Spaces:
Running
on
T4
Running
on
T4
add-demo-notebook (#5)
Browse files- Refactor app.py - extract reusable functions (aedd89b11c7db4e19dbd7d72566a0fbccea3bd85)
- Add sample notebook (96f9e24b2cf04f41c38a00d4706abb6b38ec88e4)
- Remove notebook output (eb3994e008d734612930f2bdd5a091882ba18603)
- .gitignore +2 -2
- app.py +118 -148
- notebooks/demo.ipynb +492 -0
- requirements.txt +2 -0
.gitignore
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
env/
|
3 |
__pycache__
|
4 |
.python-version
|
5 |
-
|
6 |
|
7 |
# vim
|
8 |
-
*.sw[op]
|
|
|
2 |
env/
|
3 |
__pycache__
|
4 |
.python-version
|
5 |
+
*.py[od]
|
6 |
|
7 |
# vim
|
8 |
+
*.sw[op]
|
app.py
CHANGED
@@ -14,11 +14,6 @@ import matplotlib.pyplot as plt
|
|
14 |
import io
|
15 |
from enum import Enum
|
16 |
import os
|
17 |
-
import subprocess
|
18 |
-
from subprocess import call
|
19 |
-
import shlex
|
20 |
-
import shutil
|
21 |
-
#os.environ["GRADIO_TEMP_DIR"] = os.path.join(os.getcwd(), "tmp")
|
22 |
cwd = os.getcwd()
|
23 |
# Suppress warnings to avoid overflowing the log.
|
24 |
import warnings
|
@@ -145,22 +140,6 @@ def build_model_and_transforms(args):
|
|
145 |
|
146 |
return model, data_transform
|
147 |
|
148 |
-
examples = [
|
149 |
-
["strawberry.jpg", "strawberry", {"image": "strawberry.jpg"}],
|
150 |
-
["strawberry.jpg", "blueberry", {"image": "strawberry.jpg"}],
|
151 |
-
["bird-1.JPG", "bird", {"image": "bird-2.JPG"}],
|
152 |
-
["fish.jpg", "fish", {"image": "fish.jpg"}],
|
153 |
-
["women.jpg", "girl", {"image": "women.jpg"}],
|
154 |
-
["women.jpg", "boy", {"image": "women.jpg"}],
|
155 |
-
["balloon.jpg", "hot air balloon", {"image": "balloon.jpg"}],
|
156 |
-
["deer.jpg", "deer", {"image": "deer.jpg"}],
|
157 |
-
["apple.jpg", "apple", {"image": "apple.jpg"}],
|
158 |
-
["egg.jpg", "egg", {"image": "egg.jpg"}],
|
159 |
-
["stamp.jpg", "stamp", {"image": "stamp.jpg"}],
|
160 |
-
["green-pea.jpg", "green pea", {"image": "green-pea.jpg"}],
|
161 |
-
["lego.jpg", "lego", {"image": "lego.jpg"}]
|
162 |
-
]
|
163 |
-
|
164 |
# APP:
|
165 |
def get_box_inputs(prompts):
|
166 |
box_inputs = []
|
@@ -197,6 +176,107 @@ def get_ind_to_filter(text, word_ids, keywords):
|
|
197 |
|
198 |
return inds_to_filter
|
199 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
if __name__ == '__main__':
|
201 |
|
202 |
parser = argparse.ArgumentParser("Counting Application", parents=[get_args_parser()])
|
@@ -205,56 +285,19 @@ if __name__ == '__main__':
|
|
205 |
model, transform = build_model_and_transforms(args)
|
206 |
model = model.to(device)
|
207 |
|
|
|
|
|
208 |
@spaces.GPU(duration=120)
|
209 |
def count(image, text, prompts, state, device):
|
210 |
-
|
211 |
-
keywords = "" # do not handle this for now
|
212 |
-
|
213 |
-
# Handle no prompt case.
|
214 |
if prompts is None:
|
215 |
prompts = {"image": image, "points": []}
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
input_image_exemplars, exemplars = transform(prompts["image"], {"exemplars": torch.tensor(exemplars)})
|
221 |
-
input_image_exemplars = input_image_exemplars.unsqueeze(0).to(device)
|
222 |
-
exemplars = [exemplars["exemplars"].to(device)]
|
223 |
-
|
224 |
-
with torch.no_grad():
|
225 |
-
model_output = model(
|
226 |
-
nested_tensor_from_tensor_list(input_image),
|
227 |
-
nested_tensor_from_tensor_list(input_image_exemplars),
|
228 |
-
exemplars,
|
229 |
-
[torch.tensor([0]).to(device) for _ in range(len(input_image))],
|
230 |
-
captions=[text + " ."] * len(input_image),
|
231 |
-
)
|
232 |
|
233 |
-
|
234 |
-
|
235 |
-
boxes = model_output["pred_boxes"][0]
|
236 |
-
if len(keywords.strip()) > 0:
|
237 |
-
box_mask = (logits > CONF_THRESH).sum(dim=-1) == len(ind_to_filter)
|
238 |
-
else:
|
239 |
-
box_mask = logits.max(dim=-1).values > CONF_THRESH
|
240 |
-
logits = logits[box_mask, :].cpu().numpy()
|
241 |
-
boxes = boxes[box_mask, :].cpu().numpy()
