import os import json import re import sys import gradio as gr from huggingface_hub import InferenceClient from langchain_huggingface import HuggingFaceEmbeddings #from chromadb.utils import embedding_functions #from langchain_community.embeddings import SentenceTransformerEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import Chroma from langchain.document_loaders import PyPDFLoader from fastapi.encoders import jsonable_encoder """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # Select which embeddings we want to use #embeddings = OpenAIEmbeddings() #embeddings = SentenceTransformerEmbeddings(model_name="nomic-ai/nomic-embed-text-v1", model_kwargs={"trust_remote_code":True}) embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") ABS_PATH = os.path.dirname(os.path.abspath(__file__)) DB_DIR = os.path.join(ABS_PATH, "db") vectorstore = None def replace_newlines_and_spaces(text): # Replace all newline characters with spaces text = text.replace("\n", " ") # Replace multiple spaces with a single space text = re.sub(r'\s+', ' ', text) return text def get_documents(): return PyPDFLoader("AI-smart-water-management-systems.pdf").load() def init_chromadb(): # Delete existing index directory and recreate the directory if os.path.exists(DB_DIR): import shutil shutil.rmtree(DB_DIR, ignore_errors=True) os.mkdir(DB_DIR) documents = [] for num, doc in enumerate(get_documents()): doc.page_content = replace_newlines_and_spaces(doc.page_content) documents.append(doc) # Split the documents into chunks text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_documents(documents) #query_chromadb() # Create the vectorestore to use as the index vectorstore = Chroma.from_documents(texts, embeddings, persist_directory=DB_DIR) vectorstore.persist() print("vectorstore::", vectorstore) def query_chromadb(ASK): if not os.path.exists(DB_DIR): raise Exception(f"{DB_DIR} does not exist, nothing can be queried") # Load Vector store from local disk vectorstore = Chroma(persist_directory=DB_DIR, embedding_function=embeddings) result = vectorstore.similarity_search_with_score(query=ASK, k=4) jsonable_result = jsonable_encoder(result) print("Json pdf response ::", json.dumps(jsonable_result, indent=2)) #return json.dumps(jsonable_result, indent=2) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): print ("**message :: ",message) token = message.choices[0].delta.content print ("**token :: ",token) response += token print ("**response :: ",response) yield response print ("**query_chromadb::",query_chromadb("how could an AI be used in smart water management systems?")) #yield query_chromadb(message) """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) def main(): init_chromadb() demo.launch() if __name__ == "__main__": main() #demo.launch()