update file and model for only 1bit
Browse files
app.py
CHANGED
@@ -1,3 +1,296 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from gradio_client import Client
|
3 |
+
from huggingface_hub import InferenceClient
|
4 |
+
import random
|
5 |
+
#ss_client = Client("https://omnibus-html-image-current-tab.hf.space/")
|
6 |
|
7 |
+
models=[
|
8 |
+
|
9 |
+
"1bitLLM/bitnet_b1_58-3B",
|
10 |
+
"1bitLLM/bitnet_b1_58-large",
|
11 |
+
"1bitLLM/bitnet_b1_58-xl",
|
12 |
+
]
|
13 |
+
client_z=[]
|
14 |
+
|
15 |
+
|
16 |
+
def load_models(inp,new_models):
|
17 |
+
if not new_models:
|
18 |
+
new_models=models
|
19 |
+
out_box=[gr.Chatbot(),gr.Chatbot(),gr.Chatbot(),gr.Chatbot()]
|
20 |
+
print(type(inp))
|
21 |
+
print(inp)
|
22 |
+
#print(new_models[inp[0]])
|
23 |
+
client_z.clear()
|
24 |
+
for z,ea in enumerate(inp):
|
25 |
+
client_z.append(InferenceClient(new_models[inp[z]]))
|
26 |
+
out_box[z]=(gr.update(label=new_models[inp[z]]))
|
27 |
+
return out_box[0],out_box[1],out_box[2],out_box[3]
|
28 |
+
|
29 |
+
def format_prompt_default(message, history):
|
30 |
+
prompt = ""
|
31 |
+
if history:
|
32 |
+
#<start_of_turn>userHow does the brain work?<end_of_turn><start_of_turn>model
|
33 |
+
for user_prompt, bot_response in history:
|
34 |
+
prompt += f"{user_prompt}\n"
|
35 |
+
print(prompt)
|
36 |
+
prompt += f"{bot_response}\n"
|
37 |
+
print(prompt)
|
38 |
+
prompt += f"{message}\n"
|
39 |
+
return prompt
|
40 |
+
|
41 |
+
def format_prompt_gemma(message, history):
|
42 |
+
prompt = ""
|
43 |
+
if history:
|
44 |
+
#<start_of_turn>userHow does the brain work?<end_of_turn><start_of_turn>model
|
45 |
+
for user_prompt, bot_response in history:
|
46 |
+
prompt += f"{user_prompt}\n"
|
47 |
+
print(prompt)
|
48 |
+
prompt += f"{bot_response}\n"
|
49 |
+
print(prompt)
|
50 |
+
prompt += f"<start_of_turn>user{message}<end_of_turn><start_of_turn>model"
|
51 |
+
return prompt
|
52 |
+
|
53 |
+
|
54 |
+
def format_prompt_mixtral(message, history):
|
55 |
+
prompt = "<s>"
|
56 |
+
if history:
|
57 |
+
for user_prompt, bot_response in history:
|
58 |
+
prompt += f"[INST] {user_prompt} [/INST]"
|
59 |
+
prompt += f" {bot_response}</s> "
|
60 |
+
prompt += f"[INST] {message} [/INST]"
|
61 |
+
return prompt
|
62 |
+
|
63 |
+
def format_prompt_choose(message, history, model_name, new_models=None):
|
64 |
+
if not new_models:
|
65 |
+
new_models=models
|
66 |
+
if "gemma" in new_models[model_name].lower() and "it" in new_models[model_name].lower():
|
67 |
+
return format_prompt_gemma(message,history)
|
68 |
+
if "mixtral" in new_models[model_name].lower():
|
69 |
+
return format_prompt_mixtral(message,history)
|
70 |
+
else:
|
71 |
+
return format_prompt_default(message,history)
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
mega_hist=[[],[],[],[]]
|
76 |
+
def chat_inf_tree(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,rep_p,hid_val):
|
77 |
+
if len(client_choice)>=hid_val:
|
78 |
+
client=client_z[int(hid_val)-1]
|
79 |
+
if history:
|
80 |
+
mega_hist[hid_val-1]=history
|
81 |
+
#history = []
