Spaces:
Sleeping
Sleeping
nileshhanotia
commited on
Commit
•
d6ed2ba
1
Parent(s):
8a184c2
Create intent.py
Browse files
intent.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
3 |
+
|
4 |
+
# Load pre-trained model and tokenizer from Hugging Face
|
5 |
+
MODEL_NAME = "distilbert-base-uncased-finetuned-sst-2-english" # Example, change to other open-source models if necessary
|
6 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME, num_labels=2)
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
8 |
+
|
9 |
+
# Define the intents
|
10 |
+
intents = {0: "database_query", 1: "product_description"}
|
11 |
+
|
12 |
+
# Function to classify query intent
|
13 |
+
def classify_intent(query):
|
14 |
+
inputs = tokenizer(query, return_tensors="pt", truncation=True, padding=True)
|
15 |
+
outputs = model(**inputs)
|
16 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
17 |
+
predicted_class = torch.argmax(probabilities).item()
|
18 |
+
return intents[predicted_class], probabilities[0][predicted_class].item()
|
19 |
+
|
20 |
+
# Example usage
|
21 |
+
query_1 = "Fetch all products with the keyword 'T-shirt' from the database."
|
22 |
+
query_2 = "Can you tell me about the description of this Shopify store?"
|
23 |
+
|
24 |
+
intent_1, confidence_1 = classify_intent(query_1)
|
25 |
+
intent_2, confidence_2 = classify_intent(query_2)
|
26 |
+
|
27 |
+
print(f"Query 1: '{query_1}'\nIntent: {intent_1} with confidence {confidence_1}\n")
|
28 |
+
print(f"Query 2: '{query_2}'\nIntent: {intent_2} with confidence {confidence_2}\n")
|
29 |
+
|
30 |
+
# Further routing based on classified intent
|
31 |
+
def handle_query(query):
|
32 |
+
intent, confidence = classify_intent(query)
|
33 |
+
if intent == "database_query":
|
34 |
+
# Call the natural language to SQL engine
|
35 |
+
return execute_database_query(query)
|
36 |
+
elif intent == "product_description":
|
37 |
+
# Call the RAG engine for product descriptionß
|
38 |
+
return execute_rag_query(query)
|
39 |
+
else:
|
40 |
+
return "Intent not recognized."
|
41 |
+
|
42 |
+
# Placeholder functions for database and RAG query handling
|
43 |
+
def execute_database_query(query):
|
44 |
+
# Integrate with SQL-based natural language query generator
|
45 |
+
return "Executing database query..."
|
46 |
+
|
47 |
+
def execute_rag_query(query):
|
48 |
+
# Integrate with RAG pipeline to retrieve product descriptions
|
49 |
+
return "Executing RAG product description query..."
|
50 |
+
|
51 |
+
# Test the function with different queries
|
52 |
+
print(handle_query(query_1))
|
53 |
+
print(handle_query(query_2))
|