|
242 |
-
|
243 |
-
# Plot results.
|
244 |
-
(w, h) = image.size
|
245 |
-
det_map = np.zeros((h, w))
|
246 |
-
det_map[(h * boxes[:, 1]).astype(int), (w * boxes[:, 0]).astype(int)] = 1
|
247 |
-
det_map = ndimage.gaussian_filter(
|
248 |
-
det_map, sigma=(w // 200, w // 200), order=0
|
249 |
-
)
|
250 |
-
plt.imshow(image)
|
251 |
-
plt.imshow(det_map[None, :].transpose(1, 2, 0), 'jet', interpolation='none', alpha=0.7)
|
252 |
-
plt.axis('off')
|
253 |
-
img_buf = io.BytesIO()
|
254 |
-
plt.savefig(img_buf, format='png', bbox_inches='tight')
|
255 |
-
plt.close()
|
256 |
-
|
257 |
-
output_img = Image.open(img_buf)
|
258 |
|
259 |
if AppSteps.TEXT_AND_EXEMPLARS not in state:
|
260 |
exemplar_image = ImagePrompter(type='pil', label='Visual Exemplar Image', value=prompts, interactive=True, visible=True)
|
@@ -274,92 +317,19 @@ if __name__ == '__main__':
|
|
274 |
main_instructions_comp = gr.Markdown(visible=True)
|
275 |
step_3 = gr.Tab(visible=True)
|
276 |
|
277 |
-
out_label = "
|
278 |
-
if len(text.strip()) > 0:
|
279 |
-
out_label += " text"
|
280 |
-
if exemplars[0].size()[0] == 1:
|
281 |
-
out_label += " and " + str(exemplars[0].size()[0]) + " visual exemplar."
|
282 |
-
elif exemplars[0].size()[0] > 1:
|
283 |
-
out_label += " and " + str(exemplars[0].size()[0]) + " visual exemplars."
|
284 |
-
else:
|
285 |
-
out_label += "."
|
286 |
-
elif exemplars[0].size()[0] > 0:
|
287 |
-
if exemplars[0].size()[0] == 1:
|
288 |
-
out_label += " " + str(exemplars[0].size()[0]) + " visual exemplar."
|
289 |
-
else:
|
290 |
-
out_label += " " + str(exemplars[0].size()[0]) + " visual exemplars."
|
291 |
-
else:
|
292 |
-
out_label = "Nothing specified to detect."
|
293 |
-
|
294 |
-
return (gr.Image(output_img, visible=True, label=out_label, show_label=True), gr.Number(label="Predicted Count", visible=True, value=boxes.shape[0]), new_submit_btn, gr.Tab(visible=True), step_3, state)
|
295 |
|
296 |
@spaces.GPU
|
297 |
def count_main(image, text, prompts, device):
|
298 |
-
keywords = "" # do not handle this for now
|
299 |
-
# Handle no prompt case.
|
300 |
if prompts is None:
|
301 |
prompts = {"image": image, "points": []}
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
input_image_exemplars = input_image_exemplars.unsqueeze(0).to(device)
|
308 |
-
exemplars = [exemplars["exemplars"].to(device)]
|
309 |
-
|
310 |
-
with torch.no_grad():
|
311 |
-
model_output = model(
|
312 |
-
nested_tensor_from_tensor_list(input_image),
|
313 |
-
nested_tensor_from_tensor_list(input_image_exemplars),
|
314 |
-
exemplars,
|
315 |
-
[torch.tensor([0]).to(device) for _ in range(len(input_image))],
|
316 |
-
captions=[text + " ."] * len(input_image),
|
317 |
-
)
|
318 |
-
|
319 |
-
ind_to_filter = get_ind_to_filter(text, model_output["token"][0].word_ids, keywords)
|
320 |
-
logits = model_output["pred_logits"].sigmoid()[0][:, ind_to_filter]
|
321 |
-
boxes = model_output["pred_boxes"][0]
|
322 |
-
if len(keywords.strip()) > 0:
|
323 |
-
box_mask = (logits > CONF_THRESH).sum(dim=-1) == len(ind_to_filter)
|
324 |
-
else:
|
325 |
-
box_mask = logits.max(dim=-1).values > CONF_THRESH
|
326 |
-
logits = logits[box_mask, :].cpu().numpy()
|
327 |
-
boxes = boxes[box_mask, :].cpu().numpy()
|
328 |
-
|
329 |
-
# Plot results.
|
330 |
-
(w, h) = image.size
|
331 |
-
det_map = np.zeros((h, w))
|
332 |
-
det_map[(h * boxes[:, 1]).astype(int), (w * boxes[:, 0]).astype(int)] = 1
|
333 |
-
det_map = ndimage.gaussian_filter(
|
334 |
-
det_map, sigma=(w // 200, w // 200), order=0
|
335 |
-
)
|
336 |
-
plt.imshow(image)
|
337 |
-
plt.imshow(det_map[None, :].transpose(1, 2, 0), 'jet', interpolation='none', alpha=0.7)
|
338 |
-
plt.axis('off')
|
339 |
-
img_buf = io.BytesIO()
|
340 |
-
plt.savefig(img_buf, format='png', bbox_inches='tight')
|
341 |
-
plt.close()
|
342 |
-
|
343 |
-
output_img = Image.open(img_buf)
|
344 |
-
|
345 |
-
out_label = "Detected instances predicted with"
|
346 |
-
if len(text.strip()) > 0:
|
347 |
-
out_label += " text"
|
348 |
-
if exemplars[0].size()[0] == 1:
|
349 |
-
out_label += " and " + str(exemplars[0].size()[0]) + " visual exemplar."
|
350 |
-
elif exemplars[0].size()[0] > 1:
|
351 |
-
out_label += " and " + str(exemplars[0].size()[0]) + " visual exemplars."
|
352 |
-
else:
|
353 |
-
out_label += "."
|
354 |
-
elif exemplars[0].size()[0] > 0:
|
355 |
-
if exemplars[0].size()[0] == 1:
|
356 |
-
out_label += " " + str(exemplars[0].size()[0]) + " visual exemplar."
|
357 |
-
else:
|
358 |
-
out_label += " " + str(exemplars[0].size()[0]) + " visual exemplars."
|
359 |
-
else:
|
360 |
-
out_label = "Nothing specified to detect."