|
82 |
+
hist_len=0
|
83 |
+
generate_kwargs = dict(
|
84 |
+
temperature=temp,
|
85 |
+
max_new_tokens=tokens,
|
86 |
+
top_p=top_p,
|
87 |
+
repetition_penalty=rep_p,
|
88 |
+
do_sample=True,
|
89 |
+
seed=seed,
|
90 |
+
)
|
91 |
+
#formatted_prompt=prompt
|
92 |
+
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", mega_hist[hid_val-1])
|
93 |
+
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
94 |
+
output = ""
|
95 |
+
for response in stream:
|
96 |
+
output += response.token.text
|
97 |
+
yield [(prompt,output)]
|
98 |
+
mega_hist[hid_val-1].append((prompt,output))
|
99 |
+
yield mega_hist[hid_val-1]
|
100 |
+
else:
|
101 |
+
yield None
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
def chat_inf_a(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,rep_p,hid_val):
|
107 |
+
if len(client_choice)>=hid_val:
|
108 |
+
if system_prompt:
|
109 |
+
system_prompt=f'{system_prompt}, '
|
110 |
+
client1=client_z[int(hid_val)-1]
|
111 |
+
if not history:
|
112 |
+
history = []
|
113 |
+
hist_len=0
|
114 |
+
generate_kwargs = dict(
|
115 |
+
temperature=temp,
|
116 |
+
max_new_tokens=tokens,
|
117 |
+
top_p=top_p,
|
118 |
+
repetition_penalty=rep_p,
|
119 |
+
do_sample=True,
|
120 |
+
seed=seed,
|
121 |
+
)
|
122 |
+
#formatted_prompt=prompt
|
123 |
+
formatted_prompt = format_prompt_choose(f"{system_prompt}{prompt}", history, client_choice[0])
|
124 |
+
stream1 = client1.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
125 |
+
output = ""
|
126 |
+
for response in stream1:
|
127 |
+
output += response.token.text
|
128 |
+
yield [(prompt,output)]
|
129 |
+
history.append((prompt,output))
|
130 |
+
yield history
|
131 |
+
else:
|
132 |
+
yield None
|
133 |
+
|
134 |
+
|
135 |
+
def chat_inf_b(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,rep_p,hid_val):
|
136 |
+
if len(client_choice)>=hid_val:
|
137 |
+
if system_prompt:
|
138 |
+
system_prompt=f'{system_prompt}, '
|
139 |
+
client2=client_z[int(hid_val)-1]
|
140 |
+
if not history:
|
141 |
+
history = []
|
142 |
+
hist_len=0
|
143 |
+
generate_kwargs = dict(
|
144 |
+
temperature=temp,
|
145 |
+
max_new_tokens=tokens,
|
146 |
+
top_p=top_p,
|
147 |
+
repetition_penalty=rep_p,
|
148 |
+
do_sample=True,
|
149 |
+
seed=seed,
|
150 |
+
)
|
151 |
+
#formatted_prompt=prompt
|
152 |
+
formatted_prompt = format_prompt_choose(f"{system_prompt}{prompt}", history, client_choice[1])
|
153 |
+
stream2 = client2.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
154 |
+
output = ""
|
155 |
+
for response in stream2:
|
156 |
+
output += response.token.text
|
157 |
+
yield [(prompt,output)]
|
158 |
+
history.append((prompt,output))
|
159 |
+
yield history
|
160 |
+
else:
|
161 |
+
yield None
|
162 |
+
|
163 |
+
def chat_inf_c(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,rep_p,hid_val):
|
164 |
+
if len(client_choice)>=hid_val:
|
165 |
+
if system_prompt:
|
166 |
+
system_prompt=f'{system_prompt}, '
|
167 |
+
client3=client_z[int(hid_val)-1]
|
168 |
+
if not history:
|
169 |
+
history = []
|
170 |
+
hist_len=0
