Spaces:
Sleeping
Sleeping
nileshhanotia
commited on
Commit
•
0a83766
1
Parent(s):
e61ae4d
Update app.py
Browse files
app.py
CHANGED
@@ -1,62 +1,73 @@
|
|
1 |
import streamlit as st
|
2 |
-
|
3 |
from datasets import load_dataset
|
|
|
|
|
|
|
4 |
|
5 |
-
# Streamlit App title
|
6 |
-
st.title("Fine-Tune Mixtral 8x7B Model")
|
7 |
-
|
8 |
-
# Model name input field
|
9 |
-
model_name = "mistral/mixtral-8x7b"
|
10 |
-
|
11 |
-
# Access the Hugging Face token from Streamlit secrets
|
12 |
-
token = st.secrets["HF_TOKEN"]
|
13 |
-
|
14 |
-
# Load the tokenizer and model
|
15 |
-
try:
|
16 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, token=token)
|
17 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, token=token)
|
18 |
-
st.write("Model and tokenizer loaded successfully!")
|
19 |
-
except Exception as e:
|
20 |
-
st.error(f"An error occurred while loading the model: {e}")
|
21 |
-
|
22 |
-
# Load the dataset from the existing file
|
23 |
-
dataset_path = "training_data.json"
|
24 |
-
|
25 |
-
try:
|
26 |
-
dataset = load_dataset('json', data_files={'train': dataset_path})
|
27 |
-
except Exception as e:
|
28 |
-
st.error(f"An error occurred while loading the dataset: {e}")
|
29 |
-
|
30 |
-
# Tokenize the dataset
|
31 |
def preprocess_function(examples):
|
|
|
|
|
32 |
return tokenizer(examples['prompt'], truncation=True, padding="max_length", max_length=128)
|
33 |
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
#
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
with st.spinner("Fine-tuning in progress..."):
|
56 |
-
try:
|
57 |
-
trainer.train()
|
58 |
-
st.success("Fine-tuning completed!")
|
59 |
-
model.save_pretrained("./fine_tuned_model")
|
60 |
-
st.write("Fine-tuned model saved!")
|
61 |
-
except Exception as e:
|
62 |
-
st.error(f"An error occurred during fine-tuning: {e}")
|
|
|
1 |
import streamlit as st
|
2 |
+
import os
|
3 |
from datasets import load_dataset
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments
|
5 |
+
import pandas as pd
|
6 |
+
from io import StringIO
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
def preprocess_function(examples):
|
9 |
+
if 'prompt' not in examples:
|
10 |
+
raise ValueError("Key 'prompt' not found in examples. Please check your dataset fields.")
|
11 |
return tokenizer(examples['prompt'], truncation=True, padding="max_length", max_length=128)
|
12 |
|
13 |
+
def train_model(training_data):
|
14 |
+
# Load the dataset
|
15 |
+
dataset = load_dataset('json', data_files={'train': training_data})
|
16 |
+
|
17 |
+
# Initialize the tokenizer and model
|
18 |
+
model_name = 'mistral/Mixtral-8x7B' # Replace with the correct model name
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
20 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
21 |
|
22 |
+
# Tokenize the dataset
|
23 |
+
tokenized_dataset = dataset['train'].map(preprocess_function, batched=True)
|
24 |
+
|
25 |
+
# Define training arguments
|
26 |
+
training_args = TrainingArguments(
|
27 |
+
output_dir='./results', # Output directory
|
28 |
+
evaluation_strategy='epoch', # Evaluation strategy
|
29 |
+
learning_rate=2e-5, # Learning rate
|
30 |
+
per_device_train_batch_size=4, # Batch size for training
|
31 |
+
per_device_eval_batch_size=4, # Batch size for evaluation
|
32 |
+
num_train_epochs=3, # Number of training epochs
|
33 |
+
weight_decay=0.01, # Strength of weight decay
|
34 |
+
logging_dir='./logs', # Directory for storing logs
|
35 |
+
logging_steps=10, # Log every 10 steps
|
36 |
+
)
|
37 |
+
|
38 |
+
# Initialize the Trainer
|
39 |
+
trainer = Trainer(
|
40 |
+
model=model, # The model to train
|
41 |
+
args=training_args, # Training arguments
|
42 |
+
train_dataset=tokenized_dataset, # Training dataset
|
43 |
+
)
|
44 |
+
|
45 |
+
# Start training
|
46 |
+
trainer.train()
|
47 |
|
48 |
+
def main():
|
49 |
+
st.title("Model Training with Streamlit")
|
50 |
+
|
51 |
+
st.write("Upload your training data in JSON format:")
|
52 |
+
uploaded_file = st.file_uploader("Choose a file", type="json")
|
53 |
+
|
54 |
+
if uploaded_file is not None:
|
55 |
+
st.write("File uploaded successfully!")
|
56 |
+
|
57 |
+
# Read the file into a pandas DataFrame
|
58 |
+
file_contents = uploaded_file.read().decode("utf-8")
|
59 |
+
st.write("Preview of uploaded data:")
|
60 |
+
st.text(file_contents[:1000]) # Display first 1000 characters for preview
|
61 |
+
|
62 |
+
# Save the file to a temporary location
|
63 |
+
temp_file_path = 'training_data.json'
|
64 |
+
with open(temp_file_path, 'w') as f:
|
65 |
+
f.write(file_contents)
|
66 |
+
|
67 |
+
# Call the train_model function
|
68 |
+
st.write("Training the model...")
|
69 |
+
train_model(temp_file_path)
|
70 |
+
st.write("Training completed!")
|
71 |
|
72 |
+
if __name__ == "__main__":
|
73 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|