nileshhanotia commited on
Commit
291c87e
1 Parent(s): 228bf19

Delete intent.py

Browse files
Files changed (1) hide show
  1. intent.py +0 -53
intent.py DELETED
@@ -1,53 +0,0 @@
1
- import torch
2
- from transformers import AutoModelForSequenceClassification, AutoTokenizer
3
-
4
- # Load pre-trained model and tokenizer from Hugging Face
5
- MODEL_NAME = "distilbert-base-uncased-finetuned-sst-2-english" # Example, change to other open-source models if necessary
6
- model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME, num_labels=2)
7
- tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
8
-
9
- # Define the intents
10
- intents = {0: "database_query", 1: "product_description"}
11
-
12
- # Function to classify query intent
13
- def classify_intent(query):
14
- inputs = tokenizer(query, return_tensors="pt", truncation=True, padding=True)
15
- outputs = model(**inputs)
16
- probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
17
- predicted_class = torch.argmax(probabilities).item()
18
- return intents[predicted_class], probabilities[0][predicted_class].item()
19
-
20
- # Example usage
21
- query_1 = "Fetch all products with the keyword 'T-shirt' from the database."
22
- query_2 = "Can you tell me about the description of this Shopify store?"
23
-
24
- intent_1, confidence_1 = classify_intent(query_1)
25
- intent_2, confidence_2 = classify_intent(query_2)
26
-
27
- print(f"Query 1: '{query_1}'\nIntent: {intent_1} with confidence {confidence_1}\n")
28
- print(f"Query 2: '{query_2}'\nIntent: {intent_2} with confidence {confidence_2}\n")
29
-
30
- # Further routing based on classified intent
31
- def handle_query(query):
32
- intent, confidence = classify_intent(query)
33
- if intent == "database_query":
34
- # Call the natural language to SQL engine
35
- return execute_database_query(query)
36
- elif intent == "product_description":
37
- # Call the RAG engine for product descriptionß
38
- return execute_rag_query(query)
39
- else:
40
- return "Intent not recognized."
41
-
42
- # Placeholder functions for database and RAG query handling
43
- def execute_database_query(query):
44
- # Integrate with SQL-based natural language query generator
45
- return "Executing database query..."
46
-
47
- def execute_rag_query(query):
48
- # Integrate with RAG pipeline to retrieve product descriptions
49
- return "Executing RAG product description query..."
50
-
51
- # Test the function with different queries
52
- print(handle_query(query_1))
53
- print(handle_query(query_2))