|
361 |
|
362 |
-
return (gr.Image(output_img, visible=True, label=out_label, show_label=True), gr.Number(label="Predicted Count", visible=True, value=
|
363 |
|
364 |
def remove_label(image):
|
365 |
return gr.Image(show_label=False)
|
@@ -401,12 +371,12 @@ if __name__ == '__main__':
|
|
401 |
with gr.Accordion("Open for Further Information", open=False):
|
402 |
gr.Markdown(exemplar_img_drawing_instructions_part_2)
|
403 |
with gr.Tab("Step 1", visible=True) as step_1:
|
404 |
-
input_image = gr.Image(type='pil', label='Input Image', show_label='True', value="strawberry.jpg", interactive=False
|
405 |
gr.Markdown('# Click "Count" to count the strawberries.')
|
406 |
|
407 |
with gr.Column():
|
408 |
with gr.Tab("Output Image"):
|
409 |
-
detected_instances = gr.Image(label="Detected Instances", show_label='True', interactive=False, visible=True
|
410 |
|
411 |
with gr.Row():
|
412 |
input_text = gr.Textbox(label="What would you like to count?", value="strawberry", interactive=True)
|
|
|
14 |
import io
|
15 |
from enum import Enum
|
16 |
import os
|
|
|
|
|
|
|
|
|
|
|
17 |
cwd = os.getcwd()
|
18 |
# Suppress warnings to avoid overflowing the log.
|
19 |
import warnings
|
|
|
140 |
|
141 |
return model, data_transform
|
142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
# APP:
|
144 |
def get_box_inputs(prompts):
|
145 |
box_inputs = []
|
|
|
176 |
|
177 |
return inds_to_filter
|
178 |
|
179 |
+
def generate_heatmap(image, boxes):
|
180 |
+
# Plot results.
|
181 |
+
(w, h) = image.size
|
182 |
+
det_map = np.zeros((h, w))
|
183 |
+
det_map[(h * boxes[:, 1]).astype(int), (w * boxes[:, 0]).astype(int)] = 1
|
184 |
+
det_map = ndimage.gaussian_filter(
|
185 |
+
det_map, sigma=(w // 200, w // 200), order=0
|
186 |
+
)
|
187 |
+
plt.imshow(image)
|
188 |
+
plt.imshow(det_map[None, :].transpose(1, 2, 0), 'jet', interpolation='none', alpha=0.7)
|
189 |
+
plt.axis('off')
|
190 |
+
img_buf = io.BytesIO()
|
191 |
+
plt.savefig(img_buf, format='png', bbox_inches='tight')
|
192 |
+
plt.close()
|
193 |
+
|
194 |
+
output_img = Image.open(img_buf)
|
195 |
+
return output_img
|
196 |
+
|
197 |
+
def generate_output_label(text, num_exemplars):
|
198 |
+
out_label = "Detected instances predicted with"
|
199 |
+
if len(text.strip()) > 0:
|
200 |
+
out_label += " text"
|
201 |
+
if num_exemplars == 1:
|
202 |
+
out_label += " and " + str(num_exemplars) + " visual exemplar."
|
203 |
+
elif num_exemplars > 1:
|
204 |
+
out_label += " and " + str(num_exemplars) + " visual exemplars."
|
205 |
+
else:
|
206 |
+
out_label += "."
|
207 |
+
elif num_exemplars > 0:
|
208 |
+
if num_exemplars == 1:
|
209 |
+
out_label += " " + str(num_exemplars) + " visual exemplar."
|
210 |
+
else:
|
211 |
+
out_label += " " + str(num_exemplars) + " visual exemplars."
|
212 |
+
else:
|
213 |
+
out_label = "Nothing specified to detect."
|
214 |
+
|
215 |
+
return out_label
|
216 |
+
|
217 |
+
def preprocess(transform, image, input_prompts = None):
|
218 |
+
if input_prompts == None:
|
219 |
+
prompts = { "image": image, "points": []}
|
220 |
+
else:
|
221 |
+
prompts = input_prompts
|
222 |
+
|
223 |
+
input_image, _ = transform(image, None)
|
224 |
+
exemplar = get_box_inputs(prompts["points"])
|
225 |
+
# Wrapping exemplar in a dictionary to apply only relevant transforms
|
226 |
+
input_image_exemplar, exemplar = transform(prompts['image'], {"exemplars": torch.tensor(exemplar)})
|
227 |
+
exemplar = exemplar["exemplars"]
|
228 |
+
|
229 |
+
return input_image, input_image_exemplar, exemplar
|
230 |
+
|
231 |
+
def get_boxes_from_prediction(model_output, text, keywords = ""):
|
232 |
+
ind_to_filter = get_ind_to_filter(text, model_output["token"][0].word_ids, keywords)
|
233 |
+
logits = model_output["pred_logits"].sigmoid()[0][:, ind_to_filter]
|
234 |
+
boxes = model_output["pred_boxes"][0]
|
235 |
+
if len(keywords.strip()) > 0:
|
236 |
+
box_mask = (logits > CONF_THRESH).sum(dim=-1) == len(ind_to_filter)
|
237 |
+
else:
|
238 |
+
box_mask = logits.max(dim=-1).values > CONF_THRESH
|
239 |
+
boxes = boxes[box_mask, :].cpu().numpy()
|
240 |
+
logits = logits[box_mask, :].cpu().numpy()
|
241 |
+
return boxes, logits
|
242 |
+
|
243 |
+
def predict(model, transform, image, text, prompts, device):
|
244 |
+
keywords = "" # do not handle this for now
|
245 |
+
input_image, input_image_exemplar, exemplar = preprocess(transform, image, prompts)
|
246 |
+
|
247 |
+
input_images = input_image.unsqueeze(0).to(device)
|
248 |
+
input_image_exemplars = input_image_exemplar.unsqueeze(0).to(device)
|
249 |
+
exemplars = [exemplar.to(device)]
|
250 |
+
|
251 |
+
with torch.no_grad():
|
252 |
+
model_output = model(
|
253 |
+
nested_tensor_from_tensor_list(input_images),
|
254 |
+
nested_tensor_from_tensor_list(input_image_exemplars),
|
255 |
+
exemplars,
|
256 |
+
[torch.tensor([0]).to(device) for _ in range(len(input_images))],
|
257 |
+
captions=[text + " ."] * len(input_images),
|
258 |
+
)
|
259 |
+
|
260 |
+
keywords = ""
|
261 |
+
return get_boxes_from_prediction(model_output, text, keywords)
|
262 |
+
|
263 |
+
examples = [
|
264 |
+
