Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -1,13 +1,12 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
|
4 |
-
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
|
5 |
-
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
|
6 |
-
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
7 |
-
from huggingface_hub import InferenceClient
|
8 |
from transformers import AutoTokenizer, AutoModel
|
9 |
|
10 |
-
|
11 |
# Ensure HF_TOKEN is set
|
12 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
13 |
if not HF_TOKEN:
|
@@ -28,15 +27,13 @@ Settings.llm = HuggingFaceInferenceAPI(
|
|
28 |
max_new_tokens=512,
|
29 |
generate_kwargs={"temperature": 0.1},
|
30 |
)
|
31 |
-
|
32 |
-
#
|
33 |
-
# )
|
34 |
-
# Replace the embedding model with XLM-R
|
35 |
Settings.embed_model = HuggingFaceEmbedding(
|
36 |
-
model_name="xlm-roberta-base" #
|
37 |
)
|
38 |
|
39 |
-
# Configure tokenizer and model
|
40 |
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
|
41 |
model = AutoModel.from_pretrained("xlm-roberta-base")
|
42 |
|
@@ -49,72 +46,80 @@ os.makedirs(PERSIST_DIR, exist_ok=True)
|
|
49 |
chat_history = []
|
50 |
current_chat_history = []
|
51 |
|
|
|
52 |
def data_ingestion_from_directory():
|
53 |
-
# Clear previous data by removing the persist directory
|
54 |
if os.path.exists(PERSIST_DIR):
|
55 |
-
shutil.rmtree(PERSIST_DIR) # Remove the persist directory and
|
56 |
|
57 |
-
# Recreate the persist directory after removal
|
58 |
os.makedirs(PERSIST_DIR, exist_ok=True)
|
59 |
-
|
60 |
-
# Load new documents from the directory
|
61 |
new_documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
|
62 |
-
|
63 |
-
# Create a new index with the new documents
|
64 |
index = VectorStoreIndex.from_documents(new_documents)
|
65 |
-
|
66 |
-
# Persist the new index
|
67 |
index.storage_context.persist(persist_dir=PERSIST_DIR)
|
68 |
|
69 |
-
def handle_query(query):
|
70 |
context_str = ""
|
71 |
-
|
72 |
# Build context from current chat history
|
73 |
for past_query, response in reversed(current_chat_history):
|
74 |
if past_query.strip():
|
75 |
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
- Respond accurately and concisely in the user's preferred language (English, Telugu, or Hindi).
|
84 |
- Provide information about the hotel’s services, amenities, and policies.
|
85 |
-
|
86 |
-
|
87 |
-
- *Context:*
|
88 |
{context_str}
|
89 |
-
-
|
90 |
{query_str}
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
*Response:* [Your concise response here]
|
101 |
-
""".format(context_str=context_str, query_str=query)
|
102 |
)
|
103 |
]
|
104 |
|
105 |
-
|
106 |
-
|
107 |
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
|
108 |
-
|
109 |
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
|
110 |
index = load_index_from_storage(storage_context)
|
111 |
-
# context_str = ""
|
112 |
-
|
113 |
-
# # Build context from current chat history
|
114 |
-
# for past_query, response in reversed(current_chat_history):
|
115 |
-
# if past_query.strip():
|
116 |
-
# context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
|
117 |
|
|
|
118 |
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
|
119 |
print(f"Querying: {query}")
|
120 |
answer = query_engine.query(query)
|
@@ -131,16 +136,17 @@ def handle_query(query):
|
|
131 |
current_chat_history.append((query, response))
|
132 |
return response
|
133 |
|
|
|
134 |
app = Flask(__name__)
|
135 |
|
136 |
# Data ingestion
|
137 |
data_ingestion_from_directory()
|
138 |
|
139 |
# Generate Response
|
140 |
-
def generate_response(query):
|
141 |
try:
|
142 |
# Call the handle_query function to get the response
|
143 |
-
bot_response = handle_query(query)
|
144 |
return bot_response
|
145 |
except Exception as e:
|
146 |
return f"Error fetching the response: {str(e)}"
|
@@ -155,13 +161,17 @@ def index():
|
|
155 |
def chat():
|
156 |
try:
|
157 |
user_message = request.json.get("message")
|
|
|
158 |
if not user_message:
|
159 |
return jsonify({"response": "Please say something!"})
|
160 |
|
161 |
-
|
|
|
|
|
|
|
162 |
return jsonify({"response": bot_response})
|
163 |
except Exception as e:
|
164 |
return jsonify({"response": f"An error occurred: {str(e)}"})
|
165 |
|
166 |
if __name__ == '__main__':
|
167 |
-
app.run(debug=True)
|
|
|
1 |
+
from flask import Flask, render_template, request, jsonify
|
2 |
+
import os
|
3 |
+
import shutil
|
4 |
+
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
|
5 |
+
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
|
6 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
7 |
+
from huggingface_hub import InferenceClient
|
8 |
from transformers import AutoTokenizer, AutoModel
|
9 |
|
|
|
10 |
# Ensure HF_TOKEN is set
|
11 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
12 |
if not HF_TOKEN:
|
|
|
27 |
max_new_tokens=512,
|
28 |
generate_kwargs={"temperature": 0.1},
|
29 |
)
|
30 |
+
|
31 |
+
# Configure embedding model (XLM-RoBERTa model for multilingual support)
|
|
|
|
|
32 |
Settings.embed_model = HuggingFaceEmbedding(
|
33 |
+
model_name="xlm-roberta-base" # Multilingual support
|
34 |
)
|
35 |
|
36 |
+
# Configure tokenizer and model for multilingual responses
|
37 |
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
|
38 |
model = AutoModel.from_pretrained("xlm-roberta-base")
|
39 |
|
|
|
46 |
chat_history = []
|
47 |
current_chat_history = []
|
48 |
|
49 |
+
# Data ingestion function
|
50 |
def data_ingestion_from_directory():
|
|
|
51 |
if os.path.exists(PERSIST_DIR):
|
52 |
+
shutil.rmtree(PERSIST_DIR) # Remove the persist directory and its contents
|
53 |
|
|
|
54 |
os.makedirs(PERSIST_DIR, exist_ok=True)
|
|
|
|
|
55 |
new_documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
|
|
|
|
|
56 |
index = VectorStoreIndex.from_documents(new_documents)
|
|
|
|
|
57 |
index.storage_context.persist(persist_dir=PERSIST_DIR)
|
58 |
|
59 |
+
def handle_query(query, user_language):
|
60 |
context_str = ""
|
61 |
+
|
62 |
# Build context from current chat history
|
63 |
for past_query, response in reversed(current_chat_history):
|
64 |
if past_query.strip():
|
65 |
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
|
66 |
|
67 |
+
# Define the chat response template based on selected language
|
68 |
+
if user_language == 'te': # Telugu
|
69 |
+
response_template = """
|
70 |
+
మీరు తాజ్ హోటల్ చాట్బాట్, తాజ్ హోటల్ సహాయకుడిగా పనిచేస్తున్నారు.
