File size: 4,490 Bytes
355b7d6
 
 
 
 
ab382f0
355b7d6
ab382f0
 
 
355b7d6
 
57ab467
 
ab382f0
 
 
355b7d6
2d44604
355b7d6
2d44604
3b4a08d
355b7d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab382f0
 
355b7d6
2ae46d7
355b7d6
f9d021c
1e98994
 
 
 
 
 
a2f9117
582365f
f9d021c
582365f
ec5921d
f9d021c
355b7d6
2ae46d7
 
 
355b7d6
2ae46d7
 
 
 
 
 
355b7d6
 
2ae46d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b4a08d
2ae46d7
 
355b7d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80d5294
 
 
 
355b7d6
 
 
80d5294
 
90c63d3
4a4974d
 
80d5294
 
 
 
bcd2a0f
355b7d6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

import json
import subprocess
from threading import Thread

import torch
import spaces
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer

subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

MODEL_ID = "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B"
CHAT_TEMPLATE = "َAuto"
MODEL_NAME = MODEL_ID.split("/")[-1]
CONTEXT_LENGTH = 16000

# Estableciendo valores directamente para las variables
COLOR = "black"  # Color predeterminado de la interfaz
EMOJI = "🤖"  # Emoji predeterminado para el modelo
DESCRIPTION = f"This is 4bit quntized {MODEL_NAME} model with BnB and designed for testing thinking for general AI tasks."  # Descripción predeterminada

latex_delimiters_set = [{
        "left": "\\(",
        "right": "\\)",
        "display": False 
    }, {
        "left": "\\begin{equation}",
        "right": "\\end{equation}",
        "display": True 
    }, {
        "left": "\\begin{align}",
        "right": "\\end{align}",
        "display": True
    }, {
        "left": "\\begin{alignat}",
        "right": "\\end{alignat}",
        "display": True
    }, {
        "left": "\\begin{gather}",
        "right": "\\end{gather}",
        "display": True
    }, {
        "left": "\\begin{CD}",
        "right": "\\end{CD}",
        "display": True
    }, {
        "left": "\\[",
        "right": "\\]",
        "display": True
    }]


@spaces.GPU()
def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p):
    # Format history with a given chat template
    
    # stop_tokens = ["<|endoftext|>", "<|im_end|>"]
    # instruction = '<|im_start|>system\n' + system_prompt + '\n<|im_end|>\n'
    # for user, assistant in history:
    #     instruction += f'<|im_start|>user\n{user}\n<|im_end|>\n<|im_start|>assistant\n{assistant}\n<|im_end|>\n'
    # instruction += f'<|im_start|>user\n{message}\n<|im_end|>\n<|im_start|>assistant\n'

    stop_tokens = ["<|endoftext|>", "<|im_end|>"]
    instruction = '<|System|>\n' + system_prompt + '\n'
    for user, assistant in history:
        instruction += f'<|User|>\n{user}\n<|Assistant|>\n{assistant}\n'
    instruction += f'<|User|>\n{message}\n<think>\n'
    
    print(instruction)
    
    streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
    enc = tokenizer(instruction, return_tensors="pt", padding=True, truncation=True)
    input_ids, attention_mask = enc.input_ids, enc.attention_mask

    if input_ids.shape[1] > CONTEXT_LENGTH:
        input_ids = input_ids[:, -CONTEXT_LENGTH:]
        attention_mask = attention_mask[:, -CONTEXT_LENGTH:]

    generate_kwargs = dict(
        input_ids=input_ids.to(device),
        attention_mask=attention_mask.to(device),
        streamer=streamer,
        do_sample=True,
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_k=top_k,
        repetition_penalty=repetition_penalty,
        top_p=top_p
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()
    outputs = []
    for new_token in streamer:
        outputs.append(new_token)
        if new_token in stop_tokens:
            break
        yield "".join(outputs)


# Load model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
model = AutoModelForCausalLM.from_pretrained(
    MODEL_ID,
    device_map="auto",
    quantization_config=quantization_config,
    attn_implementation="flash_attention_2",
)

# Create Gradio interface
gr.ChatInterface(
    predict,
    title=EMOJI + " " + MODEL_NAME,
    description=DESCRIPTION,
    

     
    additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False),
    additional_inputs=[
        gr.Textbox("You are a useful assistant. first recognize user request and then reply carfuly and thinking", label="System prompt"),
        gr.Slider(0, 1, 0.6, label="Temperature"),
        gr.Slider(0, 30000, 20000, label="Max new tokens"),
        gr.Slider(1, 80, 40, label="Top K sampling"),
        gr.Slider(0, 2, 1.1, label="Repetition penalty"),
        gr.Slider(0, 1, 0.95, label="Top P sampling"),
    ],
    #theme=gr.themes.Soft(primary_hue=COLOR),
).queue().launch()