["strawberry.jpg", "strawberry", {"image": "strawberry.jpg"}],
|
265 |
+
["strawberry.jpg", "blueberry", {"image": "strawberry.jpg"}],
|
266 |
+
["bird-1.JPG", "bird", {"image": "bird-2.JPG"}],
|
267 |
+
["fish.jpg", "fish", {"image": "fish.jpg"}],
|
268 |
+
["women.jpg", "girl", {"image": "women.jpg"}],
|
269 |
+
["women.jpg", "boy", {"image": "women.jpg"}],
|
270 |
+
["balloon.jpg", "hot air balloon", {"image": "balloon.jpg"}],
|
271 |
+
["deer.jpg", "deer", {"image": "deer.jpg"}],
|
272 |
+
["apple.jpg", "apple", {"image": "apple.jpg"}],
|
273 |
+
["egg.jpg", "egg", {"image": "egg.jpg"}],
|
274 |
+
["stamp.jpg", "stamp", {"image": "stamp.jpg"}],
|
275 |
+
["green-pea.jpg", "green pea", {"image": "green-pea.jpg"}],
|
276 |
+
["lego.jpg", "lego", {"image": "lego.jpg"}]
|
277 |
+
]
|
278 |
+
|
279 |
+
|
280 |
if __name__ == '__main__':
|
281 |
|
282 |
parser = argparse.ArgumentParser("Counting Application", parents=[get_args_parser()])
|
|
|
285 |
model, transform = build_model_and_transforms(args)
|
286 |
model = model.to(device)
|
287 |
|
288 |
+
_predict = lambda image, text, prompts: predict(model, transform, image, text, prompts, device)
|
289 |
+
|
290 |
@spaces.GPU(duration=120)
|
291 |
def count(image, text, prompts, state, device):
|
|
|
|
|
|
|
|
|
292 |
if prompts is None:
|
293 |
prompts = {"image": image, "points": []}
|
294 |
+
|
295 |
+
boxes, _ = _predict(image, text, prompts)
|
296 |
+
count = len(boxes)
|
297 |
+
output_img = generate_heatmap(image, boxes)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
298 |
|
299 |
+
num_exemplars = len(get_box_inputs(prompts["points"]))
|
300 |
+
out_label = generate_output_label(text, num_exemplars)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
|
302 |
if AppSteps.TEXT_AND_EXEMPLARS not in state:
|
303 |
exemplar_image = ImagePrompter(type='pil', label='Visual Exemplar Image', value=prompts, interactive=True, visible=True)
|
|
|
317 |
main_instructions_comp = gr.Markdown(visible=True)
|
318 |
step_3 = gr.Tab(visible=True)
|
319 |
|
320 |
+
return (gr.Image(output_img, visible=True, label=out_label, show_label=True), gr.Number(label="Predicted Count", visible=True, value=count), new_submit_btn, gr.Tab(visible=True), step_3, state)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
|
322 |
@spaces.GPU
|
323 |
def count_main(image, text, prompts, device):
|
|
|
|
|
324 |
if prompts is None:
|
325 |
prompts = {"image": image, "points": []}
|
326 |
+
boxes, _ = _predict(image, text, prompts)
|
327 |
+
count = len(boxes)
|
328 |
+
output_img = generate_heatmap(image, boxes)
|
329 |
+
num_exemplars = len(get_box_inputs(prompts["points"]))
|
330 |
+
out_label = generate_output_label(text, num_exemplars)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
331 |
|
332 |
+
return (gr.Image(output_img, visible=True, label=out_label, show_label=True), gr.Number(label="Predicted Count", visible=True, value=count))
|
333 |
|
334 |
def remove_label(image):
|
335 |
return gr.Image(show_label=False)
|
|
|
371 |
with gr.Accordion("Open for Further Information", open=False):
|
372 |
gr.Markdown(exemplar_img_drawing_instructions_part_2)
|
373 |
with gr.Tab("Step 1", visible=True) as step_1:
|
374 |
+
input_image = gr.Image(type='pil', label='Input Image', show_label='True', value="strawberry.jpg", interactive=False)
|
375 |
gr.Markdown('# Click "Count" to count the strawberries.')
|
376 |
|
377 |
with gr.Column():
|
378 |
with gr.Tab("Output Image"):
|
379 |
+
detected_instances = gr.Image(label="Detected Instances", show_label='True', interactive=False, visible=True)
|
380 |
|
381 |
with gr.Row():
|
382 |
input_text = gr.Textbox(label="What would you like to count?", value="strawberry", interactive=True)
|
notebooks/demo.ipynb
ADDED
@@ -0,0 +1,492 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {
|
6 |
+
"id": "yxig5CdZuHb9"
|
7 |
+
},
|
8 |
+
"source": [
|
9 |
+
"# CountGD - Multimodela open-world object counting\n",
|
10 |
+
"\n"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "markdown",
|
15 |
+
"metadata": {
|
16 |
+
"id": "9wyM6J2HuHb-"
|
17 |
+
},
|
18 |
+
"source": [
|
19 |
+
"## Setup\n",
|
20 |
+
"\n",
|
21 |
+
"The following cells will setup the runtime environment with the following\n",
|
22 |
+
"\n",
|
23 |
+
"- Mount Google Drive\n",
|
24 |
+
"- Install dependencies for running the model\n",
|
25 |
+
"- Load the model into memory"
|
26 |
+
]
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"cell_type": "markdown",
|
30 |
+
"metadata": {
|
31 |
+
"id": "jn061Tl8uHb-"
|
32 |
+
},
|
33 |
+
"source": [
|
34 |
+
"### Mount Google Drive (if running on colab)\n",
|
35 |
+
"\n",
|
36 |
+
"The following bit of code will mount your Google Drive folder at `/content/drive`, allowing you to process files directly from it as well as store the results alongside it.\n",
|
37 |
+
"\n",
|
38 |
+
"Once you execute the next cell, you will be requested to share access with the notebook. Please follow the instructions on screen to do so.\n",
|
39 |
+
"If you are not running this on colab, you will still be able to use the files available on your environment."