|
71 |
+
**మీరు చేసే పాత్ర:**
|
72 |
+
- వినియోగదారుడి ప్రాముఖ్యమైన భాష (ఆంగ్లం, తెలుగు, హిందీ) లో సమాధానాలు ఇవ్వండి.
|
73 |
+
- హోటల్ యొక్క సేవలు, సదుపాయాలు మరియు విధానాలపై సమాచారం ఇవ్వండి.
|
74 |
+
**సూచన:**
|
75 |
+
- **ప్రసంగం:**
|
76 |
+
{context_str}
|
77 |
+
- **వినియోగదారు ప్రశ్న:**
|
78 |
+
{query_str}
|
79 |
+
**సమాధానం:** [మీ సమాధానం తెలుగులో ఇక్కడ]
|
80 |
+
"""
|
81 |
+
elif user_language == 'hi': # Hindi
|
82 |
+
response_template = """
|
83 |
+
आप ताज होटल के चैटबोट, ताज होटल हेल्पर हैं।
|
84 |
+
**आपकी भूमिका:**
|
85 |
+
- उपयोगकर्ता द्वारा चुनी गई भाषा (अंग्रेजी, हिंदी, या तेलुगु) में उत्तर दें।
|
86 |
+
- होटल की सेवाओं, सुविधाओं और नीतियों के बारे में जानकारी प्रदान करें।
|
87 |
+
**निर्देश:**
|
88 |
+
- **संदर्भ:**
|
89 |
+
{context_str}
|
90 |
+
- **उपयोगकर्ता का प���रश्न:**
|
91 |
+
{query_str}
|
92 |
+
**उत्तर:** [आपका उत्तर हिंदी में यहाँ]
|
93 |
+
"""
|
94 |
+
else: # Default to English
|
95 |
+
response_template = """
|
96 |
+
You are the Taj Hotel chatbot, Taj Hotel Helper.
|
97 |
+
**Your Role:**
|
98 |
- Respond accurately and concisely in the user's preferred language (English, Telugu, or Hindi).
|
99 |
- Provide information about the hotel’s services, amenities, and policies.
|
100 |
+
**Instructions:**
|
101 |
+
- **Context:**
|
|
|
102 |
{context_str}
|
103 |
+
- **User's Question:**
|
104 |
{query_str}
|
105 |
+
**Response:** [Your concise response here]
|
106 |
+
"""
|
107 |
+
|
108 |
+
# Create a list of chat messages with the user query and response template
|
109 |
+
chat_text_qa_msgs = [
|
110 |
+
(
|
111 |
+
"user",
|
112 |
+
response_template.format(context_str=context_str, query_str=query)
|
|
|
|
|
|
|
113 |
)
|
114 |
]
|
115 |
|
116 |
+
# Use the defined chat template
|
|
|
117 |
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
|
118 |
+
|
119 |
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
|
120 |
index = load_index_from_storage(storage_context)
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
+
# Query the index and retrieve the answer
|
123 |
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
|
124 |
print(f"Querying: {query}")
|
125 |
answer = query_engine.query(query)
|
|
|
136 |
current_chat_history.append((query, response))
|
137 |
return response
|
138 |
|
139 |
+
|
140 |
app = Flask(__name__)
|
141 |
|
142 |
# Data ingestion
|
143 |
data_ingestion_from_directory()
|
144 |
|
145 |
# Generate Response
|
146 |
+
def generate_response(query, language):
|
147 |
try:
|
148 |
# Call the handle_query function to get the response
|
149 |
+
bot_response = handle_query(query, language)
|
150 |
return bot_response
|
151 |
except Exception as e:
|
152 |
return f"Error fetching the response: {str(e)}"
|
|
|
161 |
def chat():
|
162 |
try:
|
163 |
user_message = request.json.get("message")
|
164 |
+
selected_language = request.json.get("language") # Get selected language from the request
|
165 |
if not user_message:
|
166 |
return jsonify({"response": "Please say something!"})
|
167 |
|
168 |
+
if selected_language not in ['english', 'telugu', 'hindi']:
|
169 |
+
return jsonify({"response": "Invalid language selected."})
|
170 |
+
|
171 |
+
bot_response = generate_response(user_message, selected_language)
|
172 |
return jsonify({"response": bot_response})
|
173 |
except Exception as e:
|
174 |
return jsonify({"response": f"An error occurred: {str(e)}"})
|
175 |
|
176 |
if __name__ == '__main__':
|
177 |
+
app.run(debug=True)
|