|
171 |
+
generate_kwargs = dict(
|
172 |
+
temperature=temp,
|
173 |
+
max_new_tokens=tokens,
|
174 |
+
top_p=top_p,
|
175 |
+
repetition_penalty=rep_p,
|
176 |
+
do_sample=True,
|
177 |
+
seed=seed,
|
178 |
+
)
|
179 |
+
#formatted_prompt=prompt
|
180 |
+
formatted_prompt = format_prompt_choose(f"{system_prompt}{prompt}", history, client_choice[2])
|
181 |
+
stream3 = client3.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
182 |
+
output = ""
|
183 |
+
for response in stream3:
|
184 |
+
output += response.token.text
|
185 |
+
yield [(prompt,output)]
|
186 |
+
history.append((prompt,output))
|
187 |
+
yield history
|
188 |
+
else:
|
189 |
+
yield None
|
190 |
+
|
191 |
+
def chat_inf_d(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,rep_p,hid_val):
|
192 |
+
if len(client_choice)>=hid_val:
|
193 |
+
if system_prompt:
|
194 |
+
system_prompt=f'{system_prompt}, '
|
195 |
+
client4=client_z[int(hid_val)-1]
|
196 |
+
if not history:
|
197 |
+
history = []
|
198 |
+
hist_len=0
|
199 |
+
generate_kwargs = dict(
|
200 |
+
temperature=temp,
|
201 |
+
max_new_tokens=tokens,
|
202 |
+
top_p=top_p,
|
203 |
+
repetition_penalty=rep_p,
|
204 |
+
do_sample=True,
|
205 |
+
seed=seed,
|
206 |
+
)
|
207 |
+
#formatted_prompt=prompt
|
208 |
+
formatted_prompt = format_prompt_choose(f"{system_prompt}{prompt}", history, client_choice[3])
|
209 |
+
stream4 = client4.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
210 |
+
output = ""
|
211 |
+
for response in stream4:
|
212 |
+
output += response.token.text
|
213 |
+
yield [(prompt,output)]
|
214 |
+
history.append((prompt,output))
|
215 |
+
yield history
|
216 |
+
else:
|
217 |
+
yield None
|
218 |
+
def add_new_model(inp, cur):
|
219 |
+
cur.append(inp)
|
220 |
+
return cur,gr.update(choices=[z for z in cur])
|
221 |
+
def load_new(models=models):
|
222 |
+
return models
|
223 |
+
|
224 |
+
def clear_fn():
|
225 |
+
return None,None,None,None,None,None
|
226 |
+
rand_val=random.randint(1,1111111111111111)
|
227 |
+
def check_rand(inp,val):
|
228 |
+
if inp==True:
|
229 |
+
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1,1111111111111111))
|
230 |
+
else:
|
231 |
+
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))
|
232 |
+
|
233 |
+
with gr.Blocks() as app:
|
234 |
+
new_models=gr.State([])
|
235 |
+
gr.HTML("""<center><h1 style='font-size:xx-large;'>Chatbot Model Compare</h1><br><h3>running on Huggingface Inference Client</h3><br><h7>EXPERIMENTAL""")
|
236 |
+
with gr.Row():
|
237 |
+
chat_a = gr.Chatbot(height=500)
|
238 |
+
chat_b = gr.Chatbot(height=500)
|
239 |
+
with gr.Row():
|
240 |
+
chat_c = gr.Chatbot(height=500)
|
241 |
+
chat_d = gr.Chatbot(height=500)
|
242 |
+
with gr.Group():
|
243 |
+
with gr.Row():
|
244 |
+
with gr.Column(scale=3):
|
245 |
+
inp = gr.Textbox(label="Prompt")
|
246 |
+
sys_inp = gr.Textbox(label="System Prompt (optional)")
|
247 |
+
with gr.Row():
|
248 |
+
with gr.Column(scale=2):
|
249 |
+
btn = gr.Button("Chat")
|
250 |
+
with gr.Column(scale=1):
|
251 |
+
with gr.Group():
|
252 |
+
