File size: 10,504 Bytes
6e7b2f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# +
import os
import math
import random
import numbers
import requests
import shutil
import numpy as np
import scipy.stats as stats
from PIL import Image
from tqdm.auto import tqdm

from xdog import to_sketch
# -

import torch
import torch.nn as nn
import torch.utils.data as data
from torch.utils.data.sampler import Sampler

from torchvision import transforms
from torchvision.transforms import Resize, CenterCrop

mu, sigma = 1, 0.005
X = stats.truncnorm((0 - mu) / sigma, (1 - mu) / sigma, loc=mu, scale=sigma)

denormalize = transforms.Compose([ transforms.Normalize(mean = [ 0., 0., 0. ],
                                                        std = [ 1/0.5, 1/0.5, 1/0.5 ]),
                                  transforms.Normalize(mean = [ -0.5, -0.5, -0.5 ],
                                                       std = [ 1., 1., 1. ]),])

etrans = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.5), (0.5))
])

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

def predict_img(gen, sk, hnt = None):
    #sk = Image.open(sketch_path).convert('L')
    sk = etrans(sk)

    pad_w = 16 - sk.shape[1] % 16 if sk.shape[1] % 16 != 0 else 0
    pad_h = 16 - sk.shape[2] % 16 if sk.shape[2] % 16 != 0 else 0
    pad = nn.ZeroPad2d((pad_h, 0, pad_w, 0))
    sk = pad(sk)

    sk = sk.unsqueeze(0)
    sk = sk.to(device)

    if hnt == None:
        hnt = torch.zeros((1, 4, sk.shape[2]//4, sk.shape[3]//4))

    hnt = hnt.to(device)

    img_gen = gen(sk, hnt, sketch_feat=None).squeeze(0)
    img_gen = denormalize(img_gen) * 255
    img_gen = img_gen.permute(1,2,0).detach().cpu().numpy().astype(np.uint8)
    #return img_gen[pad_w:, pad_h:]
    return Image.fromarray(img_gen[pad_w:, pad_h:])

def files(img_path, img_size=512):
    img_path = os.path.abspath(img_path)
    line_widths = sorted([el for el in os.listdir(os.path.join(img_path, 'pics_sketch')) if el != '.ipynb_checkpoints'])
    images_names = sorted([el for el in os.listdir(os.path.join(img_path, 'pics_sketch', line_widths[0])) if '.jpg' in el])
    
    images_names = [el for el in images_names if np.all(np.array(Image.open(os.path.join(img_path, 'pics', el)).size) >= np.array([img_size, img_size]))]
    
    images_color = [os.path.join(img_path, 'pics', el) for el in images_names]
    images_sketch = {line_width:[os.path.join(img_path, 'pics_sketch', line_width, el) for el in images_names] for line_width in line_widths}
    return images_color, images_sketch

def mask_gen(img_size=512, bs=4):
    maskS = img_size // 4

    mask1 = torch.cat([torch.rand(1, 1, maskS, maskS).ge(X.rvs(1)[0]).float() for _ in range(bs // 2)], 0)
    mask2 = torch.cat([torch.zeros(1, 1, maskS, maskS).float() for _ in range(bs // 2)], 0)
    mask = torch.cat([mask1, mask2], 0)
    return mask

def jitter(x):
    ran = random.uniform(0.7, 1)
    return x * ran + 1 - ran

def make_trans(img_size):
    vtrans = transforms.Compose([
            RandomSizedCrop(img_size // 4, Image.BICUBIC),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

    ctrans = transforms.Compose([
            transforms.Resize(img_size, Image.BICUBIC),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

    strans = transforms.Compose([
            transforms.Resize(img_size, Image.BICUBIC),
            transforms.ToTensor(),
            transforms.Lambda(jitter),
            transforms.Normalize((0.5), (0.5))
    ])
    
    return vtrans, ctrans, strans

class RandomCrop(object):
    """Crops the given PIL.Image at a random location to have a region of
    the given size. size can be a tuple (target_height, target_width)
    or an integer, in which case the target will be of a square shape (size, size)
    """

    def __init__(self, size):
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size

    def __call__(self, img1, img2):
        w, h = img1.size
        th, tw = self.size
        if w == tw and h == th:  # ValueError: empty range for randrange() (0,0, 0)
            return img1, img2

        if w == tw:
            x1 = 0
            y1 = random.randint(0, h - th)
            return img1.crop((x1, y1, x1 + tw, y1 + th)), img2.crop((x1, y1, x1 + tw, y1 + th))

        elif h == th:
            x1 = random.randint(0, w - tw)
            y1 = 0
            return img1.crop((x1, y1, x1 + tw, y1 + th)), img2.crop((x1, y1, x1 + tw, y1 + th))

        else:
            x1 = random.randint(0, w - tw)
            y1 = random.randint(0, h - th)
            return img1.crop((x1, y1, x1 + tw, y1 + th)), img2.crop((x1, y1, x1 + tw, y1 + th))

class RandomSizedCrop(object):
    """Random crop the given PIL.Image to a random size of (0.08 to 1.0) of the original size
    and and a random aspect ratio of 3/4 to 4/3 of the original aspect ratio
    This is popularly used to train the Inception networks
    size: size of the smaller edge
    interpolation: Default: PIL.Image.BILINEAR
    """

    def __init__(self, size, interpolation=Image.BICUBIC):
        self.size = size
        self.interpolation = interpolation

    def __call__(self, img):
        for attempt in range(10):
            area = img.size[0] * img.size[1]
            target_area = random.uniform(0.9, 1.) * area
            aspect_ratio = random.uniform(7. / 8, 8. / 7)

