documents(texts, embeddings, persist_directory=DB_DIR)
#vectorstore.persist()
print(vectorstore)
#vectorstore = None
db = vectorstore
db.get()
print(len(db.get()["ids"]))
# Print the list of source files
for x in range(len(db.get()["ids"])):
# print(db.get()["metadatas"][x])
doc = db.get()["metadatas"][x]
source = doc["source"]
print(source)
def query_chromadb():
if not os.path.exists(DB_DIR):
raise Exception(f"{DB_DIR} does not exist, nothing can be queried")
# Select which embeddings we want to use
#embeddings = OpenAIEmbeddings()
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
# Load Vector store from local disk
vectorstore = Chroma(persist_directory=DB_DIR, embedding_function=embeddings)
#vectorstore.persist()
result = vectorstore.similarity_search_with_score(query="how to use AI in water conservation?", k=4)
jsonable_result = jsonable_encoder(result)
print(json.dumps(jsonable_result, indent=2))
def main():
init_chromadb()
query_chromadb()
if __name__ == '__main__':
main()