|
40 |
+
]
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"cell_type": "code",
|
44 |
+
"execution_count": null,
|
45 |
+
"metadata": {
|
46 |
+
"colab": {
|
47 |
+
"base_uri": "https://localhost:8080/"
|
48 |
+
},
|
49 |
+
"collapsed": true,
|
50 |
+
"id": "DkSUXqMPuHb-",
|
51 |
+
"outputId": "6b82521e-3afd-4545-b13f-8cfea0975d95"
|
52 |
+
},
|
53 |
+
"outputs": [],
|
54 |
+
"source": [
|
55 |
+
"# Check if running colab\n",
|
56 |
+
"import logging\n",
|
57 |
+
"\n",
|
58 |
+
"logging.basicConfig(\n",
|
59 |
+
" level=logging.INFO,\n",
|
60 |
+
" format='%(asctime)s %(levelname)-8s %(name)s %(message)s'\n",
|
61 |
+
")\n",
|
62 |
+
"try:\n",
|
63 |
+
" import google.colab\n",
|
64 |
+
" RUNNING_IN_COLAB = True\n",
|
65 |
+
"except:\n",
|
66 |
+
" RUNNING_IN_COLAB = False\n",
|
67 |
+
"\n",
|
68 |
+
"if RUNNING_IN_COLAB:\n",
|
69 |
+
" from google.colab import drive\n",
|
70 |
+
" drive.mount('/content/drive')\n",
|
71 |
+
"\n",
|
72 |
+
"from IPython.core.magic import register_cell_magic\n",
|
73 |
+
"from IPython import get_ipython\n",
|
74 |
+
"@register_cell_magic\n",
|
75 |
+
"def skip_if(line, cell):\n",
|
76 |
+
" if eval(line):\n",
|
77 |
+
" return\n",
|
78 |
+
" get_ipython().run_cell(cell)\n",
|
79 |
+
"\n",
|
80 |
+
"\n",
|
81 |
+
"%env RUNNING_IN_COLAB {RUNNING_IN_COLAB}\n"
|
82 |
+
]
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"cell_type": "markdown",
|
86 |
+
"metadata": {
|
87 |
+
"id": "kas5YtyluHb_"
|
88 |
+
},
|
89 |
+
"source": [
|
90 |
+
"### Install Dependencies\n",
|
91 |
+
"\n",
|
92 |
+
"The environment will be setup with the code, models and required dependencies."
|
93 |
+
]
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"cell_type": "code",
|
97 |
+
"execution_count": null,
|
98 |
+
"metadata": {
|
99 |
+
"colab": {
|
100 |
+
"base_uri": "https://localhost:8080/"
|
101 |
+
},
|
102 |
+
"id": "982Yiv5tuHb_",
|
103 |
+
"outputId": "2f570d1a-c6cc-49c3-c336-1d784d33a169"
|
104 |
+
},
|
105 |
+
"outputs": [],
|
106 |
+
"source": [
|
107 |
+
"%%bash\n",
|
108 |
+
"\n",
|
109 |
+
"set -euxo pipefail\n",
|
110 |
+
"\n",
|
111 |
+
"if [ \"${RUNNING_IN_COLAB}\" == \"True\" ]; then\n",
|
112 |
+
" echo \"Downloading the repository...\"\n",
|
113 |
+
" if [ ! -d /content/countgd ]; then\n",
|
114 |
+
" git clone \"https://huggingface.co/spaces/nikigoli/countgd\" /content/countgd\n",
|
115 |
+
" fi\n",
|
116 |
+
" cd /content/countgd\n",
|
117 |
+
" git fetch origin refs/pr/5:refs/remotes/origin/pr/5\n",
|
118 |
+
" git checkout pr/5\n",
|
119 |
+
"else\n",
|
120 |
+
" # TODO check if cwd is the correct git repo\n",
|
121 |
+
" # If users use vscode, then we set the default start directory to root of the repo\n",
|
122 |
+
" echo \"Running in $(pwd)\"\n",
|
123 |
+
"fi\n",
|
124 |
+
"\n",
|
125 |
+
"# TODO check for gcc-11 or above\n",
|
126 |
+
"\n",
|
127 |
+
"# Install pip packages\n",
|
128 |
+
"pip install --upgrade pip setuptools wheel\n",
|
129 |
+
"pip install -r requirements.txt\n",
|
130 |
+
"\n",
|
131 |
+
"# Compile modules\n",
|
132 |
+
"export CUDA_HOME=/usr/local/cuda/\n",
|
133 |
+
"cd models/GroundingDINO/ops\n",
|
134 |
+
"python3 setup.py build\n",
|
135 |
+
"pip install .\n",
|
136 |
+
"python3 test.py"
|
137 |
+
]
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"cell_type": "code",
|
141 |
+
"execution_count": null,
|
142 |
+
"metadata": {
|
143 |
+
"colab": {
|
144 |
+
"base_uri": "https://localhost:8080/"
|
145 |
+
},
|
146 |
+
"id": "58iD_HGnvcRJ",
|
147 |
+
"outputId": "fe356a68-dced-4f6f-93cc-d83da2f84e28"
|
148 |
+
},
|
149 |
+
"outputs": [],
|
150 |
+
"source": [
|
151 |
+
"%cd {\"/content/countgd\" if RUNNING_IN_COLAB else '.'}"
|
152 |
+
]
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"cell_type": "markdown",
|
156 |
+
"metadata": {
|
157 |
+
"id": "gH7A8zthuHb_"
|
158 |
+
},
|
159 |
+
"source": [
|
160 |
+
"## Inference"
|
161 |
+
]
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"cell_type": "markdown",
|
165 |
+
"metadata": {
|
166 |
+
"id": "IspbBV0XuHb_"
|
167 |
+
},
