Spaces:
Sleeping
Sleeping
import gradio as gr | |
from sql_generator import SQLGenerator | |
from intent_classifier import IntentClassifier | |
from rag_system import RAGSystem | |
from huggingface_hub import InferenceClient | |
# Initialize Hugging Face InferenceClient | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# Unified System Class | |
class UnifiedSystem: | |
def __init__(self): | |
self.sql_generator = SQLGenerator() | |
self.intent_classifier = IntentClassifier() | |
self.rag_system = RAGSystem() | |
self.base_url = "https://agkd0n-fa.myshopify.com/products/" | |
def process_query(self, query): | |
intent, confidence = self.intent_classifier.classify(query) | |
if intent == "database_query": | |
sql_query = self.sql_generator.generate_query(query) | |
products = self.sql_generator.fetch_shopify_data("products") | |
if products and 'products' in products: | |
results = "\n".join([ | |
f"Title: {p['title']}\nVendor: {p['vendor']}\nDescription: {p.get('body_html', 'No description available.')}\nURL: {self.base_url}{p['handle']}\n" | |
for p in products['products'] | |
]) | |
return f"Intent: Database Query (Confidence: {confidence:.2f})\n\n" \ | |
f"SQL Query: {sql_query}\n\nResults:\n{results}" | |
else: | |
return "No results found or error fetching data from Shopify." | |
elif intent == "product_description": | |
rag_response = self.rag_system.process_query(query) | |
product_handles = rag_response.get('product_handles', []) | |
urls = [f"{self.base_url}{handle}" for handle in product_handles] | |
response = rag_response.get('response', "No description available.") | |
return f"Intent: Product Description (Confidence: {confidence:.2f})\n\n" \ | |
f"Response: {response}\n\nProduct Details:\n" + "\n".join( | |
[f"Product URL: {url}" for url in urls] | |
) | |
return "Intent not recognized." | |
# Chatbot Response using Hugging Face's model | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
# Create Gradio interface with integrated functionalities | |
def create_interface(): | |
system = UnifiedSystem() | |
# Define the interface | |
iface = gr.Interface( | |
fn=system.process_query, | |
inputs=gr.Textbox( | |
label="Enter your query", | |
placeholder="e.g., 'Show me all T-shirts' or 'Describe the product features'" | |
), | |
outputs=gr.Textbox(label="Response"), | |
title="Unified Query Processing System", | |
description="Enter a natural language query to search products or get descriptions.", | |
examples=[ | |
["Show me shirts less than 50 rupee"], | |
["Show me shirts with red color"], | |
["Show me T-shirts with M size"] | |
] | |
) | |
# Define Chat Interface for Hugging Face Model | |
chat_demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
# Launch both interfaces (Unified System and Chatbot) | |
iface.launch(share=True) # Share the interface for public access | |
chat_demo.launch(share=True) # Launch the chatbot interface for user interaction | |
if __name__ == "__main__": | |
create_interface() | |