stop_btn=gr.Button("Stop")
|
253 |
+
clear_btn=gr.Button("Clear")
|
254 |
+
client_choice=gr.Dropdown(label="Models",type='index',choices=[c for c in models],max_choices=4,multiselect=True,interactive=True)
|
255 |
+
add_model=gr.Textbox(label="New Model")
|
256 |
+
add_btn=gr.Button("Add Model")
|
257 |
+
with gr.Column(scale=1):
|
258 |
+
with gr.Group():
|
259 |
+
rand = gr.Checkbox(label="Random Seed", value=True)
|
260 |
+
seed=gr.Slider(label="Seed", minimum=1, maximum=1111111111111111,step=1, value=rand_val)
|
261 |
+
tokens = gr.Slider(label="Max new tokens",value=3840,minimum=0,maximum=8000,step=64,interactive=True, visible=True,info="The maximum number of tokens")
|
262 |
+
temp=gr.Slider(label="Temperature",step=0.01, minimum=0.01, maximum=1.0, value=0.9)
|
263 |
+
top_p=gr.Slider(label="Top-P",step=0.01, minimum=0.01, maximum=1.0, value=0.9)
|
264 |
+
rep_p=gr.Slider(label="Repetition Penalty",step=0.1, minimum=0.1, maximum=2.0, value=1.0)
|
265 |
+
with gr.Accordion(label="Screenshot",open=False):
|
266 |
+
with gr.Row():
|
267 |
+
with gr.Column(scale=3):
|
268 |
+
im_btn=gr.Button("Screenshot")
|
269 |
+
img=gr.Image(type='filepath')
|
270 |
+
with gr.Column(scale=1):
|
271 |
+
with gr.Row():
|
272 |
+
im_height=gr.Number(label="Height",value=5000)
|
273 |
+
im_width=gr.Number(label="Width",value=500)
|
274 |
+
wait_time=gr.Number(label="Wait Time",value=3000)
|
275 |
+
theme=gr.Radio(label="Theme", choices=["light","dark"],value="light")
|
276 |
+
chatblock=gr.Dropdown(label="Chatblocks",info="Choose specific blocks of chat",choices=[c for c in range(1,40)],multiselect=True)
|
277 |
+
hid1=gr.Number(value=1,visible=False)
|
278 |
+
hid2=gr.Number(value=2,visible=False)
|
279 |
+
hid3=gr.Number(value=3,visible=False)
|
280 |
+
hid4=gr.Number(value=4,visible=False)
|
281 |
+
|
282 |
+
app.load(load_new,None,new_models)
|
283 |
+
add_btn.click(add_new_model,[add_model,new_models],[new_models,client_choice])
|
284 |
+
client_choice.change(load_models,[client_choice,new_models],[chat_a,chat_b,chat_c,chat_d])
|
285 |
+
|
286 |
+
#im_go=im_btn.click(get_screenshot,[chat_b,im_height,im_width,chatblock,theme,wait_time],img)
|
287 |
+
#chat_sub=inp.submit(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p],chat_b)
|
288 |
+
|
289 |
+
go1=btn.click(check_rand,[rand,seed],seed).then(chat_inf_a,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p,hid1],chat_a)
|
290 |
+
go2=btn.click(check_rand,[rand,seed],seed).then(chat_inf_b,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p,hid2],chat_b)
|
291 |
+
go3=btn.click(check_rand,[rand,seed],seed).then(chat_inf_c,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p,hid3],chat_c)
|
292 |
+
go4=btn.click(check_rand,[rand,seed],seed).then(chat_inf_d,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p,hid4],chat_d)
|
293 |
+
|
294 |
+
stop_btn.click(None,None,None,cancels=[go1,go2,go3,go4])
|
295 |
+
clear_btn.click(clear_fn,None,[inp,sys_inp,chat_a,chat_b,chat_c,chat_d])
|
296 |
+
app.queue(default_concurrency_limit=10).launch()
|