|
168 |
+
"source": [
|
169 |
+
"### Loading the model"
|
170 |
+
]
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"cell_type": "code",
|
174 |
+
"execution_count": null,
|
175 |
+
"metadata": {
|
176 |
+
"colab": {
|
177 |
+
"base_uri": "https://localhost:8080/"
|
178 |
+
},
|
179 |
+
"id": "5nBT_HCUuHb_",
|
180 |
+
"outputId": "95ceb6c6-bee8-4921-8bff-d28937045f78"
|
181 |
+
},
|
182 |
+
"outputs": [],
|
183 |
+
"source": [
|
184 |
+
"import app\n",
|
185 |
+
"import importlib\n",
|
186 |
+
"importlib.reload(app)\n",
|
187 |
+
"from app import (\n",
|
188 |
+
" build_model_and_transforms,\n",
|
189 |
+
" get_device,\n",
|
190 |
+
" get_args_parser,\n",
|
191 |
+
" generate_heatmap,\n",
|
192 |
+
" predict,\n",
|
193 |
+
")\n",
|
194 |
+
"args = get_args_parser().parse_args([])\n",
|
195 |
+
"device = get_device()\n",
|
196 |
+
"model, transform = build_model_and_transforms(args)\n",
|
197 |
+
"model = model.to(device)\n",
|
198 |
+
"\n",
|
199 |
+
"run = lambda image, text: predict(model, transform, image, text, None, device)\n",
|
200 |
+
"get_output = lambda image, boxes: (len(boxes), generate_heatmap(image, boxes))\n"
|
201 |
+
]
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"cell_type": "markdown",
|
205 |
+
"metadata": {
|
206 |
+
"id": "gfjraK3vuHb_"
|
207 |
+
},
|
208 |
+
"source": [
|
209 |
+
"### Input / Output Utils\n",
|
210 |
+
"\n",
|
211 |
+
"Helper functions for reading / writing to zipfiles and csv"
|
212 |
+
]
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"cell_type": "code",
|
216 |
+
"execution_count": 17,
|
217 |
+
"metadata": {
|
218 |
+
"id": "qg0g5B-fuHb_"
|
219 |
+
},
|
220 |
+
"outputs": [],
|
221 |
+
"source": [
|
222 |
+
"import io\n",
|
223 |
+
"import csv\n",
|
224 |
+
"from pathlib import Path\n",
|
225 |
+
"from contextlib import contextmanager\n",
|
226 |
+
"import zipfile\n",
|
227 |
+
"import filetype\n",
|
228 |
+
"from PIL import Image\n",
|
229 |
+
"logger = logging.getLogger()\n",
|
230 |
+
"\n",
|
231 |
+
"def images_from_zipfile(p: Path):\n",
|
232 |
+
" if not zipfile.is_zipfile(p):\n",
|
233 |
+
" raise ValueError(f'{p} is not a zipfile!')\n",
|
234 |
+
"\n",
|
235 |
+
" with zipfile.ZipFile(p, 'r') as zipf:\n",
|
236 |
+
" def process_entry(info: zipfile.ZipInfo):\n",
|
237 |
+
" with zipf.open(info) as f:\n",
|
238 |
+
" if not filetype.is_image(f):\n",
|
239 |
+
" logger.debug(f'Skipping file - {info.filename} as it is not an image')\n",
|
240 |
+
" return\n",
|
241 |
+
" # Try loading the file\n",
|
242 |
+
" try:\n",
|
243 |
+
" with Image.open(f) as im:\n",
|
244 |
+
" im.load()\n",
|
245 |
+
" return (info.filename, im)\n",
|
246 |
+
" except:\n",
|
247 |
+
" logger.exception(f'Error reading file {info.filename}')\n",
|
248 |
+
"\n",
|
249 |
+
" num_files = sum(1 for info in zipf.infolist() if info.is_dir() == False)\n",
|
250 |
+
" logger.info(f'Found {num_files} file(s) in the zip')\n",
|
251 |
+
" yield from (process_entry(info) for info in zipf.infolist() if info.is_dir() == False)\n",
|
252 |
+
"\n",
|
253 |
+
"@contextmanager\n",
|
254 |
+
"def zipfile_writer(p: Path):\n",
|
255 |
+
" with zipfile.ZipFile(p, 'w') as zipf:\n",
|
256 |
+
" def write_output(image, image_filename):\n",
|
257 |
+
" buf = io.BytesIO()\n",
|
258 |
+
" image.save(buf, 'PNG')\n",
|
259 |
+
" zipf.writestr(image_filename, buf.getvalue())\n",
|
260 |
+
" yield write_output\n",
|
261 |
+
"\n",
|
262 |
+
"@contextmanager\n",
|
263 |
+
"def csvfile_writer(p: Path):\n",
|
264 |
+
" with p.open('w', newline='') as csvfile:\n",
|
265 |
+
" fieldnames = ['filename', 'count']\n",
|
266 |
+
" csv_writer = csv.DictWriter(csvfile, fieldnames = fieldnames)\n",
|
267 |
+
" csv_writer.writeheader()\n",
|
268 |
+
"\n",
|
269 |
+
" yield csv_writer.writerow"
|
270 |
+
]
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"cell_type": "code",
|
274 |
+
"execution_count": 15,
|
275 |
+
"metadata": {
|
276 |
+
"id": "rFXRk-_uuHb_"
|
277 |
+
},
|
278 |
+
"outputs": [],
|
279 |
+
"source": [
|
280 |
+
"from tqdm import tqdm\n",
