File size: 8,812 Bytes
82bfd91
 
 
 
 
 
 
 
67005eb
82bfd91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2178a82
 
 
82bfd91
2178a82
82bfd91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
534040e
82bfd91
 
 
 
 
 
 
 
7c59f65
67005eb
 
534040e
67005eb
 
 
 
534040e
67005eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82bfd91
 
 
 
03f2f34
82bfd91
 
 
 
 
 
67005eb
82bfd91
67005eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82bfd91
 
 
 
 
 
 
8cf1ab9
 
82bfd91
 
67005eb
8cf1ab9
 
 
67005eb
 
 
 
 
 
 
 
 
 
 
 
8cf1ab9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67005eb
8cf1ab9
 
67005eb
8cf1ab9
 
67005eb
8cf1ab9
 
 
 
 
 
67005eb
 
 
8cf1ab9
 
 
 
67005eb
82bfd91
8cf1ab9
82bfd91
 
 
 
 
 
 
 
 
 
67005eb
 
82bfd91
 
 
67005eb
82bfd91
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import os  
import shutil  
from flask import Flask, render_template, request, jsonify  
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings  
from llama_index.llms.huggingface import HuggingFaceInferenceAPI  
from llama_index.embeddings.huggingface import HuggingFaceEmbedding  
from huggingface_hub import InferenceClient  
from transformers import AutoTokenizer, AutoModel
from deep_translator import GoogleTranslator


# Ensure HF_TOKEN is set  
HF_TOKEN = os.getenv("HF_TOKEN")  
if not HF_TOKEN:  
    raise ValueError("HF_TOKEN environment variable not set.")  

repo_id = "meta-llama/Meta-Llama-3-8B-Instruct"  
llm_client = InferenceClient(  
    model=repo_id,  
    token=HF_TOKEN,  
)  

# Configure Llama index settings  
Settings.llm = HuggingFaceInferenceAPI(  
    model_name=repo_id,  
    tokenizer_name=repo_id,  
    context_window=3000,  
    token=HF_TOKEN,  
    max_new_tokens=512,  
    generate_kwargs={"temperature": 0.1},  
)  
# Settings.embed_model = HuggingFaceEmbedding(  
#     model_name="BAAI/bge-small-en-v1.5"  
# )  
# Replace the embedding model with XLM-R
# Settings.embed_model = HuggingFaceEmbedding(
#     model_name="xlm-roberta-base"  # XLM-RoBERTa model for multilingual support
# )
Settings.embed_model = HuggingFaceEmbedding(
    model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
)

# Configure tokenizer and model if required
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
model = AutoModel.from_pretrained("xlm-roberta-base")

PERSIST_DIR = "db"  
PDF_DIRECTORY = 'data'  

# Ensure directories exist  
os.makedirs(PDF_DIRECTORY, exist_ok=True)  
os.makedirs(PERSIST_DIR, exist_ok=True)  
chat_history = []  
current_chat_history = []  

def data_ingestion_from_directory():  
    # Clear previous data by removing the persist directory  
    if os.path.exists(PERSIST_DIR):  
        shutil.rmtree(PERSIST_DIR)  # Remove the persist directory and all its contents  
    
    # Recreate the persist directory after removal  
    os.makedirs(PERSIST_DIR, exist_ok=True)  
    
    # Load new documents from the directory  
    new_documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()  
    
    # Create a new index with the new documents  
    index = VectorStoreIndex.from_documents(new_documents)  
    
    # Persist the new index  
    index.storage_context.persist(persist_dir=PERSIST_DIR)  

# def handle_query(query):  
#     context_str = ""  
    
#     # Build context from current chat history  
#     for past_query, response in reversed(current_chat_history):  
#         if past_query.strip():  
#             context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"  
    
#     chat_text_qa_msgs = [
#         (
#             "user",
#             """
#             You are the Taj Hotel voice chatbot and your name is Taj hotel helper. Your goal is to provide accurate, professional, and helpful answers to user queries based on the Taj hotel data. Always ensure your responses are clear and concise. Give response within 10-15 words only. You need to give an answer in the same language used by the user.       
#             {context_str}
#             Question:
#             {query_str}
#             """
#         )
#     ]


