PeVe_mistral / app.py
nileshhanotia's picture
Update app.py
ca9766d verified
raw
history blame
5.78 kB
import os
import json
import random
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
from datasets import Dataset, concatenate_datasets
import torch
from huggingface_hub import Repository, HfFolder
import subprocess
# Authenticate Hugging Face Hub
hf_token = st.secrets["HF_TOKEN"]
HfFolder.save_token(hf_token)
# Set Git user identity
def set_git_config():
try:
subprocess.run(['git', 'config', '--global', 'user.email', '[email protected]'], check=True)
subprocess.run(['git', 'config', '--global', 'user.name', 'Nilesh'], check=True)
st.success("Git configuration set successfully.")
except subprocess.CalledProcessError as e:
st.error(f"Git configuration error: {str(e)}")
# Call set_git_config at the start of the script
set_git_config()
@st.cache_data
def load_data(file_paths):
combined_data = []
for file_path in file_paths:
file_path = file_path.strip()
if not os.path.exists(file_path):
st.error(f"File not found: {file_path}")
return None
try:
with open(file_path, 'r') as f:
data = json.load(f)
if 'intents' in data:
for intent in data['intents']:
combined_data.extend(intent['examples'])
else:
st.error(f"Invalid format in file: {file_path}")
return None
except Exception as e:
st.error(f"Error loading dataset from {file_path}: {str(e)}")
return None
return combined_data
@st.cache_resource
def initialize_model_and_tokenizer(model_name, num_labels):
try:
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=num_labels)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = model.config.eos_token_id
return tokenizer, model
except Exception as e:
st.error(f"Error initializing model and tokenizer: {str(e)}")
return None, None
def create_dataset(data, tokenizer, max_length):
texts = [item.get('prompt', '') for item in data]
labels = [item.get('label', -1) for item in data]
# Debugging: Print out labels to check for invalid values
print(f"Labels before adjustment: {labels}")
# Ensure all labels are within the valid range
labels = [label if 0 <= label < num_labels else 0 for label in labels]
# Debugging: Print out adjusted labels
print(f"Labels after adjustment: {labels}")
encodings = tokenizer(texts, truncation=True, padding='max_length', max_length=max_length)
dataset = Dataset.from_dict({
'input_ids': encodings['input_ids'],
'attention_mask': encodings['attention_mask'],
'labels': labels
})
return dataset
def split_data(data, test_size=0.2):
if not data:
raise ValueError("Data is empty, cannot split.")
random.shuffle(data)
split_index = int(len(data) * (1 - test_size))
return data[:split_index], data[split_index:]
def main():
st.title("Appointment Classification Model Training")
model_name = st.text_input("Enter model name", "distilgpt2")
file_paths = st.text_area("Enter paths to training data JSON files (comma-separated)", "training_data1.json,training_data2.json").split(',')
max_length = st.number_input("Enter max token length", min_value=32, max_value=512, value=128)
num_epochs = st.number_input("Enter number of training epochs", min_value=1, max_value=10, value=3)
batch_size = st.number_input("Enter batch size", min_value=1, max_value=32, value=8)
learning_rate = st.number_input("Enter learning rate", min_value=1e-6, max_value=1e-3, value=5e-5, format="%.1e")
num_labels = 3 # We have 3 classes: schedule, reschedule, cancel
repo_id = st.text_input("Enter Hugging Face repository ID", "nileshhanotia/PeVe")
tokenizer, model = initialize_model_and_tokenizer(model_name, num_labels)
if tokenizer is None or model is None:
st.warning("Failed to initialize model and tokenizer. Please check the model name and try again.")
return
st.write("Loading and processing dataset...")
data = load_data(file_paths)
if data is None:
st.warning("Failed to load dataset. Please check the file paths and try again.")
return
st.write("Preparing dataset...")
# Split the data into train and evaluation sets
try:
train_data, eval_data = split_data(data)
except ValueError as e:
st.error(f"Data splitting error: {str(e)}")
return
train_dataset = create_dataset(train_data, tokenizer, max_length)
eval_dataset = create_dataset(eval_data, tokenizer, max_length)
training_args = TrainingArguments(
output_dir='./results',
evaluation_strategy='epoch',
learning_rate=learning_rate,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
num_train_epochs=num_epochs,
weight_decay=0.01,
logging_dir='./logs',
logging_steps=10,
push_to_hub=True,
hub_model_id=repo_id,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
)
if st.button('Start Training'):
st.write("Starting training...")
trainer.train()
trainer.push_to_hub()
st.write(f"Training complete. Model is available on the Hugging Face Hub: {repo_id}")
if __name__ == "__main__":
main()