PeVe_mistral / app.py
nileshhanotia's picture
Update app.py
2882051 verified
raw
history blame
4.76 kB
import os
import json
import random
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
from datasets import Dataset
import torch
from huggingface_hub import Repository, HfFolder
import subprocess
# Authenticate Hugging Face Hub
hf_token = st.secrets["HF_TOKEN"]
HfFolder.save_token(hf_token)
# Set Git user identity
def set_git_config():
try:
subprocess.run(['git', 'config', '--global', 'user.email', '[email protected]'], check=True)
subprocess.run(['git', 'config', '--global', 'user.name', 'Nilesh'], check=True)
st.success("Git configuration set successfully.")
except subprocess.CalledProcessError as e:
st.error(f"Git configuration error: {str(e)}")
# Call set_git_config at the start of the script
set_git_config()
@st.cache_data
def load_data(file_path):
if not os.path.exists(file_path):
st.error(f"File not found: {file_path}")
return None
try:
with open(file_path, 'r') as f:
data = json.load(f)
return data
except Exception as e:
st.error(f"Error loading dataset: {str(e)}")
return None
@st.cache_resource
def initialize_model_and_tokenizer(model_name, num_labels):
try:
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=num_labels)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = model.config.eos_token_id
return tokenizer, model
except Exception as e:
st.error(f"Error initializing model and tokenizer: {str(e)}")
return None, None
def create_dataset(data, tokenizer, max_length):
texts = [item['prompt'] for item in data]
labels = [item['label'] for item in data]
encodings = tokenizer(texts, truncation=True, padding='max_length', max_length=max_length)
dataset = Dataset.from_dict({
'input_ids': encodings['input_ids'],
'attention_mask': encodings['attention_mask'],
'labels': labels
})
return dataset
def split_data(data, test_size=0.2):
random.shuffle(data)
split_index = int(len(data) * (1 - test_size))
return data[:split_index], data[split_index:]
def main():
st.title("Appointment Classification Model Training")
model_name = st.text_input("Enter model name", "distilgpt2")
file_path = st.text_input("Enter path to training data JSON file", "training_data.json")
max_length = st.number_input("Enter max token length", min_value=32, max_value=512, value=128)
num_epochs = st.number_input("Enter number of training epochs", min_value=1, max_value=10, value=3)
batch_size = st.number_input("Enter batch size", min_value=1, max_value=32, value=8)
learning_rate = st.number_input("Enter learning rate", min_value=1e-6, max_value=1e-3, value=5e-5, format="%.1e")
num_labels = 3 # We have 3 classes: schedule, reschedule, cancel
repo_id = st.text_input("Enter Hugging Face repository ID", "nileshhanotia/PeVe")
tokenizer, model = initialize_model_and_tokenizer(model_name, num_labels)
if tokenizer is None or model is None:
st.warning("Failed to initialize model and tokenizer. Please check the model name and try again.")
return
st.write("Loading and processing dataset...")
data = load_data(file_path)
if data is None:
st.warning("Failed to load dataset. Please check the file path and try again.")
return
st.write("Preparing dataset...")
# Split the data into train and evaluation sets
train_data, eval_data = split_data(data)
train_dataset = create_dataset(train_data, tokenizer, max_length)
eval_dataset = create_dataset(eval_data, tokenizer, max_length)
training_args = TrainingArguments(
output_dir='./results',
evaluation_strategy='epoch',
learning_rate=learning_rate,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
num_train_epochs=num_epochs,
weight_decay=0.01,
logging_dir='./logs',
logging_steps=10,
push_to_hub=True,
hub_model_id=repo_id,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
)
if st.button('Start Training'):
st.write("Starting training...")
trainer.train()
trainer.push_to_hub()
st.write(f"Training complete. Model is available on the Hugging Face Hub: {repo_id}")
if __name__ == "__main__":
main()