    
#     text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)  
    
#     storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)  
#     index = load_index_from_storage(storage_context)  
#     # context_str = ""  
    
#     # # Build context from current chat history  
#     # for past_query, response in reversed(current_chat_history):  
#     #     if past_query.strip():  
#     #         context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"  

#     query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)  
#     print(f"Querying: {query}")  
#     answer = query_engine.query(query)  

#     # Extracting the response  
#     if hasattr(answer, 'response'):  
#         response = answer.response  
#     elif isinstance(answer, dict) and 'response' in answer:  
#         response = answer['response']  
#     else:  
#         response = "I'm sorry, I couldn't find an answer to that."  

#     # Append to chat history  
#     current_chat_history.append((query, response))  
#     return response
def handle_query(query):
    chat_text_qa_msgs = [
        (
            "user",
            """
            You are the Disease chatbot, known as DermaCare AI. Your goal is to provide accurate and professional answers to user queries based on the information available about the Diseases. Always respond clearly and concisely, ideally within 10-15 words. If you don't know the answer, say so politely.   
            {context_str}
            Question:
            {query_str}
            """
        )
    ]
    text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
    
    storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
    index = load_index_from_storage(storage_context)
    context_str = ""
    for past_query, response in reversed(current_chat_history):
        if past_query.strip():
            context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"

    query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
    print(query)
    answer = query_engine.query(query)

    if hasattr(answer, 'response'):
        response = answer.response
    elif isinstance(answer, dict) and 'response' in answer:
        response = answer['response']
    else:
        response = "Sorry, I couldn't find an answer."
    current_chat_history.append((query, response))
    return response

app = Flask(__name__)  

# Data ingestion  
data_ingestion_from_directory()  

# Generate Response
def generate_response(query, language):  
    try:  
        # Call the handle_query function to get the response  
        bot_response = handle_query(query)
        
        # Map of supported languages
        supported_languages = {
            "hindi": "hi",
            "bengali": "bn",
            "telugu": "te",
            "marathi": "mr",
            "tamil": "ta",
            "gujarati": "gu",
            "kannada": "kn",
            "malayalam": "ml",
            "punjabi": "pa",
            "odia": "or",
            "urdu": "ur",
            "assamese": "as",
            "sanskrit": "sa",
            "arabic": "ar",
            "australian": "en-AU",
            "bangla-india": "bn-IN",
            "chinese": "zh-CN",
            "dutch": "nl",
            "french": "fr",
            "filipino": "tl",
            "greek": "el",
            "indonesian": "id",
            "italian": "it",
            "japanese": "ja",
            "korean": "ko",
            "latin": "la",
            "nepali": "ne",
            "portuguese": "pt",
            "romanian": "ro",
            "russian": "ru",
            "spanish": "es",
            "swedish": "sv",
            "thai": "th",
            "ukrainian": "uk",
            "turkish": "tr"
        }
        
        # Initialize the translated text
        translated_text = bot_response
        
        # Translate only if the language is supported and not English
        try:
            if language in supported_languages:
                target_lang = supported_languages[language]
                translated_text = GoogleTranslator(source='en', target=target_lang).translate(bot_response)
                print(translated_text)
            else:
                print(f"Unsupported language: {language}")
        except Exception as e:
            # Handle translation errors
            print(f"Translation error: {e}")
            translated_text = "Sorry, I couldn't translate the response."
        
        # Append to chat history
        chat_history.append((query, translated_text))
        return translated_text  
    except Exception as e:  
        return f"Error fetching the response: {str(e)}"

# Route for the homepage  
@app.route('/')  
def index():  
    return render_template('index.html')  

# Route to handle chatbot messages  
@app.route('/chat', methods=['POST'])  
def chat():  
    try:  
        user_message = request.json.get("message")
        language = request.json.get("language")
        if not user_message:  
            return jsonify({"response": "Please say something!"})  

        bot_response = generate_response(user_message,language)  
        return jsonify({"response": bot_response})  
    except Exception as e:  
        return jsonify({"response": f"An error occurred: {str(e)}"})  

if __name__ == '__main__':  
    app.run(debug=True)