pepe_2 / intent_classifier.py
nileshhanotia's picture
Create intent_classifier.py
848ab8c verified
raw
history blame
853 Bytes
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch
class IntentClassifier:
def __init__(self):
self.model_name = "distilbert-base-uncased-finetuned-sst-2-english"
self.model = AutoModelForSequenceClassification.from_pretrained(self.model_name, num_labels=2)
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
self.intents = {0: "database_query", 1: "product_description"}
def classify(self, query):
inputs = self.tokenizer(query, return_tensors="pt", truncation=True, padding=True)
outputs = self.model(**inputs)
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
predicted_class = torch.argmax(probabilities).item()
return self.intents[predicted_class], probabilities[0][predicted_class].item()