Spaces:
Runtime error
Runtime error
File size: 10,504 Bytes
6e7b2f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
# +
import os
import math
import random
import numbers
import requests
import shutil
import numpy as np
import scipy.stats as stats
from PIL import Image
from tqdm.auto import tqdm
from xdog import to_sketch
# -
import torch
import torch.nn as nn
import torch.utils.data as data
from torch.utils.data.sampler import Sampler
from torchvision import transforms
from torchvision.transforms import Resize, CenterCrop
mu, sigma = 1, 0.005
X = stats.truncnorm((0 - mu) / sigma, (1 - mu) / sigma, loc=mu, scale=sigma)
denormalize = transforms.Compose([ transforms.Normalize(mean = [ 0., 0., 0. ],
std = [ 1/0.5, 1/0.5, 1/0.5 ]),
transforms.Normalize(mean = [ -0.5, -0.5, -0.5 ],
std = [ 1., 1., 1. ]),])
etrans = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5), (0.5))
])
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def predict_img(gen, sk, hnt = None):
#sk = Image.open(sketch_path).convert('L')
sk = etrans(sk)
pad_w = 16 - sk.shape[1] % 16 if sk.shape[1] % 16 != 0 else 0
pad_h = 16 - sk.shape[2] % 16 if sk.shape[2] % 16 != 0 else 0
pad = nn.ZeroPad2d((pad_h, 0, pad_w, 0))
sk = pad(sk)
sk = sk.unsqueeze(0)
sk = sk.to(device)
if hnt == None:
hnt = torch.zeros((1, 4, sk.shape[2]//4, sk.shape[3]//4))
hnt = hnt.to(device)
img_gen = gen(sk, hnt, sketch_feat=None).squeeze(0)
img_gen = denormalize(img_gen) * 255
img_gen = img_gen.permute(1,2,0).detach().cpu().numpy().astype(np.uint8)
#return img_gen[pad_w:, pad_h:]
return Image.fromarray(img_gen[pad_w:, pad_h:])
def files(img_path, img_size=512):
img_path = os.path.abspath(img_path)
line_widths = sorted([el for el in os.listdir(os.path.join(img_path, 'pics_sketch')) if el != '.ipynb_checkpoints'])
images_names = sorted([el for el in os.listdir(os.path.join(img_path, 'pics_sketch', line_widths[0])) if '.jpg' in el])
images_names = [el for el in images_names if np.all(np.array(Image.open(os.path.join(img_path, 'pics', el)).size) >= np.array([img_size, img_size]))]
images_color = [os.path.join(img_path, 'pics', el) for el in images_names]
images_sketch = {line_width:[os.path.join(img_path, 'pics_sketch', line_width, el) for el in images_names] for line_width in line_widths}
return images_color, images_sketch
def mask_gen(img_size=512, bs=4):
maskS = img_size // 4
mask1 = torch.cat([torch.rand(1, 1, maskS, maskS).ge(X.rvs(1)[0]).float() for _ in range(bs // 2)], 0)
mask2 = torch.cat([torch.zeros(1, 1, maskS, maskS).float() for _ in range(bs // 2)], 0)
mask = torch.cat([mask1, mask2], 0)
return mask
def jitter(x):
ran = random.uniform(0.7, 1)
return x * ran + 1 - ran
def make_trans(img_size):
vtrans = transforms.Compose([
RandomSizedCrop(img_size // 4, Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
ctrans = transforms.Compose([
transforms.Resize(img_size, Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
strans = transforms.Compose([
transforms.Resize(img_size, Image.BICUBIC),
transforms.ToTensor(),
transforms.Lambda(jitter),
transforms.Normalize((0.5), (0.5))
])
return vtrans, ctrans, strans
class RandomCrop(object):
"""Crops the given PIL.Image at a random location to have a region of
the given size. size can be a tuple (target_height, target_width)
or an integer, in which case the target will be of a square shape (size, size)
"""
def __init__(self, size):
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.size = size
def __call__(self, img1, img2):
w, h = img1.size
th, tw = self.size
if w == tw and h == th: # ValueError: empty range for randrange() (0,0, 0)
return img1, img2
if w == tw:
x1 = 0
y1 = random.randint(0, h - th)
return img1.crop((x1, y1, x1 + tw, y1 + th)), img2.crop((x1, y1, x1 + tw, y1 + th))
elif h == th:
x1 = random.randint(0, w - tw)
y1 = 0
return img1.crop((x1, y1, x1 + tw, y1 + th)), img2.crop((x1, y1, x1 + tw, y1 + th))
else:
x1 = random.randint(0, w - tw)
y1 = random.randint(0, h - th)
return img1.crop((x1, y1, x1 + tw, y1 + th)), img2.crop((x1, y1, x1 + tw, y1 + th))
class RandomSizedCrop(object):
"""Random crop the given PIL.Image to a random size of (0.08 to 1.0) of the original size
and and a random aspect ratio of 3/4 to 4/3 of the original aspect ratio
This is popularly used to train the Inception networks
size: size of the smaller edge
interpolation: Default: PIL.Image.BILINEAR
"""
def __init__(self, size, interpolation=Image.BICUBIC):
self.size = size
self.interpolation = interpolation
def __call__(self, img):
for attempt in range(10):
area = img.size[0] * img.size[1]
target_area = random.uniform(0.9, 1.) * area
aspect_ratio = random.uniform(7. / 8, 8. / 7)
w = int(round(math.sqrt(target_area * aspect_ratio)))
h = int(round(math.sqrt(target_area / aspect_ratio)))
if random.random() < 0.5:
w, h = h, w
if w <= img.size[0] and h <= img.size[1]:
x1 = random.randint(0, img.size[0] - w)
y1 = random.randint(0, img.size[1] - h)
img = img.crop((x1, y1, x1 + w, y1 + h))
assert (img.size == (w, h))
return img.resize((self.size, self.size), self.interpolation)
# Fallback
Resize = Resize(self.size, interpolation=self.interpolation)
crop = CenterCrop(self.size)
return crop(Resize(img))
class ImageFolder(data.Dataset):
def __init__(self, img_path, img_size):
self.images_color, self.images_sketch = files(img_path, img_size)
if (any([self.images_sketch[key] == 0 for key in self.images_sketch])) or (len(self.images_color) == 0):
raise (RuntimeError("Found 0 images in one of the folders."))