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if random.random() < 0.5:
                w, h = h, w

            if w <= img.size[0] and h <= img.size[1]:
                x1 = random.randint(0, img.size[0] - w)
                y1 = random.randint(0, img.size[1] - h)

                img = img.crop((x1, y1, x1 + w, y1 + h))
                assert (img.size == (w, h))

                return img.resize((self.size, self.size), self.interpolation)

        # Fallback
        Resize = Resize(self.size, interpolation=self.interpolation)
        crop = CenterCrop(self.size)
        return crop(Resize(img))


class ImageFolder(data.Dataset):
    def __init__(self, img_path, img_size):
        
        self.images_color, self.images_sketch = files(img_path, img_size)
        if (any([self.images_sketch[key] == 0 for key in self.images_sketch])) or (len(self.images_color) == 0):
            raise (RuntimeError("Found 0 images in one of the folders."))
        if any([len(self.images_sketch[key]) != len(self.images_color) for key in self.images_sketch]):
            raise (RuntimeError("The number of sketches is not equal to the number of colorized images."))
        self.img_path = img_path
        self.img_size = img_size
        self.vtrans, self.ctrans, self.strans = make_trans(img_size)

    def __getitem__(self, index):
        color = Image.open(self.images_color[index]).convert('RGB')
        
        random_line_width = random.choice(list(self.images_sketch.keys()))
        sketch = Image.open(self.images_sketch[random_line_width][index]).convert('L')
        #the image can be smaller than img_size, fix!
        color, sketch = RandomCrop(self.img_size)(color, sketch)
        if random.random() < 0.5:
            color, sketch = color.transpose(Image.FLIP_LEFT_RIGHT), sketch.transpose(Image.FLIP_LEFT_RIGHT)
            
        color, color_down, sketch = self.ctrans(color), self.vtrans(color), self.strans(sketch)
                
        return color, color_down, sketch

    def __len__(self):
        return len(self.images_color)


class GivenIterationSampler(Sampler):
    def __init__(self, dataset, total_iter, batch_size, diter, last_iter=-1):
        self.dataset = dataset
        self.total_iter = total_iter
        self.batch_size = batch_size
        self.diter = diter
        self.last_iter = last_iter

        self.total_size = self.total_iter * self.batch_size * (self.diter + 1)

        self.indices = self.gen_new_list()
        self.call = 0
        

    def __iter__(self):
        #if self.call == 0:
            #self.call = 1
        return iter(self.indices[(self.last_iter + 1) * self.batch_size * (self.diter + 1):])
        #else:
        #    raise RuntimeError("this sampler is not designed to be called more than once!!")

    def gen_new_list(self):
        # each process shuffle all list with same seed
        np.random.seed(0)

        indices = np.arange(len(self.dataset))
        indices = indices[:self.total_size]
        num_repeat = (self.total_size - 1) // indices.shape[0] + 1
        indices = np.tile(indices, num_repeat)
        indices = indices[:self.total_size]

        np.random.shuffle(indices)
        assert len(indices) == self.total_size
        return indices

    def __len__(self):
        # note here we do not take last iter into consideration, since __len__
        # should only be used for displaying, the correct remaining size is
        # handled by dataloader
        # return self.total_size - (self.last_iter+1)*self.batch_size
        return self.total_size

def get_dataloader(img_path, img_size=512, seed=0, total_iter=250000, bs=4, diters=1, last_iter=-1):
    
    random.seed(seed)
    
    train_dataset = ImageFolder(img_path=img_path, img_size=img_size)

    train_sampler = GivenIterationSampler(train_dataset, total_iter, bs, diters, last_iter=last_iter)

    return data.DataLoader(train_dataset, batch_size=bs, shuffle=False, pin_memory=True, num_workers=4, sampler=train_sampler)


def get_data(links, img_path='alacgan_data', line_widths=[0.3, 0.5]):
    c = 0
    
    for line_width in line_widths:
        lw = str(line_width)
        if lw not in os.listdir(os.path.join(img_path, 'pics_sketch')):
            os.mkdir(os.path.join(img_path, 'pics_sketch', lw))
        else:
            shutil.rmtree(os.path.join(img_path, 'pics_sketch', lw))
            os.mkdir(os.path.join(img_path, 'pics_sketch', lw))
            
    for link in tqdm(links):
        img_orig = Image.open(requests.get(link, stream=True).raw).convert('RGB')
        img_orig.save(os.path.join(img_path, 'pics', str(c) + '.jpg'), 'JPEG')
        for line_width in line_widths:
            sketch_test = to_sketch(img_orig, sigma=line_width, k=5, gamma=0.96, epsilon=-1, phi=10e15, area_min=2)
            sketch_test.save(os.path.join(img_path, 'pics_sketch', str(line_width), str(c) + '.jpg'), 'JPEG')
            
        c += 1