|
281 |
+
"import os\n",
|
282 |
+
"def process_zipfile(input_zipfile: Path, text: str):\n",
|
283 |
+
" if not input_zipfile.exists() or not input_zipfile.is_file() or not os.access(input_zipfile, os.R_OK):\n",
|
284 |
+
" logger.error(f'Cannot open / read zipfile: {input_zipfile}. Please check if it exists')\n",
|
285 |
+
" return\n",
|
286 |
+
"\n",
|
287 |
+
" if text == \"\":\n",
|
288 |
+
" logger.error('Please provide the object you would like to count')\n",
|
289 |
+
" return\n",
|
290 |
+
"\n",
|
291 |
+
" output_zipfile = input_zipfile.parent / f'{input_zipfile.stem}_countgd.zip'\n",
|
292 |
+
" output_csvfile = input_zipfile.parent / f'{input_zipfile.stem}.csv'\n",
|
293 |
+
"\n",
|
294 |
+
" logger.info(f'Writing outputs to {output_zipfile.name} and {output_csvfile.name} in {input_zipfile.parent} folder')\n",
|
295 |
+
" with zipfile_writer(output_zipfile) as add_to_zip, csvfile_writer(output_csvfile) as write_row:\n",
|
296 |
+
" for filename, im in tqdm(images_from_zipfile(input_zipfile)):\n",
|
297 |
+
" boxes, _ = run(im, text)\n",
|
298 |
+
" count, heatmap = get_output(im, boxes)\n",
|
299 |
+
" write_row({'filename': filename, 'count': count})\n",
|
300 |
+
" add_to_zip(heatmap, filename)"
|
301 |
+
]
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"cell_type": "markdown",
|
305 |
+
"metadata": {
|
306 |
+
"id": "TmqsSxrsuHb_"
|
307 |
+
},
|
308 |
+
"source": [
|
309 |
+
"### Run\n",
|
310 |
+
"\n",
|
311 |
+
"Use the form on colab to set the parameters, providing the zipfile with input images and a promt text representing the object you want to count.\n",
|
312 |
+
"\n",
|
313 |
+
"If you are not running on colab, change the values in the next cell\n",
|
314 |
+
"\n",
|
315 |
+
"Make sure to run the cell once you change the value."
|
316 |
+
]
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"cell_type": "code",
|
320 |
+
"execution_count": 8,
|
321 |
+
"metadata": {
|
322 |
+
"id": "ZaN918EkuHb_"
|
323 |
+
},
|
324 |
+
"outputs": [],
|
325 |
+
"source": [
|
326 |
+
"# @title ## Parameters { display-mode: \"form\", run: \"auto\" }\n",
|
327 |
+
"# @markdown Set the following options to pass to the CountGD Model\n",
|
328 |
+
"\n",
|
329 |
+
"# @markdown ---\n",
|
330 |
+
"# @markdown ### Enter a file path to a zip:\n",
|
331 |
+
"zipfile_path = \"test_images.zip\" # @param {type:\"string\"}\n",
|
332 |
+
"# @markdown\n",
|
333 |
+
"# @markdown ### Which object would you like to count?\n",
|
334 |
+
"prompt = \"strawberry\" # @param {type:\"string\"}\n",
|
335 |
+
"# @markdown ---"
|
336 |
+
]
|
337 |
+
},
|
338 |
+
{
|
339 |
+
"cell_type": "code",
|
340 |
+
"execution_count": null,
|
341 |
+
"metadata": {
|
342 |
+
"colab": {
|
343 |
+
"base_uri": "https://localhost:8080/",
|
344 |
+
"height": 66,
|
345 |
+
"referenced_widgets": [
|
346 |
+
"b14c910dd2594285bb4ad4740099e70c",
|
347 |
+
"01631442369e43138c2c5c4a9fe38ceb",
|
348 |
+
"ff84907ef88a431bab4bd3d1567cc42a"
|
349 |
+
]
|
350 |
+
},
|
351 |
+
"id": "fd-ShBCsuHb_",
|
352 |
+
"outputId": "5b36bb90-ac6e-46fe-a853-ff11d43dd9f6"
|
353 |
+
},
|
354 |
+
"outputs": [],
|
355 |
+
"source": [
|
356 |
+
"import ipywidgets as widgets\n",
|
357 |
+
"from IPython.display import display\n",
|
358 |
+
"button = widgets.Button(description=\"Run\")\n",
|
359 |
+
"\n",
|
360 |
+
"def on_button_clicked(b):\n",
|
361 |
+
" # Display the message within the output widget.\n",
|
362 |
+
" process_zipfile(Path(zipfile_path), prompt)\n",
|
363 |
+
"\n",
|
364 |
+
"button.on_click(on_button_clicked)\n",
|
365 |
+
"display(button)"
|
366 |
+
]
|
367 |
+
}
|
368 |
+
],
|
369 |
+
"metadata": {
|
370 |
+
"accelerator": "GPU",
|
371 |
+
"colab": {
|
372 |
+
"collapsed_sections": [
|
373 |
+
"gfjraK3vuHb_"
|
374 |
+
],
|
375 |
+
"gpuType": "T4",
|
376 |
+
"provenance": []
|
377 |
+
},
|
378 |
+
"kernelspec": {
|
379 |
+
"display_name": "env",
|
380 |
+
"language": "python",
|
381 |
+
"name": "python3"
|
382 |
+
},
|
383 |
+
"language_info": {
|
384 |
+
"codemirror_mode": {
|
385 |
+
"name": "ipython",