if any([len(self.images_sketch[key]) != len(self.images_color) for key in self.images_sketch]):
raise (RuntimeError("The number of sketches is not equal to the number of colorized images."))
self.img_path = img_path
self.img_size = img_size
self.vtrans, self.ctrans, self.strans = make_trans(img_size)
def __getitem__(self, index):
color = Image.open(self.images_color[index]).convert('RGB')
random_line_width = random.choice(list(self.images_sketch.keys()))
sketch = Image.open(self.images_sketch[random_line_width][index]).convert('L')
#the image can be smaller than img_size, fix!
color, sketch = RandomCrop(self.img_size)(color, sketch)
if random.random() < 0.5:
color, sketch = color.transpose(Image.FLIP_LEFT_RIGHT), sketch.transpose(Image.FLIP_LEFT_RIGHT)
color, color_down, sketch = self.ctrans(color), self.vtrans(color), self.strans(sketch)
return color, color_down, sketch
def __len__(self):
return len(self.images_color)
class GivenIterationSampler(Sampler):
def __init__(self, dataset, total_iter, batch_size, diter, last_iter=-1):
self.dataset = dataset
self.total_iter = total_iter
self.batch_size = batch_size
self.diter = diter
self.last_iter = last_iter
self.total_size = self.total_iter * self.batch_size * (self.diter + 1)
self.indices = self.gen_new_list()
self.call = 0
def __iter__(self):
#if self.call == 0:
#self.call = 1
return iter(self.indices[(self.last_iter + 1) * self.batch_size * (self.diter + 1):])
#else:
# raise RuntimeError("this sampler is not designed to be called more than once!!")
def gen_new_list(self):
# each process shuffle all list with same seed
np.random.seed(0)
indices = np.arange(len(self.dataset))
indices = indices[:self.total_size]
num_repeat = (self.total_size - 1) // indices.shape[0] + 1
indices = np.tile(indices, num_repeat)
indices = indices[:self.total_size]
np.random.shuffle(indices)
assert len(indices) == self.total_size
return indices
def __len__(self):
# note here we do not take last iter into consideration, since __len__
# should only be used for displaying, the correct remaining size is
# handled by dataloader
# return self.total_size - (self.last_iter+1)*self.batch_size
return self.total_size
def get_dataloader(img_path, img_size=512, seed=0, total_iter=250000, bs=4, diters=1, last_iter=-1):
random.seed(seed)
train_dataset = ImageFolder(img_path=img_path, img_size=img_size)
train_sampler = GivenIterationSampler(train_dataset, total_iter, bs, diters, last_iter=last_iter)
return data.DataLoader(train_dataset, batch_size=bs, shuffle=False, pin_memory=True, num_workers=4, sampler=train_sampler)
def get_data(links, img_path='alacgan_data', line_widths=[0.3, 0.5]):
c = 0
for line_width in line_widths:
lw = str(line_width)
if lw not in os.listdir(os.path.join(img_path, 'pics_sketch')):
os.mkdir(os.path.join(img_path, 'pics_sketch', lw))
else:
shutil.rmtree(os.path.join(img_path, 'pics_sketch', lw))
os.mkdir(os.path.join(img_path, 'pics_sketch', lw))
for link in tqdm(links):
img_orig = Image.open(requests.get(link, stream=True).raw).convert('RGB')
img_orig.save(os.path.join(img_path, 'pics', str(c) + '.jpg'), 'JPEG')
for line_width in line_widths:
sketch_test = to_sketch(img_orig, sigma=line_width, k=5, gamma=0.96, epsilon=-1, phi=10e15, area_min=2)
sketch_test.save(os.path.join(img_path, 'pics_sketch', str(line_width), str(c) + '.jpg'), 'JPEG')
c += 1
|