|
386 |
+
"version": 3
|
387 |
+
},
|
388 |
+
"file_extension": ".py",
|
389 |
+
"mimetype": "text/x-python",
|
390 |
+
"name": "python",
|
391 |
+
"nbconvert_exporter": "python",
|
392 |
+
"pygments_lexer": "ipython3",
|
393 |
+
"version": "3.12.7"
|
394 |
+
},
|
395 |
+
"widgets": {
|
396 |
+
"application/vnd.jupyter.widget-state+json": {
|
397 |
+
"01631442369e43138c2c5c4a9fe38ceb": {
|
398 |
+
"model_module": "@jupyter-widgets/base",
|
399 |
+
"model_module_version": "1.2.0",
|
400 |
+
"model_name": "LayoutModel",
|
401 |
+
"state": {
|
402 |
+
"_model_module": "@jupyter-widgets/base",
|
403 |
+
"_model_module_version": "1.2.0",
|
404 |
+
"_model_name": "LayoutModel",
|
405 |
+
"_view_count": null,
|
406 |
+
"_view_module": "@jupyter-widgets/base",
|
407 |
+
"_view_module_version": "1.2.0",
|
408 |
+
"_view_name": "LayoutView",
|
409 |
+
"align_content": null,
|
410 |
+
"align_items": null,
|
411 |
+
"align_self": null,
|
412 |
+
"border": null,
|
413 |
+
"bottom": null,
|
414 |
+
"display": null,
|
415 |
+
"flex": null,
|
416 |
+
"flex_flow": null,
|
417 |
+
"grid_area": null,
|
418 |
+
"grid_auto_columns": null,
|
419 |
+
"grid_auto_flow": null,
|
420 |
+
"grid_auto_rows": null,
|
421 |
+
"grid_column": null,
|
422 |
+
"grid_gap": null,
|
423 |
+
"grid_row": null,
|
424 |
+
"grid_template_areas": null,
|
425 |
+
"grid_template_columns": null,
|
426 |
+
"grid_template_rows": null,
|
427 |
+
"height": null,
|
428 |
+
"justify_content": null,
|
429 |
+
"justify_items": null,
|
430 |
+
"left": null,
|
431 |
+
"margin": null,
|
432 |
+
"max_height": null,
|
433 |
+
"max_width": null,
|
434 |
+
"min_height": null,
|
435 |
+
"min_width": null,
|
436 |
+
"object_fit": null,
|
437 |
+
"object_position": null,
|
438 |
+
"order": null,
|
439 |
+
"overflow": null,
|
440 |
+
"overflow_x": null,
|
441 |
+
"overflow_y": null,
|
442 |
+
"padding": null,
|
443 |
+
"right": null,
|
444 |
+
"top": null,
|
445 |
+
"visibility": null,
|
446 |
+
"width": null
|
447 |
+
}
|
448 |
+
},
|
449 |
+
"b14c910dd2594285bb4ad4740099e70c": {
|
450 |
+
"model_module": "@jupyter-widgets/controls",
|
451 |
+
"model_module_version": "1.5.0",
|
452 |
+
"model_name": "ButtonModel",
|
453 |
+
"state": {
|
454 |
+
"_dom_classes": [],
|
455 |
+
"_model_module": "@jupyter-widgets/controls",
|
456 |
+
"_model_module_version": "1.5.0",
|
457 |
+
"_model_name": "ButtonModel",
|
458 |
+
"_view_count": null,
|
459 |
+
"_view_module": "@jupyter-widgets/controls",
|
460 |
+
"_view_module_version": "1.5.0",
|
461 |
+
"_view_name": "ButtonView",
|
462 |
+
"button_style": "",
|
463 |
+
"description": "Run",
|
464 |
+
"disabled": false,
|
465 |
+
"icon": "",
|
466 |
+
"layout": "IPY_MODEL_01631442369e43138c2c5c4a9fe38ceb",
|
467 |
+
"style": "IPY_MODEL_ff84907ef88a431bab4bd3d1567cc42a",
|
468 |
+
"tooltip": ""
|
469 |
+
}
|
470 |
+
},
|
471 |
+
"ff84907ef88a431bab4bd3d1567cc42a": {
|
472 |
+
"model_module": "@jupyter-widgets/controls",
|
473 |
+
"model_module_version": "1.5.0",
|
474 |
+
"model_name": "ButtonStyleModel",
|
475 |
+
"state": {
|
476 |
+
"_model_module": "@jupyter-widgets/controls",
|
477 |
+
"_model_module_version": "1.5.0",
|
478 |
+
"_model_name": "ButtonStyleModel",
|
479 |
+
"_view_count": null,
|
480 |
+
"_view_module": "@jupyter-widgets/base",
|
481 |
+
"_view_module_version": "1.2.0",
|
482 |
+
"_view_name": "StyleView",
|
483 |
+
"button_color": null,
|
484 |
+
"font_weight": ""
|
485 |
+
}
|
486 |
+
}
|
487 |
+
}
|
488 |
+
}
|
489 |
+
},
|
490 |
+
"nbformat": 4,
|
491 |
+
"nbformat_minor": 0
|
492 |
+
}
|
requirements.txt
CHANGED
@@ -12,6 +12,8 @@ ushlex
|
|
12 |
gradio>=4.0.0,<5
|
13 |
gradio_image_prompter-0.1.0-py3-none-any.whl
|
14 |
spaces
|
|
|
|
|
15 |
--extra-index-url https://download.pytorch.org/whl/cu121
|
16 |
torch<2.6
|
17 |
torchvision
|
|
|
12 |
gradio>=4.0.0,<5
|
13 |
gradio_image_prompter-0.1.0-py3-none-any.whl
|
14 |
spaces
|
15 |
+
filetype
|
16 |
+
tqdm
|
17 |
--extra-index-url https://download.pytorch.org/whl/cu121
|
18 |
torch<2.6
|
19 |
torchvision
|